CN102928997A - Terahertz wave switch based on gap structure - Google Patents
Terahertz wave switch based on gap structure Download PDFInfo
- Publication number
- CN102928997A CN102928997A CN2012104499626A CN201210449962A CN102928997A CN 102928997 A CN102928997 A CN 102928997A CN 2012104499626 A CN2012104499626 A CN 2012104499626A CN 201210449962 A CN201210449962 A CN 201210449962A CN 102928997 A CN102928997 A CN 102928997A
- Authority
- CN
- China
- Prior art keywords
- slit
- coupling
- slot
- gap
- connecting line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000008878 coupling Effects 0.000 claims abstract description 71
- 238000010168 coupling process Methods 0.000 claims abstract description 71
- 238000005859 coupling reaction Methods 0.000 claims abstract description 71
- 239000000758 substrate Substances 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims description 2
- 210000004877 mucosa Anatomy 0.000 claims 2
- 238000004891 communication Methods 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 230000008033 biological extinction Effects 0.000 abstract description 3
- 238000004458 analytical method Methods 0.000 abstract description 2
- 238000003384 imaging method Methods 0.000 abstract description 2
- 230000010354 integration Effects 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 description 10
- 230000005540 biological transmission Effects 0.000 description 5
- 238000011160 research Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Landscapes
- Lasers (AREA)
Abstract
本发明公开了一种基于缝隙结构的太赫兹波开关。它包括信号输入端、信号输出端、基板、输入端缝隙、半圆耦合缝隙区域、短连接线缝隙、左开口圆环缝隙、椭圆耦合缝隙、输出端缝隙、长连接线缝隙、右开口圆环缝隙、矩形耦合缝隙、激光输入端;基板上设有输入端缝隙、半圆耦合缝隙区域、短连接线缝隙、左开口圆环缝隙、椭圆耦合缝隙、输出端缝隙、长连接线缝隙、右开口圆环缝隙、矩形耦合缝隙,信号从信号输入端输入,从信号输出端输出。本发明的基于缝隙结构的太赫兹波开关,具有结构简单,消光比高,尺寸小,成本低,便于制作、易于集成等优点,满足在太赫兹波成像,医学分析,太赫兹波通信等领域应用的要求。
The invention discloses a terahertz wave switch based on a slot structure. It includes signal input end, signal output end, substrate, input end slot, semicircle coupling slot area, short connection line slot, left open ring slot, ellipse coupling slot, output slot, long connection line slot, right open ring slot , rectangular coupling slit, laser input end; there are input end slit, semicircular coupling slit area, short connection line slit, left open ring slit, ellipse coupling slit, output end slit, long connection line slit, right open ring on the substrate The slot, the rectangular coupling slot, the signal is input from the signal input end and output from the signal output end. The terahertz wave switch based on the slit structure of the present invention has the advantages of simple structure, high extinction ratio, small size, low cost, easy manufacture, easy integration, etc., and can be used in the fields of terahertz wave imaging, medical analysis, terahertz wave communication, etc. application requirements.
Description
技术领域 technical field
本发明涉及太赫兹波开关,尤其涉及一种基于缝隙结构的太赫兹波开关。 The invention relates to a terahertz wave switch, in particular to a terahertz wave switch based on a slot structure.
