CN102931864B - 级联静止无功发生器功率单元直流母线电压平衡控制方法 - Google Patents

级联静止无功发生器功率单元直流母线电压平衡控制方法 Download PDF

Info

Publication number
CN102931864B
CN102931864B CN201210486762.8A CN201210486762A CN102931864B CN 102931864 B CN102931864 B CN 102931864B CN 201210486762 A CN201210486762 A CN 201210486762A CN 102931864 B CN102931864 B CN 102931864B
Authority
CN
China
Prior art keywords
voltage
phase
power
power cell
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210486762.8A
Other languages
English (en)
Other versions
CN102931864A (zh
Inventor
杨奇
钱诗宝
张裕峰
霍利杰
李冰
胡炫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NANJING SAC NEW ENERGY TECHNOLOGY CO., LTD.
Original Assignee
Guodian Nanjing Automation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guodian Nanjing Automation Co Ltd filed Critical Guodian Nanjing Automation Co Ltd
Priority to CN201210486762.8A priority Critical patent/CN102931864B/zh
Publication of CN102931864A publication Critical patent/CN102931864A/zh
Application granted granted Critical
Publication of CN102931864B publication Critical patent/CN102931864B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • H02J3/1835Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
    • H02J3/1842Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters
    • H02J3/1857Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters wherein such bridge converter is a multilevel converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/20Active power filtering [APF]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种级联型静止无功发生器功率单元直流母线电压平衡控制方法,通过交流电流解耦控制实现对系统输出总的有功与无功电流的控制;采用功率补偿与移相相位角再分配的协调控制方法,来实现各个功率单元直流母线电压的平衡控制,在此,通过施加一个补偿功率单元功率损耗的有功电压矢量的同时,比较各功率单元直流母线电压的大小及变化趋势对各功率单元移相相位角实时再分配,通过两者协调控制来维持各个功率单元直流母线电压的平衡。本发明系统无需增加额外的功率电路,不仅降低了系统硬件成本,而且算法简单,易于实现,性能卓越。

