CN102928201B - 一种动态的月面成像敏感器的目标模拟系统 - Google Patents

一种动态的月面成像敏感器的目标模拟系统 Download PDF

Info

Publication number
CN102928201B
CN102928201B CN201210413945.7A CN201210413945A CN102928201B CN 102928201 B CN102928201 B CN 102928201B CN 201210413945 A CN201210413945 A CN 201210413945A CN 102928201 B CN102928201 B CN 102928201B
Authority
CN
China
Prior art keywords
imaging
imaging sensor
lunar surface
image
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210413945.7A
Other languages
English (en)
Other versions
CN102928201A (zh
Inventor
张志�
杨洁
张晋
李志平
王磊
余志鸿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Control Engineering
Original Assignee
Beijing Institute of Control Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Control Engineering filed Critical Beijing Institute of Control Engineering
Priority to CN201210413945.7A priority Critical patent/CN102928201B/zh
Publication of CN102928201A publication Critical patent/CN102928201A/zh
Application granted granted Critical
Publication of CN102928201B publication Critical patent/CN102928201B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Studio Devices (AREA)

Abstract

一种动态的月面成像敏感器的目标模拟系统,包括目标影像生成单元、影像输出单元和光学传递单元;目标影像生成单元,根据DEM数据和遥感影像数据仿真生成三维月面形貌,并根据月面成像敏感器成像时刻的月面光照条件以及该时刻月面成像敏感器的位置姿态参数动态生成符合月面成像敏感器成像要求的灰度图像数据;影像输出单元将目标影像生成单元生成的灰度图像数据在LCD器件上进行显示;光学传递单元将LCD器件上显示的影像进行光学变换,使所述影像正好成像在月面成像敏感器的成像器件上。

