CN102937449A - 惯性导航系统中跨音速段气压高度计和gps信息两步融合方法 - Google Patents

惯性导航系统中跨音速段气压高度计和gps信息两步融合方法 Download PDF

Info

Publication number
CN102937449A
CN102937449A CN2012104013285A CN201210401328A CN102937449A CN 102937449 A CN102937449 A CN 102937449A CN 2012104013285 A CN2012104013285 A CN 2012104013285A CN 201210401328 A CN201210401328 A CN 201210401328A CN 102937449 A CN102937449 A CN 102937449A
Authority
CN
China
Prior art keywords
gps
error
delta
height
barometric altimeter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012104013285A
Other languages
English (en)
Other versions
CN102937449B (zh
Inventor
张旭
熊智
王融
吴璇
雷庭万
刘建业
方峥
邵慧
姚小松
刘伟霞
张承
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201210401328.5A priority Critical patent/CN102937449B/zh
Publication of CN102937449A publication Critical patent/CN102937449A/zh
Application granted granted Critical
Publication of CN102937449B publication Critical patent/CN102937449B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Navigation (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明公开了一种惯性导航系统中跨音速段气压高度计和GPS信息两步融合方法,包括互补滤波和卡尔曼滤波,其中互补滤波采用大气/GPS高度通道互补融合滤波,以消除气压高度值剧烈变化;卡尔曼滤波通过建立气压高度计/GPS/惯性导航系统组合导航系统状态方程和量测方程,通过两步融合最终得到惯性高度通道的状态最优估计。本发明中气压高度计和GPS组成高度冗余和故障检测隔离系统,可以有效提高飞信过程中特别是跨音速阶段高度值得精度,为精确导航和飞行控制提供有力条件。