背景技术 Background technique
太赫兹(Terahertz,简称THz) 辐射是对一个特定波段的电磁辐射的统称,通常它是指频率在0.1THz~10THz之间的电磁波。直到上世纪80年代中期以前,人们对这个频段的电磁波特性知之甚少,形成了远红外线和毫米波之间所谓的“太赫兹空隙”(Terahertz Gap) ,从频谱上看,太赫兹辐射在电磁波谱中介于微波与红外辐射之间;在电子学领域,太赫兹辐射被称为毫米波或亚毫米波;在光学领域,它又被称为远红外射线;从能量上看,太赫兹波段的能量介于电子和光子之间。对太赫兹波段进行广泛的研究是从20世纪80年代中期以超快光电子学为基础的脉冲太赫兹技术产生以后。随着低尺度半导体技术、超快激光技术以及超快光电子技术的飞速发展,太赫兹技术表现出了极大的应用潜力,在物理、化学、生物学、材料、医学、通信等领域具有重大的科学价值和广泛的应用前景。太赫兹波段具有频率高、带宽宽、信道数多等特点,特别适合用于局域网以及宽带移动通信。用太赫兹通信可以获得10Gbps的无线传输速度,这比目前的超宽带技术快几百甚至上千倍。太赫兹无线通信能提供Gbps甚至更大容量的多重数据信道,数据带宽将会超过现有无线协议,如IEEE820.11b等。 Terahertz (THz for short) radiation is a general term for electromagnetic radiation in a specific band, usually it refers to electromagnetic waves with a frequency between 0.1THz and 10THz. Until the mid-1980s, people knew little about the electromagnetic wave characteristics of this frequency band, forming the so-called "Terahertz Gap" (Terahertz Gap) between far-infrared rays and millimeter waves. The spectrum is between microwave and infrared radiation; in the field of electronics, terahertz radiation is called millimeter wave or submillimeter wave; in the field of optics, it is also called far infrared ray; The energy is between electrons and photons. Extensive research on the terahertz band began in the mid-1980s after the generation of pulsed terahertz technology based on ultrafast optoelectronics. With the rapid development of low-scale semiconductor technology, ultrafast laser technology and ultrafast optoelectronic technology, terahertz technology has shown great application potential, and has great significance in the fields of physics, chemistry, biology, materials, medicine, communication, etc. Scientific value and broad application prospects. The terahertz band has the characteristics of high frequency, wide bandwidth, and a large number of channels, and is especially suitable for local area networks and broadband mobile communications. Using terahertz communication can achieve a wireless transmission speed of 10Gbps, which is hundreds or even thousands of times faster than the current ultra-wideband technology. Terahertz wireless communication can provide multiple data channels with Gbps or even greater capacity, and the data bandwidth will exceed existing wireless protocols, such as IEEE820.11b.
在太赫兹技术及应用中,太赫兹波功能器件的研究是太赫兹技术发展的一个重要环节。虽然国内外对于太赫兹波功能器件的研究已经逐渐展开,但是太赫兹波功能器件作为太赫兹波科学技术应用中的重点和难点,仍然需要投入大量的人力和物力进行深入的探索和研究。太赫兹波开关是一种非常重要的太赫兹波器件,用于控制太赫兹波的传输。现有的太赫兹波开关往往结构复杂、体积庞大并且价格昂贵,因此有必要设计一种结构简单,尺寸小,制作方便,消光比高的太赫兹波开关以满足未来太赫兹波技术应用需要。 In terahertz technology and applications, the research on terahertz wave functional devices is an important link in the development of terahertz technology. Although the research on terahertz wave functional devices has been gradually carried out at home and abroad, terahertz wave functional devices, as the key and difficult point in the application of terahertz wave science and technology, still need to invest a lot of manpower and material resources for in-depth exploration and research. The terahertz wave switch is a very important terahertz wave device, which is used to control the transmission of terahertz waves. Existing terahertz wave switches are often complex in structure, bulky and expensive, so it is necessary to design a terahertz wave switch with simple structure, small size, easy fabrication, and high extinction ratio to meet the needs of future terahertz wave technology applications.
发明内容 Contents of the invention
本发明的目的是为了克服现有技术结构复杂,实际制作困难,成本高的不足,提供一种结构简单、尺寸小的基于缝隙结构的太赫兹波开关。 The object of the present invention is to provide a terahertz wave switch based on a slot structure with a simple structure and small size in order to overcome the disadvantages of complex structure, difficult actual manufacture and high cost in the prior art.