Description

一种动态的月面成像敏感器的目标模拟系统
技术领域
本发明属于航天成像式敏感器测试技术领域,本发明也适用于深空探测、行星探测等空间环境下成像式敏感器的成像性能模拟测试。
背景技术
随着航天技术的飞速发展,以相机为代表的光学成像式敏感器因其具有信息量大,运用灵活、效率高等特点,在深空探测领域将得到越来越广泛的应用。为确保成像式敏感器在轨可靠工作,需在地面对其各方面功能性能进行充分测试,尤其是其在轨工作环境下的光学成像性能验证。
目前,国内外对于空间环境下成像式敏感器光学头部成像性能验证方式主要有两种:
1、一是构建模拟场景,对真实景物进行拍摄。对于月面环境下成像式敏感器的模拟成像测试,采用本方式,需要采用灯阵模拟月面光照条件,并构建月面景物模拟试验场,时间长,造价高;同时,灯阵均匀性设计、热设计,月面景物纹理模拟等均为技术难点;此外,若拍摄场景变化需重新测量定位,而且用于成像的月面景物的实际参数需要依靠外测获得,工作量大且精度有限,不利于对成像效果进行定量分析。
2、一是采用目标模拟装置,生成目标图像并投影。
目前已有多种敏感器的目标模拟装置:1)如星模拟器(一种静态多光路星模拟器CN200810057344.0,包括法兰和至少四个星光管,每个星光管均能够产生一颗模拟星,每个星光管的光谱和亮度均可单独调整;星光管通过角度调整机构安装于法兰上,且任意两个星光管的光轴不平行,任意两个星光管之间的相对角度可在不小于10度的范围内进行调整,可以产生大量不同构型的模拟星座,且每个星点的亮度和光谱特性都可以不相同的,任意两个模拟星座之间的几何相似程度比较低,可以很好地模拟真实星空的物理特性)(一种高精度星模拟器CN200610104766.X,包括光源和依次设置在光路上的红外反射镜、毛玻璃、聚光镜A、胶合棱镜、衰减片组、滤光片、聚光镜B、星点板和平行光管;为了使光源稳定,本发明还可包括光源亮度控制电路、设置在聚光镜A之后的胶合棱镜以及设置胶合棱镜透射光路上的光电二极管),2)如太阳模拟器(太阳模拟器及其运转方法CN201010214004.1,包括:多个氙灯(41~4n);对所述各氙灯(41~4n)配备的多个光量传感器(S1~Sn);和对所述各氙灯(41~4n)配备的、用于控制流经该氙灯(41~4n)的电流或对该氙灯施加的电压多个控制电路(7),使基于所述各光量传感器(S1~Sn)的检测信号反馈到所述各控制电路(7),控制该控制电路(7),来控制所述各氙灯(41~4n)的光量。由此提供太阳模拟器,在具备多个氙灯作为电源的太阳模拟器中,能够通过各氙灯稳定地获得所期望的光量,且能够使有效照射面中的照度均匀化)。
这些设计均用于模拟行星及太阳等单个或多个点光源的入射及入射角度变化,敏感器本身对成像结果有系统的处理算法(去背景阈值、提取中心点等),因此设计中不考虑点光源成像后的分辨率(像素个数),及像源灰度的精确控制输出。而相机等成像式敏感器不进行类似星敏感器、太阳敏感器等的处理算法,其目标模拟装置设计中必须考虑像源的分辨率,及灰度的精确控制输出,以达到模拟景物及纹理的要求。而且,上述这些系统设计远不能够满足鱼眼相机等超广角成像式敏感器的成像视角要求。
发明内容
本发明的技术解决问题是:克服现有技术的不足,提供一种动态的月面成像敏感器的目标模拟系统。
本发明的技术解决方案是:一种动态的月面成像敏感器的目标模拟系统,包括目标影像生成单元、影像输出单元和光学传递单元;
目标影像生成单元,根据DEM数据和遥感影像数据仿真生成三维月面形貌,并根据月面成像敏感器成像时刻的月面光照条件以及该时刻月面成像敏感器的位置姿态参数动态生成符合月面成像敏感器成像要求的灰度图像数据;
影像输出单元将目标影像生成单元生成的灰度图像数据在LCD器件上进行显示;
光学传递单元将LCD器件上显示的影像进行光学变换,使所述影像正好成像在月面成像敏感器的成像器件上。
所述的仿真生成三维月面形貌过程如下:
(1)将DEM数据和遥感影像数据进行三维场景的叠加,并将叠加后的三维场景进行剔除处理,剔除场景中的突兀点,得到粗分辨率的月面地貌;