Description

惯性导航系统中跨音速段气压高度计和GPS信息两步融合方法
技术领域
本发明涉及一种用于跨音速段气压高度计和GPS两步融合方法,能够通过融合气压高度计和GPS的测量值,用于飞行器高度导航参数的确定,属于导航、制导与控制领域。
背景技术
飞行高度信息的准确与否对飞行器能否安全飞行起至关重要的作用。由于惯性系统的高度通道是不稳定的,除了采取措施补偿引力(或重力)加速度外,还要引入外部高度信息与惯性垂直通道信息进行综合,目前一般采用引入气压高度表或大气数据中心等外部高度信息进行阻尼,修正惯性高度。
基于经典控制理论设计的惯性/大气阻尼系统,其本质是惯导高度向大气高度逼近。在飞行器进行跨音速和俯冲段大机动任务飞行时,大气测量误差变化剧烈,严重影响惯性/大气阻尼性能。高度通道性能严重滞后于飞行特性和任务特点日益多样化的航空平台及武器对惯导系统高度通道性能的需求,无法满足飞行器在精密导航飞行阶段的自主控制精确、安全可靠的高精度要求。
传统飞行器高度测量多采用气压高度计或者GPS分别测量飞行高度。气压高度计的短时精度较高,但会随着大气压与温度的变化而发生变化,随时间的变长会产生较大的高度测量误差。当高度很高时,气压高度表的精度也会下降。GPS易受周围建筑物和树丛的遮挡而失效,在特殊时期由于受某些因素影响亦无法使用。
因此,无论是GPS还是气压高度计,单独进行导航时所提供的标准定位服务都无法满足飞行器在精密导航飞行阶段的自主控制精确、安全可靠的高精度要求。
发明内容
本发明所要解决的技术问题在于:针对进行跨音速大机动任务飞行时,大气测量误差变化剧烈、严重影响传统惯性/大气阻尼性能的问题,提出一种跨音速段气压高度计和GPS信息两步融合方法。
本发明为解决上述技术问题,采用如下技术方案:
本发明一种惯性导航系统中跨音速段气压高度计和GPS信息两步融合方法,包括以下步骤:
第一步:互补滤波融合;
步骤(1),航空机载气压高度计测量的高度hADS和GPS测量的高度信息hGPS,经过互补滤波器环节处理后进行融合,得到融合后的高度hp为:
h p = sh ADS + kh GPS s + k - - - ( 1 )
其中,k为截止频率,s为拉普拉斯变换;
步骤(2),对步骤(1)模型离散化,可得到如下滤波方程
Figure BDA00002279531500022
其中,T为采样周期,
Figure BDA00002279531500023
为互补滤波融合高度;
第二步:卡尔曼滤波融合;
步骤(3),通过对惯性导航系统的性能及误差源的分析,建立基于大气辅助的航空机载惯性导航系统的误差状态方程为:
X · ( t ) = F ( t ) X ( t ) + G ( t ) W ( t ) - - - ( 3 )
其中,X(t)为连续系统在t时刻的状态矢量,F(t)为连续系统在t时刻的状态系数矩阵,G(t)为连续系统在t时刻的误差系数矩阵,W(t)为连续系统在t时刻的白噪声随机误差矢量;
航空机载惯性导航系统误差状态量X定义为:
X = [ φ E , φ N , φ U , δv E , δv N , δv U , δL , δλ , δh , ϵ bx , ϵ by , ϵ bz , ϵ rx , ϵ ry , ϵ rz , ▿ x , ▿ y , ▿ z , δh p ] T ,
其中φENU为平台误差角;δvE,δvN,δvU为速度误差;δL,δλ,δh为纬度、经度和高度误差;εbx,εbybz为陀螺常值漂移误差,εrxryrz为一阶马尔可夫漂移误差;
Figure BDA00002279531500026
为加速度计零偏,δhp为气压高度计经步骤(2)得到的互补滤波融合高度,其模型方程表达式为:
δ h · p = - v d T p δh p + ω p - - - ( 4 )
式中,vd为飞行地速,Tp为气压相关系数,ωp为测量误差高斯白噪声;
步骤(4),采用航空机载地理系下位置线性化观测原理,建立航空机载地理系下位置观测量和步骤(3)所述的误差状态量中的高度误差状态量之间线性化误差量测方程,其表达式如下:
Z ( t ) = h I - h G h I - h p = δh + v 1 δh + δh p = H ( t ) X ( t ) + V ( t ) - - - ( 5 )
其中,Z(t)为连续系统在t时刻的量测矢量,H(t)为连续系统在t时刻的量测矩阵,V(t)为连续系统在t时刻的量测噪声。
hI表示惯性导航系统的位置信息:hI=ht+δh;
hG表示GPS接收机给出的位置信息:hG=ht-v1
hp表示气压高度的位置信息为:hp=ht-δhp
其中,ht为高度的真值,δh为高度误差,v1考虑为高斯白噪声;
步骤(5),进行误差状态方程和误差量测方程的离散化,获得惯性导航系统的线性化卡尔曼滤波器,实现基于大气高度辅助的INS/GPS高精度组合导航,具体如下:
a,进行误差状态方程和误差量测方程的离散化,其离散化形式如下:
X k = Φ k , k - 1 X k - 1 + Γ k - 1 W k - 1 Z k = H k X k + V k - - - ( 6 )
式中 Φ k , k - 1 = Σ m = 0 ∞ [ F ( t k ) T ] m / m ! , Γ k - 1 = { Σ m = 1 ∞ [ 1 m ! ( F ( t k ) T ) m - 1 ] } G ( t k ) T , 时刻k、变量m为自然数,T为迭代周期;
