CN102930982A - 一种电容器超薄膜的制备方法 - Google Patents

一种电容器超薄膜的制备方法 Download PDF

Info

Publication number
CN102930982A
CN102930982A CN2012103768396A CN201210376839A CN102930982A CN 102930982 A CN102930982 A CN 102930982A CN 2012103768396 A CN2012103768396 A CN 2012103768396A CN 201210376839 A CN201210376839 A CN 201210376839A CN 102930982 A CN102930982 A CN 102930982A
Authority
CN
China
Prior art keywords
film
capacitor
preparation
coating
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012103768396A
Other languages
English (en)
Other versions
CN102930982B (zh
Inventor
刘帅
王丽华
吴杰
刘必前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Chemistry CAS
Original Assignee
Institute of Chemistry CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Chemistry CAS filed Critical Institute of Chemistry CAS
Priority to CN201210376839.6A priority Critical patent/CN102930982B/zh
Publication of CN102930982A publication Critical patent/CN102930982A/zh
Application granted granted Critical
Publication of CN102930982B publication Critical patent/CN102930982B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

一种电容器超薄膜的制备方法,其特征在于,使用甲苯等溶剂将含有聚苯乙烯嵌段的嵌段共聚物溶解;使用旋涂法在平滑的电极表面旋涂成膜。薄膜表面平整致密,膜内部结构规整,膜厚度均一无缺陷。厚度为10~500纳米。本制膜方法能够得到纳米级厚度的聚合物薄膜,克服现有薄膜电容器薄膜厚度较大的缺点,具有制备过程简单,薄膜厚度纳米级,易于工业放大,高精度高稳定等优点。

Description

一种电容器超薄膜的制备方法
发明领域
本发明涉及纳米级聚合物膜制备领域,特别是制造用于电容器的超薄聚合物膜制备方法。 
背景技术
随着电力电子技术的发展,各种电力变换、交流传动、储能电源等对直流大容量电容器的需求不断增加,由于铝电解电容在性能、可靠性和寿命方面都存在许多不足,而金属化薄膜电容替代铝电解电容的趋势越来越明显。尤其是在节能和新能源领域,金属化薄膜电容器发挥着巨大的作用。 
塑料薄膜作为电容器的介质,最初用于电子设备的聚酯薄膜、聚碳酸酯薄膜、聚苯乙烯薄膜是以代替纸介的形式进入实用化的。目前常用的薄膜有聚酯膜和聚丙烯膜两种。在新型薄膜材料方面也研制了聚萘乙酯和聚苯酰硫等耐高温的介质材料。 
对于中高电压系列的电容器,可通过提高薄膜介质本身的介电强度(单位厚度可承受的击穿电压),选用较薄介质厚度来提高容积比。为了减小薄膜电容器中介质膜的厚度,研究者进行了大量的改进工作。专利(200680050894.9)利用聚苯硫醚高分子薄膜至少一个面上金属化,在高分子薄膜与金属层之间设有以硅氧烷组合物为成分的涂层。但膜厚度较大。 
本发明针对薄膜电容器隔膜的特征,提出一种全新的制备方法:以嵌段共聚物为原料,在溶剂中溶解制成低浓度溶液。然后通过旋涂的方法制备成膜。基体材料在不同溶液浓度以及旋涂转速条件下可以制成10-500nm厚度的薄膜。且膜表面平整致密,膜内部结构规整,膜厚度均一无缺陷。该方法制备简单,易于放大。既可以用做薄膜电容器的隔膜,又可以作为超级电容器的隔膜使用。 
发明内容:
本发明目的在于提供一种超薄嵌段聚合物膜制备方法,尤其是制备可以用于薄膜电容器的聚合物膜的制备方法。 
本发明的特征在于:依次含有以下步骤; 
步骤(1),以甲苯为溶剂,把嵌段共聚物溶解。所述共聚物在溶液中浓度用重量百分数表示为0.05%~20%; 
步骤(2),使用旋涂法把步骤(1)得到的溶液在平滑的电极表面旋涂成薄膜,膜厚度在10~500纳米之间; 
步骤(3),在步骤(2)得到的薄膜表面真空干燥12小时,把薄膜制成电容器中的介质膜。 
所述嵌段共聚物可使用下述材料:含有聚苯乙烯嵌段的嵌段共聚物,也可以是含有聚苯乙烯嵌段的嵌段共聚物与其中某一嵌段对应的均聚物的混合物。其中苯乙烯体积分数40%~95%。 
所述溶剂是除了所述甲苯以外,下述溶剂中的一种或两种以上的混合物;四氢呋喃,二氧六环,二甲苯,二氯甲烷,三氯化碳,四氯化碳,环己烷,二硫化碳。 
本发明所述的方法利用嵌段共聚物的自组装特性,使用旋涂法制备形貌均一的电容器介质膜。同时发挥聚合物膜结构可控、厚度可调,膜强度高的特点,组成电容器介质膜。所述制膜方法简单,容易实现放大生产。该隔膜适用于薄膜电容器,也可以作为超级电容器隔膜用于储能器件。利用本发明的嵌段共聚物隔膜结构可调的优点,对发展新型薄膜电容器介质膜提供新思路。 
具体实施方式: 
本发明的实施步骤如下: 
1)使用化学溶剂将嵌段共聚物溶解,采用旋涂法在平滑电极的表面旋涂制备共聚物薄膜,待溶剂挥发,真空干燥12小时后形成薄膜电容器介质膜。 
2)步骤1)所述化学溶剂是甲苯,四氢呋喃,二氧六环,二甲苯,二氯甲烷,三氯化碳,四氯化碳,环己烷,二硫化碳以及所述溶剂2种以上混合物; 
3)步骤1)中所述聚合物是含有聚苯乙烯嵌段的嵌段共聚物,也可以是含有聚苯乙烯嵌段的嵌段共聚物与其中某一嵌段对应的均聚物的混合物。 
4)步骤1)所述聚合物其中苯乙烯体积分数40%~95%。 
5)步骤1)中所述聚合物在溶液中的浓度为0.05%~20%。(重量百分数)。 
6)步骤1)所述的旋涂法是指将高分子溶液平铺在平滑的固体表面,采用平滑的电极表面。 
7)步骤1)所述的旋涂法制膜时转速控制在每分钟450~5000转范围,溶剂挥发后形成薄膜。 
8)步骤1)所述薄膜电容器介质膜厚度在10~500纳米范围。 
附图说明:
图1是实施例3制备的纳米级介质膜表面结构原子力显微镜图 
具体实施方式
实施例1 
将0.03g聚(苯乙烯-b-乙烯吡啶)(其中苯乙烯体积分数70%)和9.97g溶剂甲苯置于容量瓶中,制备成嵌段共聚物浓度0.3wt%的膜液。完全混合后,静止24h。在电极表面旋涂成膜(转速每分钟1000转),置于真空中干燥12h,得到厚度30纳米的共聚物膜。 
实施例2 
将0.5g聚(苯乙烯-b-丙烯酸)(其中苯乙烯体积分数50%)和9.5g溶剂甲苯置于容量瓶中,制备成嵌段共聚物浓度5wt%的膜液。完全混合后,静止24h。在电极表面旋涂成膜(转速每分钟3000转),置于真空中干燥12h,得到厚度180纳米的共聚物膜。 
实施例3 
将0.9g聚(苯乙烯-b-甲基丙烯酸甲酯)与0.1g聚甲基丙烯酸甲酯混合(其中苯乙烯体积分数75%)和9g溶剂甲苯置于容量瓶中,制备成聚合物浓度10wt%的膜液。完全混合后,静止24h。在电极表面旋涂成膜(转速每分钟4000转),置于真空中干燥12h,得到厚度330纳米的共聚物膜。 
实施例4 
将1.5g聚(苯乙烯-b-氧化乙烯)(其中苯乙烯体积分数85%)和8.5g溶剂四氢呋喃置于容量瓶中,制备成嵌段共聚物浓度15wt%的膜液。完全混合后,静止24h。在电极表面旋涂成膜(转速每分钟5000转),置于真空中干燥12h,得到厚度450纳米的共聚物膜。 
表一本发明制备的纳米级薄膜电容器介质膜性能 