(2)对步骤(1)中得到的粗分辨率的月面形貌进行地形分形计算,生成高分辨率的月面地貌;
(3)根据模拟测试需要,建立岩石、陨石坑的三维模型,并根据月面的土壤特征,构建月面土壤模型;
(4)将岩石、陨石坑的三维模型以及构建的月面土壤模型根据月面形态特征分布在步骤(2)生成的高分辨率的月面地貌上,生成三维月面形貌。
所述的生成符合月面成像敏感器成像的灰度图像数据过程如下:
(1-1)根据月面成像敏感器成像时刻的位置姿态,对生成的三维月面形貌进行中心投影成像;
(1-2)通过针孔成像和畸变处理得到符合月面成像敏感器成像要求的灰度图像数据。
本发明与现有技术相比有益效果为:
(1)本发明以DEM数据和遥感影像数据为基础,仿真生成三维月面地貌,并能够根据需要进行景物(岩石、陨石坑)设置,生成特定的三维月面形貌灰度数据,满足月面成像敏感器对多种月面形貌的成像需求,进而可验证图像匹配、障碍识别及路径规划算法的有效性,避免了构建月面模拟场景的花费与耗时。
(2)本发明以DEM数据和遥感影像数据为基础构建基本三维月面形貌,并能够根据面成像敏感器成像时刻的位置姿态等参数进行解算,可动态生成符合月面成像敏感器成像要求的灰度图像数据,并进行显示输出及光学变换,生成符合月面成像敏感器光路的虚拟图像,使影像以期望的光路形式成像在月面成像敏感器的成像器件上,在没有实物的情况下实现月面成像敏感器的物理闭环测试。
(3)本发明以高分辨率、多灰度的显示器件作为像源,以满足成像式敏感器成像分辨率及灰度要求。
附图说明
图1为本发明组成框图;
图2为中点分形示意图;
图3为旋转曲线形状示意图;
图4为简易的柯拉照明结构示意图;
图5为本发明光学传递单元光路结构示意图。
具体实施方式
下面结合附图对本发明做详细的说明,如图1所示,本发明一种动态的月面成像敏感器的目标模拟系统,包括目标影像生成单元、影像输出单元和光学传递单元;月面成像敏感器可以采用APS相机实现。
目标影像生成单元,根据DEM(数字高程模型Digital Elevation Model)数据和遥感影像数据仿真生成三维月面形貌,并根据月面成像敏感器成像时刻的月面光照条件以及该时刻月面成像敏感器的位置姿态参数动态生成符合月面成像敏感器成像的灰度图像数据;
影像输出单元将目标影像生成单元生成的灰度图像数据在LCD器件上进行显示;
光学传递单元将LCD器件上显示的影像进行光学变换,使所述影像正好成像在月面成像敏感器的成像器件上。
下面分别对上述三部分进行详细说明。
(一)目标影像生成单元
目标影像生成单元主要实现两方面的功能,1三维月面形貌的仿真,2成像敏感器成像仿真。
1、三维月面形貌的仿真
(1)以DEM数据和遥感影像数据为基础,叠加遥感影像纹理,得到粗分辨率的月面地貌;
由于DEM数据三维高程数据,而遥感影像数据为纹理数据,因此需要对二者进行叠加处理,即根据生成的随机位置,本例中主要是利用OpenGL实现三维场景的叠加。叠加技术是利用OpenGL接口函数实现,属于公知技术。
叠加后的三维场景要进行剔除处理,应用OPENGL中的ALPHA(透明度)来过滤掉纹理的背景、视见体裁剪、地球遮挡剔除、屏幕空间剔除等剔除,调用OpenGL相关函数,设置其参数可实现相关操作;剔除场景中的突兀点,得到粗分辨率的月面地貌;
(2)对步骤(1)中得到的粗分辨率的月面形貌进行地形分形计算,生成高分辨率的月面地貌。
地形分形计算是将分形几何与分数维布朗运动数学模型相结合,常采用的方法有泊松阶跃法(poisson filtering)、傅立叶滤波法(Fourier filtering)、中点位移法(midpoint displacement)、逐次随机增加法(sue cessive random additions)和带限噪声累积法(summing band limited noises)等5类。
在上述几种三维分形地形建模方法中,以用于快速地景生成的中点位移法应用最为广泛,它的特点是简洁而快速。本例中拟采用基于中点位移法的Diamond-Square算法来生成高分辨率的月面地貌。