b,获得系统的线性化卡尔曼滤波器方程如下:
X ^ k = X ^ k | k - 1 + K k [ Z k - H k X ^ k | k - 1 ] , 其中: X ^ k | k - 1 = Φ k , k - 1 X ^ k - 1 ;
P k = ( I - K k H k ) P k | k - 1 ( I - K k H k ) T + K k R k K k T , 其中:
K k = P k | k - 1 H k T ( H k P k | k - 1 H k T + R k ) - 1 , P k | k - 1 = Φ k , k - 1 P k - 1 Φ k , k - 1 T + Γ k - 1 Q k - 1 Γ k - 1 T ;
上式中Pk为系统k时刻的最优滤波误差协方差阵,Kk为系统k时刻的滤波增益,Pk/k-1为系统k时刻的一步预测均方误差,Qk,Rk分别为系统k时刻的噪声方差矩阵和量测方差矩阵。
进一步的,本发明的一种惯性导航系统中跨音速段气压高度计和GPS信息两步融合方法,在进行第一步互补滤波融合之前,还包括采用故障检测与隔离算法判断GPS传感器是否有故障的步骤,具体如下:
①计算故障检测函数λ(k):
γ ( k ) = Z ( k ) - Z gps ( k ) λ ( k ) = γ T ( k ) γ ( k ) - - - ( 7 )
式中,Z(k)为捷联惯性导航系统高度信息最优估计值,Zgps(k)为GPS高度输出值;
②故障判断的准则为:
Figure BDA00002279531500041
式中,TD1、TD2为预先设定的门限;
③若判断出GPS系统无故障,则执行步骤(1)至步骤(5)进行气压高度计和GPS信息两步融合;
若判断出GPS系统有故障,则对GPS系统进行隔离,并通过系统重构不致因故障而失效,当隔离GPS后系统处于跨音速阶段,切断气压高度计实施纯捷联惯性导航;当隔离GPS后系统处于跨音速以外阶段,对气压高度计实施高度通道阻尼;
当检测到GPS系统恢复正常后,再执行步骤(1)至步骤(5),重新进行气压高度计和GPS信息两步融合。
本发明与现有技术相比克服了进行跨音速大机动任务飞行时,大气测量误差变化剧烈,严重影响传统惯性/大气阻尼性能,构建了一种跨音速段气压高度计和GPS两步融合方法。主要具有以下优点:
(1)通过互补滤波器抑制大气测量误差在跨音速阶段剧烈变化,使互补融合大气高度消除剧烈变化,变化平缓;
(2)采用气压高度计和GPS测量飞行高度,将气压高度计和GPS构成冗余和故障检测与隔离系统,GPS信息主要有两个用途,一个是用于和大气参数融合,另外一个就是用于卡尔曼滤波器中和捷联惯性导航输出进行组合修正。
附图说明
图1为本发明的气压高度计和GPS两步融合流程图;
图2为本发明的大气/GPS高度互补滤波器结构图;
图3为本发明的气压高度计和GPS两步融合高度误差仿真对比结果图;
图4为加入故障检测与隔离前后的气压高度计和GPS两步融合高度误差仿真结果图。
具体实施方式
下面结合附图对发明的技术方案进行进一步地详细说明:
本发明利用气压高度计信息和GPS信息融合获取高精度高度信息,融合算法主要分为如下两步:
1、互补滤波融合:基于互补滤波器的思想,若将无偏差但受噪声干扰大的GPS导航系统所测得的高度信息,与低噪声但存在偏差的大气数据系统所测得的高度信息融合。
2、卡尔曼滤波融合:构建气压高度计/GPS/惯性导航系统组合,实现基于大气高度辅助的INS/GPS高精度组合导航。
如图1所示,具体实施方法如下:
一、互补滤波融合:
步骤(1),建立气压高度计和GPS互补滤波器:
惯性高度通道一般采用基于经典控制理论设计的惯性/大气阻尼系统,在跨音速阶段,传统大气阻尼有较大的影响,导致其误差特性同样产生较大波动。基于互补滤波器的这种思想,若将无偏差但受噪声干扰大的GPS导航系统所测得的高度信息,与低噪声但存在偏差的大气数据系统所测得的高度信息融合,获取各自想要的分量,必定能够实现更为精确的飞行高度的获取。
参考图2,建立如图2所示的互补滤波结构,航空机载气压高度计测量的高度hADS和GPS高度信息hGPS,经过互补滤波器环节处理后进行融合,得到融合后的高度hp为:
h p = sh ADS + kh GPS s + k - - - ( 1 )
其中,k为截止频率,s为拉普拉斯变换。
步骤(2),气压高度计和GPS互补滤波器离散化
对步骤(1)连续系统模型(1)离散化,可得到如下滤波方程
其中,T为采样周期,为互补滤波融合高度。
二、卡尔曼滤波融合:
步骤A,建立航空机载惯性导航系统的误差状态方程:
选择导航坐标系为东北天地理水平坐标系(OnXnYnZn),采用线性卡尔曼滤波器进行组合,系统的状态方程为惯性导航系统的误差状态量方程,通过对惯性导航系统的性能及误差源的分析,可以获得惯导系统的误差状态量方程为:
X · ( t ) = F ( t ) X ( t ) + G ( t ) W ( t ) - - - ( 3 )
其中,X(t)为连续系统在t时刻的状态矢量,F(t)为连续系统在t时刻的状态系数矩阵,
G(t)为连续系统在t时刻的误差系数矩阵,W(t)为连续系统在t时刻的白噪声随机误差矢量。