Description

级联静止无功发生器功率单元直流母线电压平衡控制方法
技术领域
本发明属于电力电子技术控制领域,尤其涉及级联型静止无功发生器功率单元直流母线电压平衡控制方法。
背景技术
静止无功发生器(SVG)作为新型的静止无功补偿器,具有静止无功补偿器(SVC)无法比拟的优点,受到了广泛的关注,其应用研究也向高压大容量方向发展。高压大容量静止无功发生器一般采用变压器多重化和多电平这两种结构,多电平结构具有低电磁干扰和低开关频率的优点,成为高压大容量的首要选择,被广泛应用于高压电力电子设备中。级联多电平结构,除了具有输出电压谐波小、损耗低、成本低等优点外,还具有结构简单、所需器件少、易于扩展和模块化的特点,是大容量多电平的最佳选择,也是近年来研究的热点。
由于级联型静止无功发生器装置是基于级联多电平逆变器的拓扑结构,各级联功率单元结构完全相同,假设各功率单元参数(包括开关元件参数及直流电容参数)、触发脉冲完全相同,那么各功率单元的电容电压始终保持平衡,也就是说,理想条件下不会出现电容电压不平衡的现象。然而在实际应用中,各功率单元的损耗总是存在差异,各触发脉冲虽然指令相同,在经过门电路和信号放大环节后到达各开关器件的实际触发信号可能并不一致,而是存在一定的脉冲延时,这些因素是造成稳态时电容电压不平衡的直接原因。即使这些差异很小,随着时间的积累,各直流电容电压之间可能会出现严重的不平衡。那么必须采取措施对直流侧电压进行平衡控制,才能保证级联型静止无功发生器装置正常工作。
发明内容
本发明所要解决的技术问题是提出一种级联型静止无功发生器功率单元直流母线电压平衡控制方法,无需增加额外的功率电路,即可实现各功率单元直流母线电压的平衡控制。
为解决上述技术问题,本发明提供一种级联静止无功发生器功率单元直流母线电压平衡控制方法,采用功率补偿与移相相位角再分配协调控制方法达到平衡各功率单元直流母线电压的效果,其特征在于,包括以下步骤:
1)根据所测量的电网电压,利用数字锁相环计算得到电网电压综合矢量角度;
2)通过矩阵变换,将采样得到的系统输出相电流变换到两相旋转坐标系下有功电流d轴分量和无功电流q轴分量(d轴按电网电压综合矢量定向),并将采样得到的电网相电压变换到两相旋转坐标系下的d轴电压分量和q轴电压分量,并利用交流电流前馈解耦控制策略得到三相互差120度的调制波;
3)根据两相旋转坐标系下有功电流d轴分量和无功电流q轴分量计算出电流综合矢量与电网电压综合矢量的夹角,并结合电网电压综合矢量角计算出与电流综合矢量同相的单位正弦信号;
4)将每相各功率单元直流电压求和取平均值作为直流电压参考信号,并与本相各功率单元实际直流电压信号做差并进行PI调节,将PI输出的信号与步骤3)中的单位正弦信号相乘得到补偿功率单元功率损耗的有功电压矢量;
5)将每相各功率单元直流电压与平均值进行比较,并求出最大最小值以及各直流电压的变化趋势,然后根据直流电压偏差平均值的情况,判断是否需要对各功率单元移相相位角进行再分配,由此得到新的移相相位角;
6)将步骤4中所得到的三相各功率单元有功电压矢量与步骤2)中的三相调制波信号相加得到每个功率单元新的调制波信号,并结合步骤5)中重新分配的移相相位角,通过移相SPWM控制方法生成各个功率单元的驱动信号。
本发明的级联型静止无功发生器功率单元直流母线电压平衡控制方法,无需增加额外的功率电路,即可实现各功率单元直流母线电压的平衡控制,不仅降低了系统硬件成本,而且算法简单,易于实现,性能卓越。
附图说明
图1级联型静止无功发生器系统结构图;
图2坐标系(d,q)、坐标系(a,b,c)及矢量分解图;
图3级联型静止无功发生器功率单元直流母线电压平衡控制原理图;
图4本发明的级联型静止无功发生器功率单元直流母线电压波形图。
具体实施方式
下面结合附图对发明的技术方案进行详细的说明:
本发明的级联型静止无功发生器功率单元直流母线电压平衡控制主要由两个部分组成,第一部分通过交流电流解耦控制实现对系统输出总的有功与无功电流的控制;第二部分即本发明的核心,采用功率补偿与移相相位角再分配协调控制方法,来实现各个级联功率单元直流母线电压的平衡控制。以A相为例,级联的功率单元数为N,各功率单元直流母线电压平衡控制方法的具体实现步骤如下:
1)根据所测量的电网电压,利用数字锁相环计算得到电网电压综合矢量角度θ;
2)利用矩阵变换,将采样得到的系统输出相电流ia、ib、ic变换到两相旋转坐标系下的有功电流d轴分量Id和无功电流q轴分量Iq
(d轴按电网电压综合矢量定向),并将采样得到的电网相电压ea、eb、ec变换到两相旋转坐标系下的d轴电压分量Ed和q轴电压分量Eq
利用交流电流前馈解耦控制得到系统输出d轴控制分量urd和q轴控制分量urq
urd=Ed-(KP+Ki∫dt)(Id *-Id)+ωLIq(Kp—比例系数,Ki—广义积分系数,t—积分时间,Id *—有功电流给定,Id—有功电流反馈,ω—电源角频率,L—输出滤波电感)
urq=Eq-(KP+Ki∫dt)(Iq *-Iq)-ωLId
结合锁相角度,计算得到三相互差120度的调制波urA、urB、urC
(N—A相功率单元级数,Vdc-单个功率单元直流电压)
3)根据两相旋转坐标系下有功电流d轴分量Id和无功电流q轴分量Iq,计算出系统输出相电流综合矢量与电网电压综合矢量的夹角α,α=actan(Iq/Id),并且结合电网电压综合矢量角度θ计算出与输出相电流矢量同相的A相、B相、C相的单位正弦信号分别为cos(α+θ)、cos(α+θ-120°)、cos(α+θ+120°);
4)将A相各功率单元直流电压求和取平均值作为直流电压参考信号,udcANref=(udcA1+……udcAN)/N,udcBNref=(udcB1+……udcBN)/N,udcCNef=udcC1+……udcCN)/N),并与本相各功率单元实际直流电压信号做差进行PI调节得到udcANPIout,将PI输出的信号udcANPIout与步骤3)中的单位正弦信号相乘得到补偿功率单元功率损耗的有功电压矢量,ΔurAN=udcANPIout×cos(α+θ),ΔurBN=udcBNPIout×cos(α+θ-120°),ΔurCN=udcCNPIout×cos(α+θ+120°);udcANref为A相各功率单元直流电压平均值,udcBNref为B相各功率单元直流电压平均值、udcCNref为C相各功率单元直流电压平均值,udcA1、……、udcAN为A相各功率单元直流电压,udcB1、……、udcBN为B相各功率单元直流电压,udcC1、……、udcCN为C相各功率单元直流电压;
5)将A相各功率单元直流电压udcA1、……、udcAN与A相各功率单元直流电压平均值udcANref=(udcA1+……udcAN)/N进行比较,并求出最大值、最小值以及各直流电压的变化趋势,然后根据直流电压偏差平均值的情况,判断是否需要对各功率单元移相相位角vAN进行再分配,再分配的具体方法为:选出大于平均值且最大且为增加的趋势的功率单元直流电压,选出小于平均值且最小且为减小的趋势的功率单元直流电压,并将此两个功率单元的移相相位角交换,由此得到新的移相相位角vcAN
6)将步骤4)中所得到的三相各功率单元有功电压矢量与步骤2)中的三相调制波信号叠加得到每个功率单元新的调制波urAN′ΔurAN+urA、urBN′=ΔurBN+urB,urCN′ΔurCN+urC,并结合步骤5)中重新分配的移相相位角vcAN,通过移相SPWM调制方法生成各个模块的驱动信号。
以上控制算法均在DSP中实现,并与FPGA相配合生成各功率单元的驱动信号。利用直流测并联不同阻值电阻的方式模拟各功率单元功率损耗的差异,图4为加入功率单元直流母线电压平衡控制和不加入功率单元直流母线电压平衡控制的各功率单元直流母线电压波形图,图4(a)为不加任何功率单元直流母线电压平衡控制的波形图,图4(b)为加入本发明中所提的功率补偿与移相相位角再分配协调控制的直流母线电压平衡控制波形图,对比两波形结果可以看出,不加平衡控制的各功率单元直流母线电压差异非常大,且呈发散趋势;而加入本发明中所提的功率补偿与移相相位角再分配协调控制的各功率单元直流母线电压值基本稳定,且平衡性非常好,由此验证了本发明功率单元直流母线电压平衡控制方法的正确性。
以上已以较佳实施例公开了本发明,然其并非用以限制本发明,凡采用等同替换或者等效变换方式所获得的技术方案,均落在本发明的保护范围之内。

Claims (2)

1.级联静止无功发生器功率单元直流母线电压平衡控制方法,其特征在于,包括以下步骤:
1)根据所测量的电网电压,利用数字锁相环计算得到电网电压综合矢量角度;
2)通过矩阵变换,将采样得到的系统输出相电流变换到两相旋转坐标系下有功电流d轴分量和无功电流q轴分量,并将采样得到的电网相电压变换到两相旋转坐标系下的d轴电压分量和q轴电压分量,并利用交流电流前馈解耦控制得到三相互差120度的调制波;
3)根据两相旋转坐标系下有功电流d轴分量和无功电流q轴分量计算出电流综合矢量与电网电压综合矢量的夹角,并结合电网电压综合矢量角计算出与电流综合矢量同相的单位正弦信号;
4)将每相各功率单元直流电压求和取平均值作为直流电压参考信号,并与本相各功率单元实际直流电压信号做差并进行PI调节,将PI输出的信号与步骤3)中的单位正弦信号相乘得到补偿功率单元功率损耗的有功电压矢量;
5)将每相各功率单元直流电压与平均值进行比较,并求出最大值、最小值以及各直流电压的变化趋势, 然后根据直流电压偏差平均值的情况, 判断是否需要对各功率单元移相相位角进行再分配,由此得到新的移相相位角;
6)将步骤4)中所得到的三相各功率单元有功电压矢量与步骤2)中的三相调制波信号相加得到每个功率单元新的调制波信号,并结合步骤5)中重新分配的移相相位角,通过移相SPWM控制方法生成各个功率单元的驱动信号。
2.根据权利要求1所述的级联静止无功发生器功率单元直流母线电压平衡控制方法,其特征在于:在所述步骤5)中,再分配的具体方法为:在大于平均值且为增加的趋势的功率单元直流电压中选出最大值,在小于平均值且为减小的趋势的功率单元直流电压中选出最小值,并将选出的两个功率单元的移相相位角交换。
CN201210486762.8A 2012-11-26 2012-11-26 级联静止无功发生器功率单元直流母线电压平衡控制方法 Active CN102931864B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210486762.8A CN102931864B (zh) 2012-11-26 2012-11-26 级联静止无功发生器功率单元直流母线电压平衡控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210486762.8A CN102931864B (zh) 2012-11-26 2012-11-26 级联静止无功发生器功率单元直流母线电压平衡控制方法

Publications (2)

Publication Number Publication Date
CN102931864A CN102931864A (zh) 2013-02-13
CN102931864B true CN102931864B (zh) 2015-05-13

Family

ID=47646596

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210486762.8A Active CN102931864B (zh) 2012-11-26 2012-11-26 级联静止无功发生器功率单元直流母线电压平衡控制方法

Country Status (1)

Country Link
CN (1) CN102931864B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103311933A (zh) * 2013-06-17 2013-09-18 哈尔滨九洲电气股份有限公司 链式静止无功发生器的平滑过渡式分段pid控制方法
CN103401459B (zh) * 2013-08-15 2015-05-06 东南大学 一种三角形连接的链式h桥直挂式逆变器相间直流侧电压平衡控制方法
GB2550421A (en) 2016-05-20 2017-11-22 General Electric Technology Gmbh Control of voltage source converters
CN107222119B (zh) * 2017-06-15 2019-07-23 辽宁拓新电力电子有限公司 高压svg功率单元直流电压双重控制装置及控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1708349A1 (de) * 2005-03-31 2006-10-04 SEG Schaltanlagen-Elektronik-Geräte GmbH & Co. KG Stromregelung eines Netzparallelen Spannungsumrichters
CN101599708A (zh) * 2009-06-26 2009-12-09 华中科技大学 级联多电平逆变器的直流侧功率平衡控制方法
CN102545675A (zh) * 2012-01-10 2012-07-04 西安交通大学 一种混合串联h桥多电平并网逆变器直流母线电压控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1708349A1 (de) * 2005-03-31 2006-10-04 SEG Schaltanlagen-Elektronik-Geräte GmbH & Co. KG Stromregelung eines Netzparallelen Spannungsumrichters
CN101599708A (zh) * 2009-06-26 2009-12-09 华中科技大学 级联多电平逆变器的直流侧功率平衡控制方法
CN102545675A (zh) * 2012-01-10 2012-07-04 西安交通大学 一种混合串联h桥多电平并网逆变器直流母线电压控制方法

Also Published As

Publication number Publication date
CN102931864A (zh) 2013-02-13

Similar Documents

Publication Publication Date Title
Yuan et al. A FACTS device: Distributed power-flow controller (DPFC)
CN102638049B (zh) 一种链式三角形连接statcom直流母线相间均压控制方法
CN102723734B (zh) 一种y型连接串联h桥多电平并网逆变器直流母线电压控制方法
CN105071403A (zh) 基于双h桥模块化多电平拓扑的无功补偿装置及控制方法
CN102545675B (zh) 一种混合串联h桥多电平并网逆变器直流母线电压控制方法
Balikci et al. A multilevel converter with reduced number of switches in STATCOM for load balancing
Pires et al. HVDC transmission system using multilevel power converters based on dual three-phase two-level inverters
CN102931864B (zh) 级联静止无功发生器功率单元直流母线电压平衡控制方法
Mohammed et al. Performance evaluation of R-UPQC and L-UPQC based on a novel voltage detection algorithm
Xiao et al. Current balancing control for multi-port hybrid AC/DC microgrid
CN102684204B (zh) 一种级联式statcom直流侧电容电压平衡控制方法
Xu et al. Unbalance and harmonic mitigation using battery inverters
Ebrahim et al. Power quality improvements for integration of hybrid AC/DC nanogrids to power systems
CN204858577U (zh) 基于双h桥模块化多电平换流器的无功补偿装置
Shang et al. Railway power conditioner based on delta-connected modular multilevel converter
Kunya et al. Voltage sag and swell alleviation in distribution network using custom power devices; D-STATCOM and DVR
Hannan et al. Development of the unified series-shunt compensator for power quality mitigation
Shandilya et al. Mitigation of total harmonic distortion using cascaded MLI-DSTATCOM in distribution network
Patidar et al. Active and reactive power control and quality management in DG-grid interfaced systems
Bakhshizadeh et al. Using variable DC sources in order to improve the voltage quality of a multilevel STATCOM with low frequency modulation
Djehaf et al. Modeling of a multi-level converter based VSC HVDC supplying a dead load
Xiao et al. Active power filter design for improving power quality
JP2013258841A (ja) 変圧器多重電力変換装置
Balam et al. Dynamic Performance of 48-pulse STATCOM, SSSC and UPFC controller
Changjiang et al. Universal custom power conditioner (UCPC) in distribution networks

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20170731

Address after: 210032 Spark Road 8, hi tech Development Zone, Jiangsu, Nanjing

Patentee after: NANJING SAC NEW ENERGY TECHNOLOGY CO., LTD.

Address before: 210009 Gulou District, Jiangsu, Nanjing new model road, No. 38

Patentee before: Nanjing Automation Co., Ltd., China Electronics Corp.

TR01 Transfer of patent right