Diamond-Square是一种较为常用的中点随机位移算法。这种算法最初是由Fournier,Fussell和Carprnter提出的。如图2所示,取四个点的正方形,并对四个角指定一个高度.然后在每边的中点分割地平面得5个新网格点位置。地面边上的点、f、g、h上的高度可以按最近两个顶点的平均高度加上一随机偏移来计算。如中点e处的高度可用顶点a和b来计算:
该算法是从由种子点组成的正方形开始,通过采用若干次随机中点位移方法,不断细分,最后获得逼真的三维地形仿真图.具体描述如下:
初始化二维数组n×n,(n为2的整数次幂加1)并将4个角设为相同高度。假定用一个5×5的数组。图2中,左侧图a的四个角种上了初始高度值,表示为黑点。
这是递归细分过程的起点,该过程分两步:
diamond步:取四个点的正方形,在正方形中点生成一个随机值,中点为两对角线交点。中点值是平均四个角值再加上一个随机量计算得到的。这样就得到了一个棱锥。当网格上分布着多个正方形时有点象钻石。
square步:取每个四点形成的棱锥,在棱锥的中心生成一个随机值。平均角值再加上与diamond步相同的随机量,计算出每条边中点值。这又给你一个正方形。这样,如果已经生成了一个种子正方形并经过单独一次细分过程将得到四个方形。第二次经过该过程得到16个方形,第三次得到64个方形。正方形的个数是2(2+i),其中i是迭代的次数。
Diamond-Square可以用迭代或递归的方法来实现,迭代法的伪代码为:
(3)根据模拟测试需要,建立岩石、陨石坑的三维模型,并根据月面的土壤特征,构建月面土壤模型;
(3.1)陨石坑的建模
由于简单陨石坑形状规则,于是可以采用旋转面的方法生成陨石坑,假设陨石坑中心坐标为(x1,y1),点(x,y)的高程偏差我们采用如下计算公式:
Δh = k · [ ( d 2 / r 4 - 1 4 ) · r ] · ( 1 - d / r 2 ) - - - ( 1 )
其中d=(x-x1)2+(y-y1)2,也就是离陨石坑中心的距离的平方,r为陨石坑的半径,k是控制参数,用来控制坑的深度。
通过上面的高程偏差公式,绘制出曲线如图3:
分析上式,当d=0时,Δh=k·r/4,也就是说在陨石坑的中心位置的深度H=k·r/4;在d=r2/2和d=r2时,坑的深度为0,中间形成陨石坑的边缘突起,通过上式绘制出的形状比较符合简单陨石坑的形状和Pike提出的经验公式,而且陨石坑的深度可以根据实际情况进行修正,方便实际应用。
在构建好单个简单陨石坑模型之后,使用随机函数将月球陨石坑随机分布在月面地形上。为了尽量符合月球陨石坑的真实分布情况,加入坑密度、深度、大小等参数对陨石坑的数量和形状进行控制,可以根据需要生成疏密不同的陨石坑分布。
模拟月球陨石坑算法流程如下:
首先将要加入陨石坑的原始地形归一化,使之横纵坐标在0到1之间;
然后根据地形的大小生成特定数量的陨石坑并使其随机分布;
最后根据陨石坑旋转方程(公式1)遍历整个地形,计算陨石坑内的高程偏差,将计算的偏差和原来的地形融合,这样就生成了带陨石坑的新地形。
(3.2)岩石(石块)的建模
根据月表石块数的统计信息,随机生成相应的大小不等的石块。月表每100m2面积范围内的石块数分布如下:高度25≥h>6厘米的石块数100块:50≥h>25厘米的石块数为3-4块;h>50厘米的石块数为0.6块。月球石块的最短尺寸与最长尺寸的比值在1∶5至1∶1范围内,石块表面可能是圆形、矩形、凹坑形等,建模时采用3DMAX实现可随机确定各种表面类型的石块所占总体石块数的比例。
(3.3)月面土壤的构建
月面土壤模型的构建主要是根据月面的土壤特征,在3DMAX中采用“小沙子”纹理重复贴图实现月面土壤的构建。
(4)通过OpenGL的正射投影方式,将岩石、陨石坑的三维模型以及构建的月面土壤模型根据月面形态特征分布在步骤(2)生成的高分辨率的月面地貌上并进行高程融合,最终生成三维月面形貌的仿真效果。