式中, X = [ φ E , φ N , φ U , δv E , δv N , δv U , δL , δλ , δh , ϵ bx , ϵ by , ϵ bz , ϵ rx , ϵ ry , ϵ rz , ▿ x , ▿ y , ▿ z , δh p ] T
其中φENU为平台误差角;δvE,δvN,δvU为速度误差;δL,δλ,δh为纬度、经度和高度误差;εbx,εbybz为陀螺常值漂移误差,εrxryrz为一阶马尔可夫漂移误差;
Figure BDA00002279531500062
为加速度计零偏,δhp为气压高度计经步骤(2)得到的互补滤波融合高度,其方程表达式为:
δ h · p = - v d T p δh p + ω p - - - ( 4 )
式中,vd为飞行地速,Tp为气压相关系数,ωp为测量误差高斯白噪声。
步骤B,建立航空机载惯性导航系统的误差量测方程:
采用航空机载地理系下位置线性化观测原理,建立航空机载地理系下位置观测量和被估计的步骤A所述的航空机载惯性导航系统误差状态量中的高度误差状态量之间的线性化量测方程,其观测量有两组:一组为位置观测量,即惯性导航系统给出的高度信息和GPS接收机给出相应信息的差值;惯导高度与互补滤波高度之差作为组合卡尔曼滤波器的另一组观测量。
表示惯性导航系统的位置信息为:hI=ht+δh;
表示GPS接收机给出的位置信息为:hG=ht-v1
表示气压高度的位置信息为:hp=ht-δhp
其中,ht为高度的真值,δh为高度误差,v1考虑为高斯白噪声。
其表达式如下:
Z ( t ) = h I - h G h I - h p = δh + v 1 δh + δh p = H ( t ) X ( t ) + V ( t ) - - - ( 5 )
其中,Z(t)为连续系统在t时刻的量测矢量,H(t)为连续系统在t时刻的量测矩阵,V(t)为连续系统在t时刻的量测噪声。
步骤C,状态方程和量测方程的离散化及卡尔曼滤波器:
当采用线性卡尔曼滤波器时,需要对上面连续形式的系统状态方程(3)和量测方程(5)进行离散化,从而获得离散形式的系统方程。其离散化形式如下:
X k = Φ k , k - 1 X k - 1 + Γ k - 1 W k - 1 Z k = H k X k + V k - - - ( 6 )
式中 Φ k , k - 1 = Σ m = 0 ∞ [ F ( t k ) T ] m / m ! , Γ k - 1 = { Σ m = 1 ∞ [ 1 m ! ( F ( t k ) T ) m - 1 ] } G ( t k ) T , k、m为自然数,T为迭代周期。
从而可以获得系统的线性化卡尔曼滤波器方程如下:
X ^ k = X ^ k | k - 1 + K k [ Z k - H k X ^ k | k - 1 ] , 其中: X ^ k | k - 1 = Φ k , k - 1 X ^ k - 1 ;
P k = ( I - K k H k ) P k | k - 1 ( I - K k H k ) T + K k R k K k T , 其中:
K k = P k | k - 1 H k T ( H k P k | k - 1 H k T + R k ) - 1 , P k | k - 1 = Φ k , k - 1 P k - 1 Φ k , k - 1 T + Γ k - 1 Q k - 1 Γ k - 1 T ;
上式中Pk为系统k时刻的最优滤波误差协方差阵,Kk为系统k时刻的滤波增益,Pk/k-1为系统k时刻的一步预测均方误差,Qk,Rk分别为系统k时刻的噪声方差矩阵和量测方差矩阵。
步骤D,故障检测与隔离算法,判断GPS传感器是否有故障:
考虑到GPS易受周围建筑物和树丛的遮挡而失效,此外,GPS受某些发达国家控制,在特殊时期亦无法使用,必须实时地确定GPS系统处理的高度信息的有效性,所以应配备实时的故障检测和隔离算法。
①计算故障检测函数λ(k):
γ ( k ) = Z ( k ) - Z gps ( k ) λ ( k ) = γ T ( k ) γ ( k ) - - - ( 7 )
式中,Z(k)为捷联惯性导航系统高度信息最优估计值,Zgps(k)为GPS高度输出值。
②故障判断的准则为:
Figure BDA000022795315000710
式中,TD1、TD2为预先设定的门限。
若判断出GPS系统无故障,则进行气压高度计和GPS高度两步融合;若检测出GPS系统有故障,则对GPS系统进行隔离,并通过系统重构不致因故障而失效。考虑气压高度计在跨音速阶段误差较大,当隔离GPS后系统处于跨音速阶段,切断气压高度计实施纯捷联惯性导航;当隔离GPS后系统处于跨音速以外阶段,对气压高度计实施高度通道阻尼。当检测到GPS系统恢复正常后,再重新进行气压高度计和GPS高度两步融合。
图3的仿真结果表明,采用气压高度计和GPS两步融合,飞行器在高度方向上的运动轨迹更加接近于其真实运动轨迹,数据融合算法是有效与传统二阶阻尼高度误差相比大大提高,较气压高度计和GPS直接卡尔曼滤波定位精度明显改善。
图4的仿真结果表明,系统没有加入故障检测单元时,系统的恢复速度慢,定位精度受GPS故障影响较大;加入故障检测和隔离后,系统的定位精度和稳定性得到显著提高。