Claims (5)

1.一种电容器超薄膜的制备方法,其特征在于,依次含有以下步骤:
步骤(1),以甲苯为溶剂,把嵌段共聚物溶解。所述共聚物在溶液中浓度用重量百分数表示为0.05%~20%;
步骤(2),使用旋涂法把步骤(1)得到的溶液在平滑的电极表面旋涂成薄膜,膜厚度在10~500纳米之间;
步骤(3),在步骤(2)得到的薄膜真空干燥12小时,把薄膜制成电容器中的介质膜。
2.根据权利要求书1所述的一种电容器超薄膜的制备方法,其特征在于,嵌段共聚物可使用下述材料:含有聚苯乙烯嵌段的嵌段共聚物,也可以是含有聚苯乙烯嵌段的嵌段共聚物与其中某一嵌段对应的均聚物的混合物。其中苯乙烯体积分数40%~95%。
3.根据权利要求书1所述的一种电容器超薄膜的制备方法,其特征在于,所述溶剂是除了所述甲苯以外,下述溶剂中的一种或两种以上的混合物;四氢呋喃,二氧六环,二甲苯,二氯甲烷,三氯化碳,四氯化碳,环己烷,二硫化碳。
4.根据权利要求书1所述的一种电容器超薄膜的制备方法,其特征在于,所述聚合物在溶液中的浓度为0.05%~20%。(重量百分数)。
5.根据权利要求书1所述的一种电容器超薄膜的制备方法,其特征在于,所述的旋涂法是指将高分子溶液平铺在平滑的固体表面,转速控制在每分钟450~5000转范围,采用平滑的电极表面。介质膜厚度在10~500纳米范围。
CN201210376839.6A 2012-10-08 2012-10-08 一种薄膜电容器介质膜的制备方法 Expired - Fee Related CN102930982B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210376839.6A CN102930982B (zh) 2012-10-08 2012-10-08 一种薄膜电容器介质膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210376839.6A CN102930982B (zh) 2012-10-08 2012-10-08 一种薄膜电容器介质膜的制备方法

Publications (2)

Publication Number Publication Date
CN102930982A true CN102930982A (zh) 2013-02-13
CN102930982B CN102930982B (zh) 2015-06-03

Family

ID=47645759

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210376839.6A Expired - Fee Related CN102930982B (zh) 2012-10-08 2012-10-08 一种薄膜电容器介质膜的制备方法

Country Status (1)

Country Link
CN (1) CN102930982B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101443371A (zh) * 2006-05-16 2009-05-27 日本曹达株式会社 嵌段共聚物
CN101714453A (zh) * 2008-09-30 2010-05-26 通用电气公司 薄膜电容器
WO2012035292A2 (en) * 2010-09-17 2012-03-22 Cambridge Enterprise Limited Nanoporous materials, manufacture of nanoporous materials and applications of nanoporous materials

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101443371A (zh) * 2006-05-16 2009-05-27 日本曹达株式会社 嵌段共聚物
CN101714453A (zh) * 2008-09-30 2010-05-26 通用电气公司 薄膜电容器
WO2012035292A2 (en) * 2010-09-17 2012-03-22 Cambridge Enterprise Limited Nanoporous materials, manufacture of nanoporous materials and applications of nanoporous materials

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
毛虎: ""溶剂诱导聚苯乙烯-b-聚氧化乙烯形貌及其转变"", 《中国优秀硕士学位论文全文数据库-工程科技Ⅰ辑》 *

Also Published As

Publication number Publication date
CN102930982B (zh) 2015-06-03

Similar Documents

Publication Publication Date Title
Liu et al. Supercapacitor with high cycling stability through electrochemical deposition of metal–organic frameworks/polypyrrole positive electrode
Yang et al. All-solid-state asymmetric supercapacitor based on reduced graphene oxide/carbon nanotube and carbon fiber paper/polypyrrole electrodes
Lochmann et al. Nanoimprint lithography of nanoporous carbon materials for micro-supercapacitor architectures
Wang et al. High supercapacitor and adsorption behaviors of flower-like MoS 2 nanostructures
Huang et al. Laser fabrication of all-solid-state microsupercapacitors with ultrahigh energy and power based on hierarchical pore carbon
Zhao et al. Facile fabrication of ultrathin hybrid membrane for highly flexible supercapacitors via in-situ phase separation of polyethersulfone
Qi et al. Low resistance VFG-Microporous hybrid Al-based electrodes for supercapacitors
Yin et al. Self-assembled functional components-doped conductive polypyrrole composite hydrogels with enhanced electrochemical performances
Liu et al. Rational design of freestanding and high-performance thick electrode from carbon foam modified with polypyrrole/polydopamine for supercapacitors
US20140118884A1 (en) Porous carbon material and manufacturing method thereof and supercapacitor
Zhang et al. Carbon nanofibers derived from bacterial cellulose: Surface modification by polydopamine and the use of ferrous ion as electrolyte additive for collaboratively increasing the supercapacitor performance
Hao et al. Facile synthesis of porous SnO2 film grown on Ni foam applied for high-performance supercapacitors
CN104157833A (zh) 一种石墨烯/二氧化钛复合多孔材料及其制备方法和用途
Li et al. Synthesis and supercapacitor characteristics of PANI/CNTs composites
Wu et al. New comprehensions on structure superiority of asymmetric carbon membrane and controlled construction of advanced hierarchical inner-structure for high performance supercapacitors
Li et al. Solution self-assembly of an alternating copolymer toward hollow carbon nanospheres with uniform micropores
Gunday et al. Synthesis, characterization and supercapacitor application of ionic liquid incorporated nanocomposites based on SPSU/Silicon dioxide
Chang et al. like N-doped graphene films prepared by hydroxylamine diffusion induced assembly and their ultrahigh-rate capacitive properties
Abalyaeva et al. Electrochemical synthesis of composite based on polyaniline and activated IR pyrolyzed polyacrylonitrile on graphite foil electrode for enhanced supercapacitor properties
Chavhan et al. Electrospray of precursor sol on carbon paper and in situ carbonization for making supercapacitor electrodes
Kulandaivalu et al. Improved electrochemical performance of electrochemically designed layered poly (3, 4-ethylenedioxythiophene)/graphene oxide with poly (3, 4-ethylenedioxythiophene)/nanocrystalline cellulose nanocomposite
Shen et al. Preparation and electrochemical performances of porous polypyrrole film by interfacial polymerization
Hua et al. Micro-supercapacitors based on oriented coordination polymer thin films for AC line-filtering
Wu et al. A novel and facile step-by-step hydrothermal fabrication of peony-like Ni0. 4Co0. 6 (OH) 2 supported on carbon fiber cloth as flexible electrodes for advanced electrochemical energy storage
Su et al. Effect of binders on performance of Si/C composite as anode for Li-ion batteries

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150603