利用函数glOrtho(l,r,b,t,n,f)完成正射投影变换。函数参数为平行投影的左右、上下和远近裁剪面。利用函数glCopyTexlmage2D(GL_TEXTURE_2D,0,GL_DEPTH_COMPONENT,0,0,demSizeX,demSizeY,0拷贝深度缓冲中的深度信息到纹理,该纹理经过输出并坐标规划后即为叠加陨石坑和岩石的高程图。基于OpenGL三维绘制的月面形(岩石、撞击坑)貌(DEM)高程数据融合算法如下:
2、月面成像敏感器成像仿真
(1-1)根据月面成像敏感器成像时刻的位置姿态以及视场角,对仿真生成的三维月面形貌进行中心投影成像;
在OpenGL中,模型空间坐标系一般可以定义计算机屏幕中心点为坐标系的原点,人正对屏幕向右为X轴正方向,向上为Y轴正方向,垂直屏幕指向外面的方向为Z轴正方向。在模型空间的三维物体可以通过OpenGL的模型函数进行一系列的平移、旋转和缩放,以确定其大小、位置和形状。
在OpenGL中,三维物体的最终定位是通过基本实物模型与模型变换矩阵相乘产生的,即[x y 1]T=V·P·M·[X Y Z 1]T
X、Y、Z分别代表三维月面形貌在模型空间坐标系下的点;
x、y代表三维月面形貌经中心投影后的屏幕坐标;
M、P、V分别代表模型矩阵、投影矩阵和放射变换矩阵;
1)定义近平面的左下角和右上角坐标分别为(xl,yb)和(xr,yt),定义近远平面为Zn和Zf
P = 2 Z n x r - x t 0 x r + x l x r - x l 0 0 2 Z n y t - y b y t + y b y t - y b 0 0 0 - Z f + Z n Z f - Z n - 2 Z f Z n Z f - Z n 0 0 - 1 0
2)(Xs,Ys,Zs)为成像敏感器位置坐标, a 1 a 2 a 3 b 1 b 2 b 3 c 1 c 2 c 3 为正交旋转矩阵。
M = a 1 b 1 c 1 - a 1 X s - b 1 Y s - c 1 Z s a 2 b 2 c 2 - a 2 X s - b 2 Y s - c 2 Z s a 3 b 3 c 3 - a 3 X s - b 3 Y s - c 2 Z s 0 0 0 1
3)其中,摄影底片宽高(lx,ly)
V = l x 2 l y 2 1
(1-2)对步骤(1-1)得到的图像g(x,y),根据相机模型参数进行仿真成像处理,最终得到符合月面成像敏感器成像要求的灰度图像数据。
本例中主要对对图像g(x,y)依次进行针孔成像、附加畸变成像处理得到。针孔成像、附加畸变成像处理为公知处理方式,此处不进行过多说明。
(二)影像输出单元
影像输出单元由光源、导光光纤、均匀照明光学系统、大尺寸(1.4英寸)高分辨率LCD显示面板(1400×1050)等组成,主要功能是将目标影像生成单元生成的目标影像即灰度图像数据显示在LCD面板上。光源发出的光经导光光纤传输至均匀照明光学系统,将LCD影像均匀照明、表面辐亮度符合设计要求。
柯拉照明是一种光阑照明方式,由于光纤传输具有一定的匀光能力,输出面可以看作是光阑面,只需通过扩束准直,使出射光发散角度略大于光学传递单元物镜的视场角即可。光路结构如图4所示。
(三)光学传递单元
光学传递单元由一个非球面物镜系统构成,其主要作用是将LCD器件输出的图像进行光学转换,复原成符合月面成像敏感器视场的虚拟图像,使之通过月面成像敏感器镜头后成像在图像传感器件上。
非球面物镜系统采用远心光路,可以有效避免LCD显示面板位置偏差对成像质量的影响。非球面物镜系统由3片玻璃透镜组成,其光路结构如图5所示。其中,透镜1和透镜3是非球面透镜,透镜2和透镜3构成胶合透镜组。系统焦距约为27.3mm,光学总长约为50mm,最大透镜口径为44mm。
系统中使用的材料是高折射率、低色散玻璃,可以更好的实现设计要求,简化光学结构,提高成像质量。
(四)后续应用
利用本发明系统进行月面成像敏感器成像后与影像输出单元输出的影像进行比对,可验证月面成像敏感器在月面工作环境下的成像性能。
本发明未详细说明部分属于本领域技术人员公知常识。