Claims (2)

1.一种惯性导航系统中跨音速段气压高度计和GPS信息两步融合方法,其特征在于包括以下步骤:
第一步:互补滤波融合;
步骤(1),航空机载气压高度计测量的高度hADS和GPS测量的高度信息hGPS,经过互补滤波器环节处理后进行融合,得到融合后的高度hp为:
h p = sh ADS + kh GPS s + k - - - ( 1 )
其中,k为截止频率,s为拉普拉斯变换;
步骤(2),对步骤(1)模型离散化,可得到如下滤波方程
其中,T为采样周期,
Figure FDA00002279531400013
为互补滤波融合高度;
第二步:卡尔曼滤波融合;
步骤(3),通过对惯性导航系统的性能及误差源的分析,建立基于大气辅助的航空机载惯性导航系统的误差状态方程为:
X · ( t ) = F ( t ) X ( t ) + G ( t ) W ( t ) - - - ( 3 )
其中,X(t)为连续系统在t时刻的状态矢量,F(t)为连续系统在t时刻的状态系数矩阵,G(t)为连续系统在t时刻的误差系数矩阵,W(t)为连续系统在t时刻的白噪声随机误差矢量;
航空机载惯性导航系统误差状态量X定义为:
X = [ φ E , φ N , φ U , δv E , δv N , δv U , δL , δλ , δh , ϵ bx , ϵ by , ϵ bz , ϵ rx , ϵ ry , ϵ rz , ▿ x , ▿ y , ▿ z , δh p ] T ,
其中φENU为平台误差角;δvE,δvN,δvU为速度误差;δL,δλ,δh为纬度、经度和高度误差;εbx,εbybz为陀螺常值漂移误差,εrxryrz为一阶马尔可夫漂移误差;
Figure FDA00002279531400016
为加速度计零偏,δhp为气压高度计经步骤(2)得到的互补滤波融合高度,其模型方程表达式为:
δ h · p = - v d T p δh p + ω p - - - ( 4 )
式中,vd为飞行地速,Tp为气压相关系数,ωp为测量误差高斯白噪声;
步骤(4),采用航空机载地理系下位置线性化观测原理,建立航空机载地理系下位置观测量和步骤(3)所述的误差状态量中的高度误差状态量之间线性化误差量测方程,其表达式如下:
Z ( t ) = h I - h G h I - h p = δh + v 1 δh + δh p = H ( t ) X ( t ) + V ( t ) - - - ( 5 )
其中,Z(t)为连续系统在t时刻的量测矢量,H(t)为连续系统在t时刻的量测矩阵,V(t)为连续系统在t时刻的量测噪声。
hI表示惯性导航系统的位置信息:hI=ht+δh;
hG表示GPS接收机给出的位置信息:hG=ht-v1
hp表示气压高度的位置信息为:hp=ht-δhp
其中,ht为高度的真值,δh为高度误差,v1考虑为高斯白噪声;
步骤(5),进行误差状态方程和误差量测方程的离散化,获得惯性导航系统的线性化卡尔曼滤波器,实现基于大气高度辅助的INS/GPS高精度组合导航,具体如下:
a,进行误差状态方程和误差量测方程的离散化,其离散化形式如下:
X k = Φ k , k - 1 X k - 1 + Γ k - 1 W k - 1 Z k = H k X k + V k - - - ( 6 )
式中 Φ k , k - 1 = Σ m = 0 ∞ [ F ( t k ) T ] m / m ! , Γ k - 1 = { Σ m = 1 ∞ [ 1 m ! ( F ( t k ) T ) m - 1 ] } G ( t k ) T , 时刻k、变量m为自然数,T为迭代周期;
b,获得系统的线性化卡尔曼滤波器方程如下:
X ^ k = X ^ k | k - 1 + K k [ Z k - H k X ^ k | k - 1 ] , 其中: X ^ k | k - 1 = Φ k , k - 1 X ^ k - 1 ;
P k = ( I - K k H k ) P k | k - 1 ( I - K k H k ) T + K k R k K k T , 其中:
K k = P k | k - 1 H k T ( H k P k | k - 1 H k T + R k ) - 1 , P k | k - 1 = Φ k , k - 1 P k - 1 Φ k , k - 1 T + Γ k - 1 Q k - 1 Γ k - 1 T ;
上式中Pk为系统k时刻的最优滤波误差协方差阵,Kk为系统k时刻的滤波增益,Pk/k-1为系统k时刻的一步预测均方误差,Qk,Rk分别为系统k时刻的噪声方差矩阵和量测方差矩阵。
2.根据权利要求1所述的一种惯性导航系统中跨音速段气压高度计和GPS信息两步融合方法,在进行第一步互补滤波融合之前,还包括采用故障检测与隔离算法判断GPS传感器是否有故障的步骤,具体如下:
①计算故障检测函数λ(k):
γ ( k ) = Z ( k ) - Z gps ( k ) λ ( k ) = γ T ( k ) γ ( k ) - - - ( 7 )
式中,Z(k)为捷联惯性导航系统高度信息最优估计值,Zgps(k)为GPS高度输出值;
②故障判断的准则为:
Figure FDA00002279531400032
式中,TD1、TD2为预先设定的门限;
③若判断出GPS系统无故障,则执行步骤(1)至步骤(5)进行气压高度计和GPS信息两步融合;
若判断出GPS系统有故障,则对GPS系统进行隔离,并通过系统重构不致因故障而失效,当隔离GPS后系统处于跨音速阶段,切断气压高度计实施纯捷联惯性导航;当隔离GPS后系统处于跨音速以外阶段,对气压高度计实施高度通道阻尼;
当检测到GPS系统恢复正常后,再执行步骤(1)至步骤(5),重新进行气压高度计和GPS信息两步融合。
CN201210401328.5A 2012-10-19 2012-10-19 惯性导航系统中跨音速段气压高度计和gps信息两步融合方法 Expired - Fee Related CN102937449B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210401328.5A CN102937449B (zh) 2012-10-19 2012-10-19 惯性导航系统中跨音速段气压高度计和gps信息两步融合方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210401328.5A CN102937449B (zh) 2012-10-19 2012-10-19 惯性导航系统中跨音速段气压高度计和gps信息两步融合方法