为了达到上述目的,本发明的技术方案如下: In order to achieve the above object, technical scheme of the present invention is as follows:
基于缝隙结构的太赫兹波开关包括信号输入端、信号输出端、基板、输入端缝隙、半圆耦合缝隙区域、短连接线缝隙、左开口圆环缝隙、椭圆耦合缝隙、输出端缝隙、长连接线缝隙、右开口圆环缝隙、矩形耦合缝隙、激光输入端;基板上设有输入端缝隙、半圆耦合缝隙区域、短连接线缝隙、左开口圆环缝隙、椭圆耦合缝隙、输出端缝隙、长连接线缝隙、右开口圆环缝隙、矩形耦合缝隙,半圆耦合缝隙区域为反向设置的左右两个半圆环,半圆耦合缝隙区域的左半圆环下端、左半圆环上端、右半圆环下端、右半圆环上端分别对应与输入端缝隙、短连接线缝隙一端、输出端缝隙和长连接线缝隙一端相连,短连接线缝隙的另一端与左开口圆环缝隙连接,离左开口圆环缝隙上端 20μm~30μm处设有椭圆耦合缝隙,长连接线缝隙另一端与右开口圆环缝隙连接,输出端缝隙和长连接线缝隙之间设有矩形耦合缝隙,外加激光垂直照射在矩形耦合缝隙区域;太赫兹波输入端输入,在没有外加激光照射矩形耦合缝隙区域的条件下,频率为0.40THz的太赫兹波经过半圆耦合缝隙区域、输出端缝隙后,直接从信号输出端输出,在有外加激光照射矩形耦合缝隙区域时,频率为0.40THz的太赫兹波被耦合进椭圆耦合缝隙区域和矩形耦合缝隙区域,不能从信号输出端输出,实现对频率为0.40THz的太赫兹波的通断功能。 The terahertz wave switch based on the slot structure includes signal input end, signal output end, substrate, input end slot, semicircular coupling slot area, short connection line slot, left open ring slot, ellipse coupling slot, output end slot, long connection line Slot, right open ring slot, rectangular coupling slot, laser input end; the base plate is equipped with input slot, semicircle coupling slot area, short connecting line slot, left open ring slot, ellipse coupling slot, output slot, long connection Line gap, right open ring gap, rectangular coupling gap, the semicircle coupling gap area is two left and right half rings set in reverse, the left half ring lower end, the left half ring upper end, the right semi ring ring in the semicircle coupling gap area The lower end and the upper end of the right semi-circular ring correspond to the input end gap, one end of the short connection line gap, the output end gap and one end of the long connection line gap, and the other end of the short connection line gap is connected to the left opening ring gap, which is a circle away from the left opening circle. There is an elliptical coupling gap at the upper end of the ring gap at 20 μm to 30 μm, the other end of the long connection line gap is connected to the right open ring gap, and a rectangular coupling gap is set between the output end gap and the long connection line gap, and the laser is irradiated vertically on the rectangular coupling gap. Gap area; the terahertz wave is input at the input end, and under the condition that there is no external laser irradiation on the rectangular coupling slit area, the terahertz wave with a frequency of 0.40THz passes through the semicircular coupling slit area and the output end slit, and is directly output from the signal output end. When the rectangular coupling slit area is irradiated with an external laser, the terahertz wave with a frequency of 0.40THz is coupled into the elliptical coupling slit area and the rectangular coupling slit area, and cannot be output from the signal output port, and the transmission of the terahertz wave with a frequency of 0.40THz is realized. break function.
所述的基板的长度为2820μm~2850μm,宽度为1100μm~1200μm,高度为300μm~400μm。所述的缝隙的深度为100μm~150μm,缝隙的宽度为60μm~70μm。所述的输入端缝隙的长度为700μm~800μm;所述的半圆耦合缝隙区域的外半圆半径为350μm~400μm。所述的短连接线缝隙长度为100μm~150μm。所述的左开口圆环缝隙和右开口圆环缝隙的外环半径均为100μm~200μm,内环半径均为40μm~140μm;所述的椭圆耦合缝隙的外侧椭圆的长轴为200μm~400μm,短轴为150μm~200μm。所述的输出端缝隙的长度为1400μm~1600μm;所述的长连接线缝隙的长度为700μm~800μm。所述的矩形耦合缝隙的外框长度、宽度分别为660μm~700μm、500μm~540μm。 The length of the substrate is 2820 μm-2850 μm, the width is 1100 μm-1200 μm, and the height is 300 μm-400 μm. The depth of the gap is 100 μm-150 μm, and the width of the gap is 60 μm-70 μm. The length of the input slot is 700 μm to 800 μm; the radius of the outer semicircle of the semicircular coupling slot area is 350 μm to 400 μm. The gap length of the short connection line is 100 μm-150 μm. The outer ring radii of the left and right open ring gaps are both 100 μm to 200 μm, and the inner ring radii are both 40 μm to 140 μm; the major axis of the outer ellipse of the elliptical coupling gap is 200 μm to 400 μm, The short axis is 150μm~200μm. The length of the output end gap is 1400 μm-1600 μm; the length of the long connection line gap is 700 μm-800 μm. The outer frame length and width of the rectangular coupling gap are 660 μm-700 μm and 500 μm-540 μm respectively.
本发明的基于缝隙结构的太赫兹波开关,具有结构简单,消光比高,尺寸小,成本低,便于制作、易于集成等优点,满足在太赫兹波成像,医学分析,太赫兹波通信等领域应用的要求。 The terahertz wave switch based on the slit structure of the present invention has the advantages of simple structure, high extinction ratio, small size, low cost, easy manufacture, easy integration, etc., and can be used in the fields of terahertz wave imaging, medical analysis, terahertz wave communication, etc. application requirements.
附图说明: Description of drawings:
图1是基于缝隙结构的太赫兹波开关的结构示意图; Figure 1 is a schematic structural diagram of a terahertz wave switch based on a slot structure;
图2是基于缝隙结构的太赫兹波开关通状态下的性能曲线图; Fig. 2 is a performance curve diagram of the terahertz wave switch-on state based on the slot structure;
图3是基于缝隙结构的太赫兹波开关断状态下的性能曲线图。 Fig. 3 is a performance curve diagram of the terahertz wave switch based on the slit structure in the off state.
具体实施方式 Detailed ways
如图1所示,基于缝隙结构的太赫兹波开关包括信号输入端1、信号输出端2、基板3、输入端缝隙4、半圆耦合缝隙区域5、短连接线缝隙6、左开口圆环缝隙7、椭圆耦合缝隙8、输出端缝隙9、长连接线缝隙10、右开口圆环缝隙11、矩形耦合缝隙12、激光输入端13;基板3上设有输入端缝隙4、半圆耦合缝隙区域5、短连接线缝隙6、左开口圆环缝隙7、椭圆耦合缝隙8、输出端缝隙9、长连接线缝隙10、右开口圆环缝隙11、矩形耦合缝隙12,半圆耦合缝隙区域5为反向设置的左右两个半圆环,半圆耦合缝隙区域5的左半圆环下端、左半圆环上端、右半圆环下端、右半圆环上端分别对应与输入端缝隙4、短连接线缝隙6一端、输出端缝隙9和长连接线缝隙10一端相连,短连接线缝隙6的另一端与左开口圆环缝隙7连接,离左开口圆环缝隙7上端 20μm~30μm处设有椭圆耦合缝隙8,长连接线缝隙10另一端与右开口圆环缝隙11连接,输出端缝隙9和长连接线缝隙10之间设有矩形耦合缝隙12,外加激光垂直照射在矩形耦合缝隙12区域;太赫兹波输入端1输入,在没有外加激光照射矩形耦合缝隙12区域的条件下,频率为0.40THz的太赫兹波经过半圆耦合缝隙区域5、输出端缝隙9后,直接从信号输出端2输出,在有外加激光照射矩形耦合缝隙12区域时,频率为0.40THz的太赫兹波被耦合进椭圆耦合缝隙8区域和矩形耦合缝隙12区域,不能从信号输出端2输出,实现对频率为0.40THz的太赫兹波的通断功能。
As shown in Figure 1, the terahertz wave switch based on the slot structure includes a signal input terminal 1, a signal output terminal 2, a substrate 3, an input terminal slot 4, a semicircular coupling slot area 5, a short
所述的基板3的长度为2820μm~2850μm,宽度为1100μm~1200μm,高度为300μm~400μm。所述的缝隙的深度为100μm~150μm,缝隙的宽度为60μm~70μm。所述的输入端缝隙4的长度为700μm~800μm;所述的半圆耦合缝隙区域5的外半圆半径为350μm~400μm。所述的短连接线缝隙6长度为100μm~150μm。所述的左开口圆环缝隙7和右开口圆环缝隙11的外环半径均为100μm~200μm,内环半径均为40μm~140μm;所述的椭圆耦合缝隙8的外侧椭圆的长轴为200μm~400μm,短轴为150μm~200μm。所述的输出端缝隙9的长度为1400μm~1600μm;所述的长连接线缝隙10的长度为700μm~800μm。所述的矩形耦合缝隙12的外框长度、宽度分别为660μm~700μm、500μm~540μm。
The length of the substrate 3 is 2820 μm-2850 μm, the width is 1100 μm-1200 μm, and the height is 300 μm-400 μm. The depth of the gap is 100 μm-150 μm, and the width of the gap is 60 μm-70 μm. The length of the input slot 4 is 700 μm-800 μm; the radius of the outer semicircle of the semicircular coupling slot area 5 is 350 μm-400 μm. The length of the short
实施例1Example 1
基板的长度为2820μm,宽度为1100μm,高度为300μm。缝隙的深度为150μm,缝隙的宽度为60μm。输入端缝隙的长度为700μm;半圆耦合缝隙区域的外半圆半径为350μm。短连接线缝隙长度为100μm。左开口圆环缝隙和右开口圆环缝隙的外环半径均为100μm,内环半径均为40μm;离左开口圆环缝隙上端 20μm处设有椭圆耦合缝隙,椭圆耦合缝隙的外侧椭圆的长轴为200μm,短轴为150μm。输出端缝隙的长度为1400μm;长连接线缝隙的长度为800μm。矩形耦合缝隙的外框长度、宽度分别为660μm、540μm。太赫兹波信号从信号输入端输入,在没有外加激光照射的条件下,特定频率的太赫兹波从信号输出端直接输出;当有外加激光照射矩形耦合缝隙区域时,该特定频率的太赫兹波被耦合进椭圆耦合缝隙区域和矩形耦合缝隙区域,太赫兹波信号不能从信号输出端输出。基于缝隙结构的太赫兹波开关通、断状态下的性能曲线如图2和图3所示,在无外加激光照射的条件下,频率为f=0.40THz的太赫兹波的传输率高达0.99,开关表现为通;当有外加激光照射矩形耦合缝隙区域时,f=0.40THz的太赫兹波的传输率仅为0.01,开关表现为断。这说明设计的基于缝隙结构的太赫兹波开关具有优良的性能。 The length of the substrate is 2820 μm, the width is 1100 μm, and the height is 300 μm. The depth of the slit was 150 μm, and the width of the slit was 60 μm. The length of the input slot is 700 μm; the outer semicircle radius of the semicircular coupling slot area is 350 μm. The gap length of the short connection line is 100 μm. The outer ring radius of the left open ring gap and the right open ring gap are both 100 μm, and the inner ring radius is 40 μm; there is an elliptical coupling gap 20 μm away from the upper end of the left open ring gap, and the major axis of the outer ellipse of the elliptical coupling gap is 200 μm, and the minor axis is 150 μm. The length of the slot at the output end is 1400 μm; the length of the slot at the long connection line is 800 μm. The length and width of the outer frame of the rectangular coupling slit are 660 μm and 540 μm, respectively. The terahertz wave signal is input from the signal input terminal, and the terahertz wave of a specific frequency is directly output from the signal output terminal without external laser irradiation; when the external laser irradiates the rectangular coupling gap area, the terahertz wave of the specific frequency Being coupled into the elliptical coupling slit area and the rectangular coupling slit area, the terahertz wave signal cannot be output from the signal output port. The performance curves of the terahertz wave switch based on the gap structure in the on and off states are shown in Figure 2 and Figure 3. Under the condition of no external laser irradiation, the transmission rate of the terahertz wave with the frequency f=0.40THz is as high as 0.99, The switch is on; when an external laser irradiates the rectangular coupling gap region, the transmission rate of f=0.40THz terahertz wave is only 0.01, and the switch is off. This shows that the designed terahertz wave switch based on the gap structure has excellent performance.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210449962.6A CN102928997B (en) | 2012-11-12 | 2012-11-12 | Terahertz wave switch based on gap structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210449962.6A CN102928997B (en) | 2012-11-12 | 2012-11-12 | Terahertz wave switch based on gap structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102928997A true CN102928997A (en) | 2013-02-13 |
CN102928997B CN102928997B (en) | 2014-10-15 |
Family
ID=47643833
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210449962.6A Expired - Fee Related CN102928997B (en) | 2012-11-12 | 2012-11-12 | Terahertz wave switch based on gap structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102928997B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030053785A1 (en) * | 1999-09-15 | 2003-03-20 | Seng-Tiong Ho | Photon transistors |
US20030219193A1 (en) * | 2001-03-19 | 2003-11-27 | General Instrument Corporation | Monolithic integrated terahertz optical asymmetric demultiplexer |
JP2006208754A (en) * | 2005-01-28 | 2006-08-10 | Nippon Telegr & Teleph Corp <Ntt> | Light switch |
CN101546048A (en) * | 2009-04-23 | 2009-09-30 | 中国计量学院 | Terahertz wave modulating device with light control coupled resonant cavity and method thereof |
CN101971087A (en) * | 2008-02-29 | 2011-02-09 | 爱立信电话股份有限公司 | Optical signal processing |
-
2012
- 2012-11-12 CN CN201210449962.6A patent/CN102928997B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030053785A1 (en) * | 1999-09-15 | 2003-03-20 | Seng-Tiong Ho | Photon transistors |
US20030219193A1 (en) * | 2001-03-19 | 2003-11-27 | General Instrument Corporation | Monolithic integrated terahertz optical asymmetric demultiplexer |
JP2006208754A (en) * | 2005-01-28 | 2006-08-10 | Nippon Telegr & Teleph Corp <Ntt> | Light switch |
CN101971087A (en) * | 2008-02-29 | 2011-02-09 | 爱立信电话股份有限公司 | Optical signal processing |
CN101546048A (en) * | 2009-04-23 | 2009-09-30 | 中国计量学院 | Terahertz wave modulating device with light control coupled resonant cavity and method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN102928997B (en) | 2014-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Akyildiz et al. | Terahertz band: Next frontier for wireless communications | |
CN103346056B (en) | Terahertz slow-wave structure with two stages connected in series | |
CN107968031B (en) | A kind of bielectron note collapsible row-backward wave amplifier of Terahertz | |
CN204067583U (en) | A kind of dielectric lens antenna | |
CN103197486B (en) | A kind of Terahertz modulated amplifier based on graphene waveguide structure | |
CN103346375A (en) | Single-face double-ridge spreading waveguide space power distribution synthesizer | |
CN105141260B (en) | A kind of ten th harmonic mixers of 420GHz | |
CN102928926B (en) | Slotted branch type terahertz wave polarization beam splitter | |
CN103872461A (en) | Si substrate field effect transistor terahertz detector antenna based on CMOS manufacturing process | |
CN103094025B (en) | A kind of high-power millimeter wave and terahertz emission source apparatus | |
CN102928997B (en) | Terahertz wave switch based on gap structure | |
CN107910620B (en) | Controllable terahertz wave switch | |
Chen et al. | High-Speed $ W $-Band Integrated Photonic Transmitter for Radio-Over-Fiber Applications | |
CN102902130A (en) | High-speed terahertz wave modulating device and method | |
CN103943964A (en) | Si-based field effect transistor annular terahertz detector antenna based on CMOS manufacturing process | |
CN102928917B (en) | Double-fan annular terahertz wave polarizing beam splitter | |
CN102928998B (en) | Square spiral terahertz wave switch | |
CN103199795A (en) | Independent and incoherent double-laser low-phase-noise 16-multiplying-frequency signal generation device | |
CN103676215B (en) | Channel shape electricity temperature two regulation and control THz wave switch | |
CN103682542A (en) | Symmetrical multi-grid Terahertz wave power divider | |
CN102902126B (en) | Light-operated Terahertz wave speed-sensitive switch device and method thereof | |
CN103675998B (en) | Ginseng shape terahertz polarization beam splitter | |
CN202034459U (en) | Terahertz wave filter with cyclical dual-opening hollow square-shaped hollow-out structure | |
CN102938483B (en) | Controllable band-pass filter of terahertz waves | |
CN104332804B (en) | Terahertz generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20141015 Termination date: 20171112 |
|
CF01 | Termination of patent right due to non-payment of annual fee |