Claims (2)

1.一种动态的月面成像敏感器的目标模拟系统,其特征在于:包括目标影像生成单元、影像输出单元和光学传递单元;
目标影像生成单元,根据DEM数据和遥感影像数据仿真生成三维月面形貌,并根据月面成像敏感器成像时刻的月面光照条件以及该时刻月面成像敏感器的位置姿态参数动态生成符合月面成像敏感器成像要求的灰度图像数据;
影像输出单元将目标影像生成单元生成的灰度图像数据在LCD器件上进行显示;
光学传递单元将LCD器件上显示的影像进行光学变换,使所述影像正好成像在月面成像敏感器的成像器件上;
所述的仿真生成三维月面形貌过程如下:
(1)将DEM数据和遥感影像数据进行三维场景的叠加,并将叠加后的三维场景进行剔除处理,剔除场景中的突兀点,得到粗分辨率的月面地貌;
(2)对步骤(1)中得到的粗分辨率的月面形貌进行地形分形计算,生成高分辨率的月面地貌;
(3)根据模拟测试需要,建立岩石、陨石坑的三维模型,并根据月面的土壤特征,构建月面土壤模型;
(4)将岩石、陨石坑的三维模型以及构建的月面土壤模型根据月面形态特征分布在步骤(2)生成的高分辨率的月面地貌上,生成三维月面形貌。
2.根据权利要求1所述的一种动态的月面成像敏感器的目标模拟系统,其特征在于所述的生成符合月面成像敏感器成像的灰度图像数据过程如下:
(1-1)根据月面成像敏感器成像时刻的位置姿态,对生成的三维月面形貌进行中心投影成像;
(1-2)通过针孔成像和畸变处理得到符合月面成像敏感器成像要求的灰度图像数据。
CN201210413945.7A 2012-10-24 2012-10-24 一种动态的月面成像敏感器的目标模拟系统 Active CN102928201B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210413945.7A CN102928201B (zh) 2012-10-24 2012-10-24 一种动态的月面成像敏感器的目标模拟系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210413945.7A CN102928201B (zh) 2012-10-24 2012-10-24 一种动态的月面成像敏感器的目标模拟系统