Publications (2)

Publication Number Publication Date
CN102937449A true CN102937449A (zh) 2013-02-20
CN102937449B CN102937449B (zh) 2015-01-14

Family

ID=47696360

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210401328.5A Expired - Fee Related CN102937449B (zh) 2012-10-19 2012-10-19 惯性导航系统中跨音速段气压高度计和gps信息两步融合方法

Country Status (1)

Country Link
CN (1) CN102937449B (zh)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103217172A (zh) * 2013-03-21 2013-07-24 哈尔滨工程大学 一种卡尔曼滤波传感器信息融合的故障检测方法
CN103913171A (zh) * 2014-04-28 2014-07-09 北京理工大学 基于加速度计和陀螺仪的载体转速与转角补偿测量方法
CN104898694A (zh) * 2015-05-13 2015-09-09 深圳一电科技有限公司 飞行器控制方法及飞行器
CN105807303A (zh) * 2016-05-14 2016-07-27 中卫物联成都科技有限公司 基于gnss、ins和机载高度表的组合导航方法和设备
CN105841699A (zh) * 2016-03-28 2016-08-10 北京航空航天大学 针对惯性导航的雷达高度表辅助方法
CN105865446A (zh) * 2016-05-25 2016-08-17 南京航空航天大学 基于大气辅助的惯性高度通道阻尼卡尔曼滤波方法
CN106249744A (zh) * 2016-07-11 2016-12-21 电子科技大学 一种基于二级互补滤波的小型旋翼飞行器高度控制方法
CN106840088A (zh) * 2017-02-27 2017-06-13 武汉理工大学 一种车载组合导航路面沉降快速测量方法
CN106840084A (zh) * 2016-11-30 2017-06-13 极翼机器人(上海)有限公司 基于高度平滑切换的无人机鲁棒解决方法
CN106840203A (zh) * 2017-01-10 2017-06-13 南京航空航天大学 惯导/气压高度计/gps组合导航系统中气压高度计校正方法
CN108733068A (zh) * 2017-04-24 2018-11-02 菜鸟智能物流控股有限公司 飞行器
CN109445449A (zh) * 2018-11-29 2019-03-08 浙江大学 一种高亚音速无人机超低空飞行控制系统及方法
CN110325819A (zh) * 2017-02-24 2019-10-11 赫尔环球有限公司 用于室内定位的精确高度估计
CN111156964A (zh) * 2020-01-14 2020-05-15 广东小天才科技有限公司 一种高度测量方法、系统、移动终端和存储介质
CN111189446A (zh) * 2018-11-15 2020-05-22 北京自动化控制设备研究所 一种基于无线电的组合导航方法
CN111964695A (zh) * 2020-08-19 2020-11-20 西安因诺航空科技有限公司 一种无人机组合导航系统故障检测与隔离方法
CN112066985A (zh) * 2020-09-22 2020-12-11 深圳市领峰电动智能科技有限公司 一种组合导航系统初始化方法、装置、介质及电子设备
CN112180952A (zh) * 2020-08-21 2021-01-05 成都飞机工业(集团)有限责任公司 一种小型轮式起降无人机高度余度管理方法
CN114234910A (zh) * 2021-12-08 2022-03-25 南京航空航天大学 基于气压基准自适应修正的惯性和ads高度融合方法
US11914053B2 (en) 2021-01-11 2024-02-27 Honeywell International Inc. Vehicle location accuracy enhancement system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003536082A (ja) * 2000-06-06 2003-12-02 リットン システムズ インコーポレイテッド 3d自律型インテグリティ監視外挿航法
CN101135567A (zh) * 2006-08-31 2008-03-05 索尼株式会社 导航设备和导航信息计算方法
CN102023000A (zh) * 2010-09-30 2011-04-20 清华大学 无人直升机气压高度计和gps融合测高方法
EP2336721A1 (en) * 2009-12-21 2011-06-22 Converteam Technology Ltd Fault detection methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003536082A (ja) * 2000-06-06 2003-12-02 リットン システムズ インコーポレイテッド 3d自律型インテグリティ監視外挿航法
CN101135567A (zh) * 2006-08-31 2008-03-05 索尼株式会社 导航设备和导航信息计算方法
EP2336721A1 (en) * 2009-12-21 2011-06-22 Converteam Technology Ltd Fault detection methods
CN102023000A (zh) * 2010-09-30 2011-04-20 清华大学 无人直升机气压高度计和gps融合测高方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
田世君: ""基于气压表/GPS的数据融合算法研究"", 《电子学报》 *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103217172B (zh) * 2013-03-21 2016-07-06 哈尔滨工程大学 一种卡尔曼滤波传感器信息融合的故障检测方法
CN103217172A (zh) * 2013-03-21 2013-07-24 哈尔滨工程大学 一种卡尔曼滤波传感器信息融合的故障检测方法
CN103913171A (zh) * 2014-04-28 2014-07-09 北京理工大学 基于加速度计和陀螺仪的载体转速与转角补偿测量方法
CN104898694A (zh) * 2015-05-13 2015-09-09 深圳一电科技有限公司 飞行器控制方法及飞行器
CN105841699A (zh) * 2016-03-28 2016-08-10 北京航空航天大学 针对惯性导航的雷达高度表辅助方法
CN105807303A (zh) * 2016-05-14 2016-07-27 中卫物联成都科技有限公司 基于gnss、ins和机载高度表的组合导航方法和设备
CN105865446A (zh) * 2016-05-25 2016-08-17 南京航空航天大学 基于大气辅助的惯性高度通道阻尼卡尔曼滤波方法
CN106249744B (zh) * 2016-07-11 2019-04-05 电子科技大学 一种基于二级互补滤波的小型旋翼飞行器高度控制方法
CN106249744A (zh) * 2016-07-11 2016-12-21 电子科技大学 一种基于二级互补滤波的小型旋翼飞行器高度控制方法
CN106840084A (zh) * 2016-11-30 2017-06-13 极翼机器人(上海)有限公司 基于高度平滑切换的无人机鲁棒解决方法
CN106840203B (zh) * 2017-01-10 2020-01-17 南京航空航天大学 惯导/气压高度计/gps组合导航系统中气压高度计校正方法
CN106840203A (zh) * 2017-01-10 2017-06-13 南京航空航天大学 惯导/气压高度计/gps组合导航系统中气压高度计校正方法
CN110325819A (zh) * 2017-02-24 2019-10-11 赫尔环球有限公司 用于室内定位的精确高度估计
US11248908B2 (en) 2017-02-24 2022-02-15 Here Global B.V. Precise altitude estimation for indoor positioning
CN106840088A (zh) * 2017-02-27 2017-06-13 武汉理工大学 一种车载组合导航路面沉降快速测量方法
CN108733068A (zh) * 2017-04-24 2018-11-02 菜鸟智能物流控股有限公司 飞行器
CN111189446B (zh) * 2018-11-15 2023-07-14 北京自动化控制设备研究所 一种基于无线电的组合导航方法
CN111189446A (zh) * 2018-11-15 2020-05-22 北京自动化控制设备研究所 一种基于无线电的组合导航方法
CN109445449A (zh) * 2018-11-29 2019-03-08 浙江大学 一种高亚音速无人机超低空飞行控制系统及方法
CN109445449B (zh) * 2018-11-29 2019-10-22 浙江大学 一种高亚音速无人机超低空飞行控制系统及方法
CN111156964B (zh) * 2020-01-14 2022-02-08 广东小天才科技有限公司 一种高度测量方法、系统、移动终端和存储介质
CN111156964A (zh) * 2020-01-14 2020-05-15 广东小天才科技有限公司 一种高度测量方法、系统、移动终端和存储介质
CN111964695A (zh) * 2020-08-19 2020-11-20 西安因诺航空科技有限公司 一种无人机组合导航系统故障检测与隔离方法
CN112180952A (zh) * 2020-08-21 2021-01-05 成都飞机工业(集团)有限责任公司 一种小型轮式起降无人机高度余度管理方法
CN112180952B (zh) * 2020-08-21 2022-04-08 成都飞机工业(集团)有限责任公司 一种小型轮式起降无人机高度余度管理方法
CN112066985A (zh) * 2020-09-22 2020-12-11 深圳市领峰电动智能科技有限公司 一种组合导航系统初始化方法、装置、介质及电子设备
US11914053B2 (en) 2021-01-11 2024-02-27 Honeywell International Inc. Vehicle location accuracy enhancement system
CN114234910A (zh) * 2021-12-08 2022-03-25 南京航空航天大学 基于气压基准自适应修正的惯性和ads高度融合方法

Also Published As

Publication number Publication date
CN102937449B (zh) 2015-01-14

Similar Documents

Publication Publication Date Title
CN102937449B (zh) 惯性导航系统中跨音速段气压高度计和gps信息两步融合方法
CN101858748B (zh) 高空长航无人机的多传感器容错自主导航方法
CN107525503B (zh) 基于双天线gps和mimu组合的自适应级联卡尔曼滤波方法
CN101256080B (zh) 卫星/惯性组合导航系统的空中对准方法
CN104344837B (zh) 一种基于速度观测的冗余惯导系统加速度计系统级标定方法
CN105091907B (zh) Sins/dvl组合中dvl方位安装误差估计方法
CN103245359B (zh) 一种惯性导航系统中惯性传感器固定误差实时标定方法
CN102620748B (zh) 捷联惯导系统晃动基座条件下杆臂效应的估计和补偿方法
CN104713554A (zh) 一种基于mems惯性器件与安卓智能手机融合的室内定位方法
CN104215259A (zh) 一种基于地磁模量梯度和粒子滤波的惯导误差校正方法
CN102645223B (zh) 一种基于比力观测的捷联惯导真空滤波修正方法
CN103323007A (zh) 一种基于时变量测噪声的鲁棒联邦滤波方法
CN109163735A (zh) 一种晃动基座正向-正向回溯初始对准方法
CN110849360B (zh) 面向多机协同编队飞行的分布式相对导航方法
CN103557864A (zh) Mems捷联惯导自适应sckf滤波的初始对准方法
CN103925930B (zh) 一种重力仪双轴陀螺稳定平台航向误差效应的补偿方法
CN101246012A (zh) 一种基于鲁棒耗散滤波的组合导航方法
CN102519485A (zh) 一种引入陀螺信息的二位置捷联惯性导航系统初始对准方法
Luo et al. A position loci-based in-motion initial alignment method for low-cost attitude and heading reference system
CN102680000A (zh) 应用零速/航向修正的光纤捷联惯组在线标定方法
CN108007477A (zh) 一种基于正反向滤波的惯性行人定位系统误差抑制方法
CN104359496A (zh) 基于垂线偏差补偿的高精度姿态修正方法
CN104154914A (zh) 一种空间稳定型捷联惯导系统初始姿态测量方法
CN105180928B (zh) 一种基于惯性系重力特性的船载星敏感器定位方法
Xue et al. MEMS-based multi-sensor integrated attitude estimation technology for MAV applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150114

CF01 Termination of patent right due to non-payment of annual fee