Publications (2)

Publication Number Publication Date
CN102928201A CN102928201A (zh) 2013-02-13
CN102928201B true CN102928201B (zh) 2014-12-17

Family

ID=47643054

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210413945.7A Active CN102928201B (zh) 2012-10-24 2012-10-24 一种动态的月面成像敏感器的目标模拟系统

Country Status (1)

Country Link
CN (1) CN102928201B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103778408A (zh) * 2013-11-18 2014-05-07 北京林业大学 一种dem数据图像与山区光学遥感配准方法
CN106370396B (zh) * 2015-07-24 2019-02-15 深圳市安普盛科技有限公司 一种光源检测方法及检测装置
CN105931293B (zh) * 2016-04-19 2018-11-16 北京理工大学 基于随机分形的行星表面安全着陆地形模拟与生成方法
CN106251335B (zh) * 2016-07-19 2018-10-09 中国空间技术研究院 一种基于stl网格化模型的敏感器视场遮挡区域确定方法
CN111174765B (zh) * 2020-02-24 2021-08-13 北京航天飞行控制中心 基于视觉引导的行星车目标探测控制方法及装置
CN111351506B (zh) * 2020-03-20 2022-05-24 上海航天控制技术研究所 一种基于3d打印的火星可见光目标特性精确模拟方法
CN111537000A (zh) * 2020-06-08 2020-08-14 中国科学院微小卫星创新研究院 深空小天体着陆段光学导航算法的地面验证系统及方法
CN113473001B (zh) * 2021-04-07 2022-11-11 北京控制工程研究所 一种基于数字伴随的硬件在回路系统验证系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6608628B1 (en) * 1998-11-06 2003-08-19 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration (Nasa) Method and apparatus for virtual interactive medical imaging by multiple remotely-located users
CN101923729A (zh) * 2010-08-25 2010-12-22 中国人民解放军信息工程大学 基于单张灰度图像的月表三维形状重构方法
DE102009049849A1 (de) * 2009-10-19 2011-04-21 Metaio Gmbh Verfahren zur Bestimmung der Pose einer Kamera und zur Erkennung eines Objekts einer realen Umgebung
CN102354123A (zh) * 2011-07-18 2012-02-15 北京航空航天大学 一种跨平台可扩展的卫星动态仿真测试系统
CN102521880A (zh) * 2011-12-01 2012-06-27 北京空间飞行器总体设计部 一种火星表面的三维描绘方法
CN102737357A (zh) * 2011-04-08 2012-10-17 中国科学院国家天文台 月球三线阵相机影像仿真数据的生成方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6608628B1 (en) * 1998-11-06 2003-08-19 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration (Nasa) Method and apparatus for virtual interactive medical imaging by multiple remotely-located users
DE102009049849A1 (de) * 2009-10-19 2011-04-21 Metaio Gmbh Verfahren zur Bestimmung der Pose einer Kamera und zur Erkennung eines Objekts einer realen Umgebung
CN101923729A (zh) * 2010-08-25 2010-12-22 中国人民解放军信息工程大学 基于单张灰度图像的月表三维形状重构方法
CN102737357A (zh) * 2011-04-08 2012-10-17 中国科学院国家天文台 月球三线阵相机影像仿真数据的生成方法
CN102354123A (zh) * 2011-07-18 2012-02-15 北京航空航天大学 一种跨平台可扩展的卫星动态仿真测试系统
CN102521880A (zh) * 2011-12-01 2012-06-27 北京空间飞行器总体设计部 一种火星表面的三维描绘方法

Also Published As

Publication number Publication date
CN102928201A (zh) 2013-02-13

Similar Documents

Publication Publication Date Title
CN102928201B (zh) 一种动态的月面成像敏感器的目标模拟系统
CN103913148B (zh) 航天tdi ccd相机全链路数值仿真方法
CN104330074B (zh) 一种智能测绘平台及其实现方法
CN101606181B (zh) 用于实时渲染带有全局光照的可变形几何形状的系统和方法
CN104156916B (zh) 一种用于场景光照恢复的光场投影方法
CN105528500B (zh) 一种分米级星载tdi ccd立体测绘相机成像仿真方法和系统
CN104050716B (zh) 一种海上多目标sar图像可视化建模方法
CN106780712B (zh) 联合激光扫描和影像匹配的三维点云生成方法
CN102243074A (zh) 基于光线追踪技术的航空遥感成像几何变形仿真方法
CN104036475A (zh) 适应于任意投影机群及投影屏幕的高鲁棒性几何校正方法
CN102737357B (zh) 月球三线阵相机影像仿真数据的生成方法
CN106952309A (zh) 快速标定tof深度相机多种参数的设备及方法
CN105184857A (zh) 基于点结构光测距的单目视觉重建中尺度因子确定方法
CN102063558A (zh) 一种敏捷卫星成像条件的确定方法
CN102519434A (zh) 一种用于立体视觉三维恢复数据精度测量的试验验证方法
CN115690336A (zh) 一种卫星波束覆盖区域可视化方法、服务器及存储介质
Haala et al. High density aerial image matching: State-of-the-art and future prospects
CN106586041A (zh) 一种用于深空探测的火星目标模拟方法
CN105486315B (zh) 遥感卫星对月绝对定标姿态调整方法
CN105547286B (zh) 一种复合三视场星敏感器星图模拟方法
JP6899915B2 (ja) 標高データグリッドのためのシャドウキャスティング
CN106126839A (zh) 一种三线阵立体测绘卫星成像仿真方法和系统
CN103743488A (zh) 遥感卫星地球临边背景特性的红外成像仿真方法
CN106096085B (zh) 一种塔式太阳能热发电系统的辐射能密度模拟方法
CN106202801A (zh) 一种天基光学空间碎片监视图像中目标运动拖尾仿真方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant