CN102918521A - 使用时变滤波器的全波场反演 - Google Patents

使用时变滤波器的全波场反演 Download PDF

Info

Publication number
CN102918521A
CN102918521A CN2011800173999A CN201180017399A CN102918521A CN 102918521 A CN102918521 A CN 102918521A CN 2011800173999 A CN2011800173999 A CN 2011800173999A CN 201180017399 A CN201180017399 A CN 201180017399A CN 102918521 A CN102918521 A CN 102918521A
Authority
CN
China
Prior art keywords
data
objective function
model
time
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800173999A
Other languages
English (en)
Other versions
CN102918521B (zh
Inventor
J·R·克雷布斯
J·E·安德森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Upstream Research Co
Original Assignee
Exxon Production Research Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Production Research Co filed Critical Exxon Production Research Co
Publication of CN102918521A publication Critical patent/CN102918521A/zh
Application granted granted Critical
Publication of CN102918521B publication Critical patent/CN102918521B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/282Application of seismic models, synthetic seismograms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/34Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment
    • G06F11/3452Performance evaluation by statistical analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/34Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment
    • G06F11/3457Performance evaluation by simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/36Preventing errors by testing or debugging software
    • G06F11/3604Software analysis for verifying properties of programs
    • G06F11/3608Software analysis for verifying properties of programs using formal methods, e.g. model checking, abstract interpretation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/32Circuit design at the digital level
    • G06F30/33Design verification, e.g. functional simulation or model checking
    • G06F30/3308Design verification, e.g. functional simulation or model checking using simulation
    • G06F30/3312Timing analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/32Circuit design at the digital level
    • G06F30/33Design verification, e.g. functional simulation or model checking
    • G06F30/3323Design verification, e.g. functional simulation or model checking using formal methods, e.g. equivalence checking or property checking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/544Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices for evaluating functions by calculation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/05Geographic models

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Remote Sensing (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Software Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geometry (AREA)
  • Databases & Information Systems (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Computational Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Computing Systems (AREA)
  • Geophysics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Algebra (AREA)
  • Environmental & Geological Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Probability & Statistics with Applications (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Computer Graphics (AREA)
  • Artificial Intelligence (AREA)
  • Computational Linguistics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Complex Calculations (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

本发明涉及一种在通过局部目标函数优化(64)执行地震数据(65)多尺度反演时,减小对起始模型的精度要求的改进方法。通过引入低通滤波器到目标函数(61),然后减小从一个尺度到另一个尺度被滤除的高频数据的量,实现不同尺度的反演。而且,滤波器被设计为是时变的,其中滤波器的低通截止频率随被滤除的地震数据的传播时间的增加而减小(62)。滤波器可如下设计:使用消除局部最小值的普拉特(Pratt)标准,仅针对源和接收器位置而非传播时间,执行周期和传播时间误差的平均(或其他统计度量)(63)。

Description

使用时变滤波器的全波场反演
相关申请的交叉参考
本申请要求2010年3月29日申请的美国临时专利申请61/318561的权益,其标题为FULL WAVEFIELD INVERSION USING TIMEVARYING FILTERS,其全部内容通过引用包括在此。
技术领域
本发明一般涉及地震数据的数值转换从而推导传播介质的弹性参数的领域。更具体地,本发明是用于在反演,如地震数据反演中执行局部目标函数优化时降低对起始模型的精度要求的方法。
背景技术
反演(例如参考Tarantola,1984)试图发现最架解释观察的数据的模型。最小化测量模拟数据和观察数据之间差的目标函数值的局部反演方法通常是解决具有大量自由参数的模型的反演问题的唯一实用方法。这些局部方法要求针对要反演的模型的初始猜测。这些局部方法迭代更新模型,从而通过在基于目标函数梯度的方向上搜索当前模型的扰动使其更接近真解。遗憾的是,目标函数通常具有许多最小值,而不仅仅是一个对应于解模型的最小值。这些其他最小值被称为局部最小值,而对应于所需解的最小值被称为全局最小值。如果反演的起始模型太接近对应于一个这些局部最小值的模型,则局部反演方法在局部最小值附近卡壳,并且永远也不能从该值迭代到全局最小值。因此,无论如何努力迭代,都会产生错误解。
该局部最小值问题可通过对改变的目标函数执行第一迭代反演解决,改变的目标函数具有较少的局部最小值但在所需解的位置附近有全局最小值。对改变的目标函数迭代的结果应该产生更接近所需解的模型。然后该更精确模型被用作针对原始目标函数上的迭代的初始模型。因为这个新初始模型接近原始目标函数的全局最小值,所以对原始目标函数的迭代现在应产生精确解。在改变的目标函数上迭代的这个技术通常被称为多分辨率,或多网格,或多尺度反演,这将在下面进一步讨论。
存在大量已知的反演方法。这些方法落入两个类别,迭代反演和非迭代反演。下面是这两类中每一个通常表示的定义:
·非迭代反演——通过采用某些简单背景模型和基于输入数据更新模型实现的反演。该方法不使用更新的模型作为另一个反演步骤的输入。对于地震数据的情况,这些方法通常被称为成像、迁移、衍射层析(diffraction tomography)、线性反演或波恩(Born)反演。
·迭代反演——反演涉及重复改进地下特性模型,以便找到能满意地解释观察的数据的模型。如果反演收敛,则最终模型更好地解释观察的数据,并将更接近地逼近实际地下特性。迭代反演通常产生比非迭代反演更精确的模型,但计算成本更高。
波反演意味着任何基于波模拟器的反演,如声学或地震反演。在波反演中最常用的迭代方法是目标函数优化。相对模型M,目标函数优化涉及目标函数S(M)的值的迭代最小化,该目标函数是计算的和观察的数据之间失配的度量(这有时也称为成本函数)。计算的数据是利用被编程为使用物理学决定的当前模型表示的介质中源信号传播的计算机模拟的。该模拟计算可通过几种数值方法实现,包括但不限于有限差、有限元或光线跟踪。在Tarantola的文献【Tarantola,1984】之后,最常用的目标函数是最小二乘目标函数:
S(M)=(u(M)-d)TC-1(u(M)-d),(1)
其中T表示矢量转置算符,且:
M=是N个参数的矢量[m1,m2,...,mN]T的模型,
d=测量的数据矢量(相对源、接收器和时间采样的),
u(M)=针对模型M的模拟数据矢量(相对源、接收器和时间采样的),
C=协方差矩阵。
目标函数优化方法是局部的或全局的【Fallat等人,1999】。全局方法仅涉及计算模型群体{M1,M2,M3,...}的目标函数S(M)并从该模型群体中选择近似最小化S(M)的包括一个或更多模型的集合。如果需要进一步的改进,则新选择的模型集合可用作生成可再次相对目标函数S(M)测试的新群体模型的基础。全局方法比局部方法更可能对正确的解收敛,但应用于具有许多模型参数的多尺度反演问题成本太高。已知的全局反演方法包括蒙特卡洛(Montre Carlo)、模拟退火、基因和进化算法。
局部目标函数优化涉及:
算法1:用局部目标函数优化更新模型的算法。
局部反演方法比全局方法更有效,并因此是用于大尺度反演问题的唯一实用方法。通用的局部目标函数反演方法包括最陡下降、共轭梯度和牛顿方法。
应该注意,
Figure BDA00002216959300032
的计算,算法1第二步要求针对N个模型参数mi中每个参数计算S(M)的导数。当N非常大(约超过1000),如果必须为每个模型参数执行该计算,则该计算极其耗时。幸运的是,伴随法可用来一次为所有模型参数有效地执行该计算【Tarantola,1984】。用于最小二乘目标函数和网格状模型参数化(gridded modelparameterization)的伴随法由下面的算法总结:
Figure BDA00002216959300033
算法2:用伴随法计算网格状模型最小二乘成本函数梯度的算法。
局部目标函数优化通常比全局目标函数优化便宜得多,但要求更精确的起始模型。要求该更精确的起始模型,是因为目标函数通常具有许多最小值,且局部优化方法通常发现这些最小值中最接近的一个。对应于真实模型的最小值是所谓的全局最小值,且所有其他最小值被称为局部最小值。如果起始模型不是最接近全局最小值,则局部优化技术可能产生不精确的反演模型,其对应于最接近的局部最小值。这在图1中示出,其中目标是针对具有两个参数m1和m2的模型M的反演。虚周线110显示目标函数的值作为参数m1和m2的函数。全局最小值120是由实线黑圆标记的,且两个局部最小值130和140由灰色填充圆示出。反演从初始模型M(0)(150)开始,然后由局部优化迭代一次模型M(1),直到模型M(3)(160)。无论再尝试多少次局部优化的迭代,反演的模型都仅更接近M(3)附近的局部最小值130,而非接近全局最小值120。
已经提出了几种试图克服该局部最小值问题的方法。如上所述,许多这类方法在反演的早期迭代中都涉及对改变的目标函数的迭代。选择这个改变的目标函数从而具有较少的局部最小值,但具有原始目标函数的全局最小值附近的全局最小值。通过该方法,早期迭代将产生这样的模型,虽然其不精确,但显著更接近原始目标函数的全局最小值。图2示出对应于图1的局部优化,但使用具有较少局部最小值的改变的目标函数。改变的目标函数具有全局最小值210(实黑圆),其靠近原始目标函数(交叉阴影圆)的全局最小值220,但与其不在相同位置。从初始模型M(3)(230)开始,该模型与图1中使用的初始模型相同,使用改变的目标函数的两次迭代导致模型M(2)(240)。该模型M(2)可用作初始模型,以便进一步迭代,但现在使用初始目标函数。这在图3中示出,其中来自图2的迭代2模型(以灰色示出),再编号为310并用作起始模型。现在迭代对靠近全局最小值220而非靠近图1中局部最小值的模型M(4)(320)收敛。因为起始模型比原始开始模型更精确,所以反演现在迭代到正确解。
通常在改变原始目标函数时,改变的目标函数中局部最小值的数目与原始函数的全局最小值和改变的目标函数的全局最小值之间的距离逆相关。因此,从具有较少数目的局部最小值和最不精确局部最小值的目标函数开始,然后演进到具有增加数目的局部最小值和增加精度的全局最小值的目标函数,然后以对原始目标函数迭代结束,对改变的目标函数序列进行迭代是有利的。对具有几个局部最小值的改变的目标函数执行初始迭代的方法通常被称为多尺度或多网格方法,且该技术的流程图在图4中示出。
过程从步骤410开始,选择原始目标函数的变化从而优化。该改变的目标函数取决于要拟合420的数据,并在步骤430迭代,直到改变的目标函数在步骤440被发现被充分最小化。(该值小于所选最大值或满足另一个停止条件)。当发生该情形时,在步骤450确定是否当前反演模型充分最小化原始目标函数。如果没有,则过程返回到步骤410且要么选择新改变的目标函数或原始目标函数来优化。最终,过程结束(460)。
在解决地震全波场反演(“FWI”)的局部最小值问题的文献中已经提出了两个改变的目标函数:
·高阻滤波器:Bunks的文献(Bunks等人,1995年)描述了通过对测量的数据和用于计算模拟的地震数据的源特征(source signature)都应用时间不变高阻滤波器(有时被称为低通滤波器,意味着使低于其截止频率的频率通过并摒弃截止频率以上频率的滤波器),改变最小二乘目标函数。然后,随着反演进行迭代,这些滤波器的高阻,即截止频率增加,其中没有滤波器应用于最终迭代(没有滤波器对应于原始目标函数)。已知如何设计这样的滤波器;参看Press等人的Numerical Recipes in FORTRAN,The Art of Scientifc Computing,Cambridge University Press(1992)。这也可从下面的资源获得,如Seismic Un*x(参看:http://www cwp mines edu/cwpcodes/)。
·剥层法:Maharramov的文献(Maharramov等人,2007)教导了反演的初始迭代应局部化在浅层,且随迭代进行而延伸到深度范围。相应地,当仅浅深度被反演时,数据中仅较短时间被反演,因为浅模型可仅预测较短时间部分的数据。
一般地,如果起始模型足够精确,从而预测任何传播模式的传播时间到该模式的半个周期内,则FWI收敛到全局最小值。这也可称为普拉特(Pratt)的标准。(“实际上,对于地震波形反演,这意味着许多波形能量必须被预测在观察波形的半个波长内(通过初始模型);如果不是,则当预测的波形匹配观察波形内的错误循环时,则获得最小失配模型。”——Pratt,1999)。
本发明是当执行局部目标函数优化时降低对起始模型精度要求的改进方法。
发明内容
本发明方法适用于任何基于波模拟器的反演,如声学或地震反演。在其一个方面中,本发明是用于改变目标函数的特定方法,对于起始模型中的给定不精确性,该目标函数减少发现全局最小值所需的迭代数目。减少迭代数目将相应地减少成本和计算时间。改变包括引入时变滤波器到目标函数中。选择该滤波器以便测量的数据和计算的数据之间传播时间差的某统计度量小于数据主周期的某个分数(通常四分之一)的占优周期。这意味着滤波器是高阻滤波器。进一步选择该滤波器以便该滤波器的高切断频率随传播时间的增加而减小,使得其为时变滤波器。
参考图6的流程图,在一个实施例中,本发明是反演测量的地震数据(65)从而推断地下区域的物理特性模型的方法,包括通过用目标函数的局部最小值优化(64)执行测量的地震数据的迭代、多尺度反演而连续更新模型,该目标函数计算模型模拟的地震数据和测量的地震数据之间的失配(61),其中变化的低通滤波器被用于通过过滤失配计算中测量的和模拟的地震数据(62),将目标函数连续地从一个尺度变到另一个尺度,所述滤波器是时变的,其中滤波器的低通截止频率随地震数据的传播时间改变,所述地震数据在反演的一个或更多尺度上被滤波。滤波器可以用Pratt的标准设计,用于减小局部最小值的数目,针对源和接收器位置而非传播时间修改从而包括数据的统计度量(如平均值),使得滤波器是时变的(63)。多尺度反演的最后阶段优选使用未变的目标函数,且因此其更有效地被提供更精确的起始模型以帮助其收敛到全局最小值,导致优化的物理特性模型(66)。
如同任何数据反演一样,该过程在实际应用中是高度自动化的,即,借助根据本公开内容编程的计算机执行。
附图说明
本发明及其优势可通过参考下面的详细描述和附图更好地被理解,其中:
图1是收敛到局部最小值的反演的示意图;
图2是对应于图1的局部优化的示意图,但其使用具有较少局部最小值的已改变的目标函数;
图3示出利用来自图1的原始目标函数的局部优化,其使用来自图2的迭代2模型(灰色示出)作为起始模型;
图4是示出多尺度优化中的基本步骤的流程图;
图5是图解说明测量的数据和模拟的数据之间传播时间误差terror,和地震道的瞬时周期T的示意图;以及
图6是示出本发明一个实施例中基本步骤的流程图。
下面结合示例性实施例描述本发明。然而,一定程度上,下面的详细描述是针对本发明特定实施例或特殊使用的,这仅是为了说明的目的,而不能解读为对本发明范围的限制。相反,本发明涵盖权利要求限定的本发明范围内的所有替换、修改和等价物。
具体实施方式
数学上,Pratt的标准可表述为:
max s , r , t | t error ( M , s , r , t ) | max T ( s , r , t ) s , r , t ≤ 1 2 , - - - ( 2 )
其中terror是测量的数据和模拟的数据之间的传播时间误差,且T是测量的数据的瞬时周期,如图5中所示。在图5中,测量的数据和模拟的数据之间的传播时间误差被指示为terror,且地震道的瞬时周期由T指示。传播时间误差是对齐测量的数据和模拟的数据所需的时移量。瞬时周期是数据的相似相位(如,峰或槽)之间的时间。(传播时间意味着从地震源发生地震波开始直到地震波在接收器被记录逝去的时间。)
传播时间误差和瞬时周期都是源s、接收器r和传播时间t的函数。此外,terror是当前模型M的精度的函数。实际上,等式2可比必需的约束更大,以确保FWI的收敛。特别地,可使用比最大值(如,平均值)不严格的统计度量,或非1/2的目标可用在不等式的右侧。因此,实际上,等式2可由下式取代:
max s , r , t | t error ( M , s , r , t ) | statT ( s , r , t ) s , r , t ≤ α 2 - - - ( 3 )
其中stat是某个统计量,如平均值、众数或均方差,且α是近似等于一的常数。结果对统计的选择非常灵敏是没有预计到的。
通过利用高阻滤波器以增加T(s,r,t),因此允许terror的较大值,目标函数的Bunk的变化遵从类似于Pratt的标准的推理逻辑。可以理解,局部最小值的主要原因是跳周(cycle skipping),且较长周期导致这个可能性较低。理论上,terror可减小,而非限制数据到较低频率;然而,实现这一点的唯一方式是具有更精确的起始模型,这非常困难并可能是不可能的。而且,FWI的目标是产生更精确的模型,因此要求非常精确的起始模型减小了FWI的值。另一方面,Maharramov的剥层法通过仅反演浅模型来避免大的传播时间误差,该浅模型仅传播具有少的传播时间的模式。因为传播时间误差通常随传播时间增加,所以限制反演到较短传播时间将terror保持在拇指规则内。
在本发明中,提出第等式3的“拇指规则”的替换,这导致确保收敛的新策略。该拇指规则的替换规则如下:
max s , r | t error ( M , s , r , t ) | statT ( s , r , t ) s , r ≤ α 2 - - - ( 4 )
该拇指规则不同于等式3,因为统计分析不再对时间执行。在应用统计计算后,等式4左侧的分子和分母不是源位置和接收器位置的函数。等式4等价于:
T ^ ( t ) ≥ 2 α t ^ error ( M , t ) - - - ( 5 )
其中 T ^ ( t ) = stat s , r T ( s , r , t ) , t ^ error ( M , t ) = stat s , t | t error ( M , s , r , t ) | .
实际上,
Figure BDA00002216959300091
是传播时间t的增函数,因为传播时间误差倾向于随波传播通过不精确的模型而累积。等式5表明针对多尺度反演的最优策略会改变测量的数据和模拟的数据,以便地震数据的平均瞬时周期以类似于
Figure BDA00002216959300092
的方式随传播时间增加。这可通过对测量的数据应用时变高阻滤波器实现。这个时变滤波器的高截止频率应随增加的传播时间而减小。该方法相对Bunk技术的优点是更多信息(即,在少的传播时间的较高频率信息)会用于反演的早期迭代,因此更好地约束反演的模型,导致更快的收敛。我们的建议相对Maharramov的剥层的优点是更多数据(即,传播通过模型较深部分的地震模式)用于早期迭代,导致更快的收敛。
函数
Figure BDA00002216959300093
取决于传播时间误差是如何测量的和什么统计度量被应用于这些传播时间误差测量两者。然而,可以预期,这个提出的多尺度反演测量将对
Figure BDA00002216959300094
不够灵敏。实际上,不是努力从数据测量替换策略是为
Figure BDA00002216959300096
假设简单的函数形式,如线性函数
Figure BDA00002216959300097
其中M0是初始模型。这个假定的函数形式然后被用于设计满足等式5的时变高阻滤波器,且尝试使用该滤波器的反演。如果反演不收敛,则增加β的值,并可尝试具有更保守估计的反演。继续这个测试直到发现为初始模型产生收敛的β。
在发现对于这个初始模型,M0收敛的β之后,迭代然后将产生比初始模型更精确的当前反演的模型。这个增加的精度表明β应该随迭代的进行减小。β的这个减小意味着通过更高频率的相应时变滤波器。反演利用通过越来越多高频率的时变滤波器进行,直到数据中所有频率都用于反演的最终迭代中。
为了使反演中的时变滤波器实用,能够以与时变滤波器一致的方式计算伴随梯度(算法2)是必要的。完成这一点的数学上最直接方式是用等式1中的逆协方差矩阵C-1实现时变滤波器。为了完成这一点,选择逆协方差矩阵C-1为非对角线的(在时间维中),其中元素等于时变滤波器系数的时间表示。因为滤波器会是时变的,所以滤波器系数随时间改变。例子1示出示例性的C-1的子矩阵,其对应于实现时变滤波器的特殊源和接收器。该子矩阵的第一行为零,预期对角线上为一个1。
Figure BDA00002216959300101
例子1
这意味着该特殊时变滤波器在时间零不执行滤波。在子矩阵中,非对角线元素随行增加而增加,这意味着该时变滤波器的高截止频率随时间增加而减小。注意,传播时间误差可被视作源或接收器的函数。在该情形中,该方法可以以比简单时变滤波器更一般的方式被应用。例如:
1.传播时间误差通常不仅是传播时间的函数,而且通常是源和接收器之间偏移(offset)的函数。如果是该情形,则为不同源接收器偏移使用不同时变滤波器是有利的。随着迭代的进行,滤波器由于模型精度增加而得到弛豫(relaxed)。
2.传播时间误差通常是源和/或接收器域中数据的时间倾斜(timedip)的函数。这会发生是因为陡峭的时间倾斜对应于主要在水平方向上传播的波,这些波对初始模型的精度更灵敏。在该情形中,时变倾斜滤波器(如,除去具有高时间倾斜的地震事件的频率-波数滤波器)可取代时变时间滤波器使用。随着迭代的进行,倾斜滤波器将随模型精度增加而弛豫。
在任何情形中,滤波器(如空间变化和时变滤波器、时变倾斜滤波器等)可在协方差矩阵C-1中实现,如上所述的,且然后如上所述继续梯度计算。
优选方法可能是如果可为当前模型M估计
Figure BDA00002216959300102
则时变滤波器可被设计成与等式5一致。否则,使用β的初始猜值,估计是线性函数βt是合理的。再次,时变滤波器应设计被成与β的估值和等式5都一致。如果这个反演收敛,则过程完成。如果该反演不收敛,则增加β,且尝试另一反演。增加β的这个过程继续,直到实现收敛。
实际上,表示时变滤波器的矩阵C-1是非常稀疏的,且因此其应用于算法2的步骤3中的数据残余是通过应用时变滤波器算子最佳实现的,而非通过矩阵乘法。实际上,这个反演方法不可能对用于实现时变滤波器的方法非常灵敏。因此,时变滤波器可最有效地被实现为分窗口时间不变滤波器。换句话说,数据将被分隔成时间窗口,然后不同的时间不变滤波器将被应用于不同窗口。
上面的描述针对本发明特定实施例,这是为了说明本发明。然而,对本领域技术人员来说,显然可以对这里所述实施例做出许多修改和变化。例如,本发明方法不限于地震数据,并可应用于其中多尺度反演被用来避免局部最小值的任何数据。所有这类修改和变化都在权利要求限定的本发明的范围内。
参考文献
Bunks,C.,F.M.Salcck,S.Zaleski,G.Chavcn,1995,“Multiscalc seismic waveforminversion,”Geophysics,60,pp.1457-1473.
Maharramov,M.,U.Albcrtin,2007,“Localizcd image-difference wave-equationtomography,”SEG Annual Mccting Expanded Abstracts,San Antonio,2007,pp.3009-3013.Fallat,M.R.,Dosso,S.F.,“Gcoacoustic inversion via local,global,and hybrid algorithms,”Journalofthe AcousticalSocietyofAmerica105,pp.219-3230(1999).
Pratt,R.G.,“Seismic waveform inversion in thc frcquency domain,Part 1:Theory andvcrification in a physical scale model,”Geophysics64,pp.888-901(1999).
Tarantola,A.,”Inversion of seismic reflection data in the acoustic approximation,″Geophysics 49,pp.1259-1266(1984).

Claims (23)

1.一种反演测量的地震数据从而推导地下区域的物理特性模型的方法,其包括通过用目标函数的局部最小值优化在计算机上对测量的地震数据执行迭代、多尺度反演而连续更新所述模型,该目标函数计算模型模拟的地震数据和所述测量的地震数据之间的失配,其中改变低通滤波器——以下称为所述滤波器,被用于通过滤波失配计算中测量的和模拟的地震数据,将所述目标函数从一个尺度到另一个尺度连续改变,所述滤波是时变的,其中所述滤波器的低通截止频率随在所述反演的一个或更多尺度被滤波的地震数据的传播时间改变。
2.根据权利要求1所述的方法,其中所述滤波器的低通截止频率随增加的传播时间减小。
3.根据权利要求1所述的方法,其中每个连续改变的目标函数对应于被改变从而摒弃较少数据的滤波器。
4.根据权利要求3所述的方法,其中所述目标函数被连续改变直到达到最终尺度,在该最终尺度处所述目标函数未被改变,且其中迭代继续直到满足收敛标准或其他停止条件。
5.根据权利要求4所述的方法,其中对应于所述最终尺度的所述滤波器通过所有数据且不摒弃数据。
6.根据权利要求3所述的方法,其中所述滤波器被改变从而通过增加所述滤波器的低通截止频率来摒弃较少数据。
7.根据权利要求1所述的方法,其中在所述多尺度反演的每个尺度,即,针对高通滤波器的每个变化和所述目标函数的改变,执行一个或更多迭代。
8.根据权利要求1所述的方法,其中所述目标函数的局部最小值优化包括针对当前物理特性模型的一个或更多参数计算所述目标函数的梯度,然后搜索更新的物理特性模型,该更新的物理特性模型是所述当前物理特性模型在基于更好解释所述测量的地震数据的梯度的方向中的干扰。
9.根据权利要求8所述的方法,其中所述梯度是通过伴随方法计算的。
10.根据权利要求1所述的方法,其中所述反演是全波场反演。
11.根据权利要求2所述的方法,其中为了确保所述迭代收敛到所述目标函数的全局最小值,下面的标准被用于设计时变低通滤波器:当迭代开始时,所述模型应足够精确从而在所述时变滤波器被应用后,预测任何传播模式到在该模型的半周期内的传播时间。
12.根据权利要求11所述的方法,其中所述收敛标准可数学表达为:
stat s , r | t error ( M , s , r , t ) | statT s , r ( s , r , t ) ≤ α 2 ,
其中M表示所述物理特性模型,terror是测量的地震数据和模拟的地震数据之间的传播时间误差,且T是测量的数据的瞬时周期,α是所选的常数,t是地震波传播时间,s表示地震源坐标,r表示地震接收器坐标,且stat意味着降低s和r的可变性到常数的均数或平均值或另一个度量。
13.根据权利要求12所述的方法,其中α是在1/2到1之间的数字。
14.根据权利要求12所述的方法,其中所述低通截止频率随传播时间增加而减小的速率被确定是符合所述收敛标准的。
15.根据权利要求1所述的方法,进一步包括为不同源-接收器偏移使用不同时变滤波器。
16.根据权利要求9所述的方法,其中所述滤波器是用等式1中的所述反演协方差矩阵C-1实现的。
17.根据权利要求16所述的方法,其中所述反演协方差矩阵C-1被选择为在时间维中是非对角的,其中的元素等于所述时变滤波器的系数的时间表示,所述系数随时间变化。
18.根据权利要求12所述的方法,其中被假定是传播时间的线性函数,其形式为
Figure FDA00002216959200032
其中M0是开始迭代时所述模型的初始选择,β是所选常数,其中如果用这个滤波器设计迭代反演不收敛,则β的值增加,并会尝试具有的更保守估计的反演,并且继续直到发现为所述初始模型产生收敛的β。
19.根据权利要求1所述的方法,其中所述反演是全波场反演。
20.根据权利要求1所述的方法,其中计算机被编程以执行所述方法的至少部分步骤。
21.一种计算机程序产品,其包括其中具有计算机可读程序代码的计算机可用介质,所述计算机可读程序代码适于实施已测量数据的全波场反演,从而推导所述波场的传播介质模型的方法,所述方法包括:
通过用目标函数的局部最小值优化,执行已测量数据的迭代、多尺度反演来连续更新所述模型,该目标函数计算模型模拟的数据和已测量数据之间的失配;
其中改变低通滤波器,以下称为所述滤波器,被用于通过滤波失配计算中所述已测量数据和模拟的数据,从一个尺度到另一个尺度连续改变所述目标函数,所述滤波器是时变的;
其中所述滤波器的低通截止频率随通过所述介质的波场传播时间改变,该传播时间对应于在所述反演的一个或更多尺度被滤波的数据。
22.根据权利要求21所述的方法,其中所述滤波器的低通截止频率随传播时间增加而减小。
23.根据权利要求21所述的方法,其中被反演的所述数据是地震数据,且所述传播介质是地球的地下区域。
CN201180017399.9A 2010-03-29 2011-02-21 使用时变滤波器的全波场反演 Expired - Fee Related CN102918521B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US31856110P 2010-03-29 2010-03-29
US61/318,561 2010-03-29
PCT/US2011/025616 WO2011123197A1 (en) 2010-03-29 2011-02-21 Full wavefield inversion using time varying filters

Publications (2)

Publication Number Publication Date
CN102918521A true CN102918521A (zh) 2013-02-06
CN102918521B CN102918521B (zh) 2016-05-18

Family

ID=44657371

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180017399.9A Expired - Fee Related CN102918521B (zh) 2010-03-29 2011-02-21 使用时变滤波器的全波场反演

Country Status (11)

Country Link
US (1) US8223587B2 (zh)
EP (1) EP2553601B1 (zh)
KR (1) KR101797450B1 (zh)
CN (1) CN102918521B (zh)
AU (1) AU2011233680B2 (zh)
BR (1) BR112012019562A2 (zh)
CA (1) CA2789714C (zh)
EA (1) EA028104B1 (zh)
MY (1) MY156075A (zh)
SG (1) SG183794A1 (zh)
WO (1) WO2011123197A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103207409A (zh) * 2013-04-17 2013-07-17 中国海洋石油总公司 一种频率域全波形反演地震速度建模方法
CN109478208A (zh) * 2016-05-23 2019-03-15 沙特阿拉伯石油公司 用于石油勘探和生产评估的综合数据和过程集成的迭代且可重复的工作流程
CN109586688A (zh) * 2018-12-07 2019-04-05 桂林电子科技大学 基于迭代计算的时变可分非下采样图滤波器组的设计方法
CN110471106A (zh) * 2019-09-20 2019-11-19 西南石油大学 一种基于滤波器设计的时移地震反演方法

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101167715B1 (ko) * 2010-04-30 2012-07-20 서울대학교산학협력단 복소 구배 최소자승법에의한 파형 역산을 이용한 지하 구조의 영상화 장치 및 방법
US8694299B2 (en) 2010-05-07 2014-04-08 Exxonmobil Upstream Research Company Artifact reduction in iterative inversion of geophysical data
US8756042B2 (en) * 2010-05-19 2014-06-17 Exxonmobile Upstream Research Company Method and system for checkpointing during simulations
CA2810960A1 (en) * 2010-09-28 2012-04-05 Rene-Edouard Andre Michel Plessix Earth model estimation through an acoustic full waveform inversion of seismic data
US9235761B2 (en) * 2010-11-17 2016-01-12 The Boeing Company Zero phase real time filtering with a recurrence matrix
US9921187B2 (en) * 2011-01-20 2018-03-20 Northeastern University Real-time pavement profile sensing system using air-coupled surface wave
US8614930B2 (en) * 2011-03-23 2013-12-24 Chevron U.S.A. Inc. System and method for seismic data modeling and migration
SG193232A1 (en) 2011-03-30 2013-10-30 Exxonmobil Upstream Res Co Convergence rate of full wavefield inversion using spectral shaping
US9158018B2 (en) 2011-04-05 2015-10-13 Westerngeco L.L.C. Waveform inversion using a response of forward modeling
US9176930B2 (en) 2011-11-29 2015-11-03 Exxonmobil Upstream Research Company Methods for approximating hessian times vector operation in full wavefield inversion
SG11201404094RA (en) 2012-03-08 2014-10-30 Exxonmobil Upstream Res Co Orthogonal source and receiver encoding
US20130311149A1 (en) * 2012-05-17 2013-11-21 Yaxun Tang Tomographically Enhanced Full Wavefield Inversion
JP2014063551A (ja) 2012-09-21 2014-04-10 Toshiba Corp 半導体記憶装置
US10317548B2 (en) 2012-11-28 2019-06-11 Exxonmobil Upstream Research Company Reflection seismic data Q tomography
US9103935B2 (en) * 2013-02-04 2015-08-11 King Fahd University Of Petroleum And Minerals Method of first arrival picking of seismic refraction data
US9823369B2 (en) 2013-02-28 2017-11-21 Cgg Services Sas System and method for correcting near surface statics by using internal multiples prediction
CA2909105C (en) 2013-05-24 2018-08-28 Ke Wang Multi-parameter inversion through offset dependent elastic fwi
US10459117B2 (en) 2013-06-03 2019-10-29 Exxonmobil Upstream Research Company Extended subspace method for cross-talk mitigation in multi-parameter inversion
US9702998B2 (en) 2013-07-08 2017-07-11 Exxonmobil Upstream Research Company Full-wavefield inversion of primaries and multiples in marine environment
DK3036566T3 (en) 2013-08-23 2018-07-23 Exxonmobil Upstream Res Co SIMILAR SOURCE APPLICATION DURING BOTH SEISMIC COLLECTION AND SEISMIC INVERSION
US10036818B2 (en) 2013-09-06 2018-07-31 Exxonmobil Upstream Research Company Accelerating full wavefield inversion with nonstationary point-spread functions
GB2509223B (en) 2013-10-29 2015-03-18 Imp Innovations Ltd Method of, and apparatus for, full waveform inversion
EP3092511A4 (en) * 2014-01-10 2017-11-29 CGG Services (U.S.) Inc. Device and method for mitigating cycle-skipping in full waveform inversion
US10345470B2 (en) * 2014-01-13 2019-07-09 Cgg Services Sas Device and method for deghosting seismic data using sparse tau-p inversion
US9910189B2 (en) * 2014-04-09 2018-03-06 Exxonmobil Upstream Research Company Method for fast line search in frequency domain FWI
US9977142B2 (en) 2014-05-09 2018-05-22 Exxonmobil Upstream Research Company Efficient line search methods for multi-parameter full wavefield inversion
US10185046B2 (en) 2014-06-09 2019-01-22 Exxonmobil Upstream Research Company Method for temporal dispersion correction for seismic simulation, RTM and FWI
AU2015280633B2 (en) 2014-06-17 2018-07-19 Exxonmobil Upstream Research Company Fast viscoacoustic and viscoelastic full-wavefield inversion
US10838092B2 (en) 2014-07-24 2020-11-17 Exxonmobil Upstream Research Company Estimating multiple subsurface parameters by cascaded inversion of wavefield components
US10422899B2 (en) * 2014-07-30 2019-09-24 Exxonmobil Upstream Research Company Harmonic encoding for FWI
US10386511B2 (en) 2014-10-03 2019-08-20 Exxonmobil Upstream Research Company Seismic survey design using full wavefield inversion
AU2015337108B2 (en) 2014-10-20 2018-03-01 Exxonmobil Upstream Research Company Velocity tomography using property scans
EP3209859B1 (en) 2014-10-24 2021-04-28 Schlumberger Technology B.V. Travel-time objective function for full waveform inversion
AU2015363241A1 (en) 2014-12-18 2017-06-29 Exxonmobil Upstream Research Company Scalable scheduling of parallel iterative seismic jobs
US10520618B2 (en) * 2015-02-04 2019-12-31 ExxohnMobil Upstream Research Company Poynting vector minimal reflection boundary conditions
AU2015382333B2 (en) 2015-02-13 2018-01-04 Exxonmobil Upstream Research Company Efficient and stable absorbing boundary condition in finite-difference calculations
MX2017007988A (es) 2015-02-17 2017-09-29 Exxonmobil Upstream Res Co Proceso de inversion de campo ondulatorio completo de multifase que genera un conjunto de datos libres de multiples.
GB2538807B (en) * 2015-05-29 2019-05-15 Sub Salt Solutions Ltd Method for improved geophysical investigation
EP3304133A1 (en) 2015-06-04 2018-04-11 Exxonmobil Upstream Research Company Method for generating multiple free seismic images
US10838093B2 (en) 2015-07-02 2020-11-17 Exxonmobil Upstream Research Company Krylov-space-based quasi-newton preconditioner for full-wavefield inversion
US10621266B2 (en) * 2015-08-25 2020-04-14 Saudi Arabian Oil Company Three-dimensional elastic frequency-domain iterative solver for full waveform inversion
AU2016331881B8 (en) 2015-10-02 2019-07-18 Exxonmobil Upstream Research Company Q-compensated full wavefield inversion
MX2018003495A (es) 2015-10-15 2018-06-06 Exxonmobil Upstream Res Co Apilados angulares de dominio de modelo de fwi con conservacion de amplitud.
US10768324B2 (en) 2016-05-19 2020-09-08 Exxonmobil Upstream Research Company Method to predict pore pressure and seal integrity using full wavefield inversion
US10908305B2 (en) 2017-06-08 2021-02-02 Total Sa Method for evaluating a geophysical survey acquisition geometry over a region of interest, related process, system and computer program product
US11048001B2 (en) 2018-03-30 2021-06-29 Cgg Services Sas Methods using travel-time full waveform inversion for imaging subsurface formations with salt bodies
CN110415721B (zh) * 2018-04-28 2022-02-01 华为技术有限公司 一种计算截止频率的方法及装置
CN110095773B (zh) * 2019-06-03 2022-11-01 中南大学 探地雷达多尺度全波形双参数反演方法
GB2600319B (en) * 2019-08-26 2023-08-02 Landmark Graphics Corp Building scalable geological property models using machine learning algorithms
CN113239505B (zh) * 2020-11-27 2023-01-24 北京航空航天大学 一种基于改进最优估计的大气痕量气体反演方法
US11467299B2 (en) 2020-12-16 2022-10-11 Saudi Arabian Oil Company Full waveform inversion velocity guided first arrival picking
CN112883558B (zh) * 2021-01-27 2022-04-26 长江水利委员会水文局 一种水文模型参数时变形式构造方法
CN113391315B (zh) * 2021-06-11 2023-03-21 中国人民解放军国防科技大学 基于电磁波抛物方程伴随模式的雷达回波资料反演大气波导的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1040099A (zh) * 1987-11-01 1990-02-28 大庆石油管理局地球物理勘探公司 地震勘探烃类检测方法
WO2008042081A1 (en) * 2006-09-28 2008-04-10 Exxonmobil Upstream Research Company Iterative inversion of data from simultaneous geophysical sources
US20090187391A1 (en) * 2008-01-23 2009-07-23 Schlumberger Technology Corporation Three-dimensional mechanical earth modeling
WO2009117174A1 (en) * 2008-03-21 2009-09-24 Exxonmobil Upstream Research Company An efficient method for inversion of geophysical data

Family Cites Families (131)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3812457A (en) 1969-11-17 1974-05-21 Shell Oil Co Seismic exploration method
US3864667A (en) 1970-09-11 1975-02-04 Continental Oil Co Apparatus for surface wave parameter determination
US3984805A (en) 1973-10-18 1976-10-05 Daniel Silverman Parallel operation of seismic vibrators without phase control
US4168485A (en) 1974-08-12 1979-09-18 Continental Oil Company Simultaneous use of pseudo-random control signals in vibrational exploration methods
US4041443A (en) * 1976-06-01 1977-08-09 Western Geophysical Co. Of America Seismic recording apparatus having a time-varying sample
US4545039A (en) 1982-09-09 1985-10-01 Western Geophysical Co. Of America Methods for seismic exploration
US4675851A (en) 1982-09-09 1987-06-23 Western Geophysical Co. Method for seismic exploration
US4575830A (en) 1982-10-15 1986-03-11 Schlumberger Technology Corporation Indirect shearwave determination
US4562540A (en) 1982-11-12 1985-12-31 Schlumberger Technology Corporation Diffraction tomography system and methods
US4594662A (en) 1982-11-12 1986-06-10 Schlumberger Technology Corporation Diffraction tomography systems and methods with fixed detector arrays
JPS59189278A (ja) * 1983-03-23 1984-10-26 橋本電機工業株式会社 ウイケツト型平板乾燥機
FR2543306B1 (fr) 1983-03-23 1985-07-26 Elf Aquitaine Procede et dispositif pour l'optimisation des donnees sismiques
JPS606032A (ja) * 1983-06-22 1985-01-12 Honda Motor Co Ltd 内燃エンジンの作動状態制御方法
US4924390A (en) 1985-03-04 1990-05-08 Conoco, Inc. Method for determination of earth stratum elastic parameters using seismic energy
US4715020A (en) 1986-10-29 1987-12-22 Western Atlas International, Inc. Simultaneous performance of multiple seismic vibratory surveys
FR2589587B1 (fr) 1985-10-30 1988-02-05 Inst Francais Du Petrole Procede de prospection sismique marine utilisant un signal vibratoire code et dispositif pour sa mise en oeuvre
US4707812A (en) 1985-12-09 1987-11-17 Atlantic Richfield Company Method of suppressing vibration seismic signal correlation noise
US4823326A (en) 1986-07-21 1989-04-18 The Standard Oil Company Seismic data acquisition technique having superposed signals
US4686654A (en) 1986-07-31 1987-08-11 Western Geophysical Company Of America Method for generating orthogonal sweep signals
US4766574A (en) 1987-03-31 1988-08-23 Amoco Corporation Method for depth imaging multicomponent seismic data
US4953657A (en) 1987-11-30 1990-09-04 Halliburton Geophysical Services, Inc. Time delay source coding
US4969129A (en) 1989-09-20 1990-11-06 Texaco Inc. Coding seismic sources
US4982374A (en) 1989-10-23 1991-01-01 Halliburton Geophysical Services, Inc. Method of source coding and harmonic cancellation for vibrational geophysical survey sources
GB9011836D0 (en) 1990-05-25 1990-07-18 Mason Iain M Seismic surveying
US5469062A (en) 1994-03-11 1995-11-21 Baker Hughes, Inc. Multiple depths and frequencies for simultaneous inversion of electromagnetic borehole measurements
GB2293010B (en) 1994-07-07 1998-12-09 Geco As Method of processing seismic data
US5583825A (en) 1994-09-02 1996-12-10 Exxon Production Research Company Method for deriving reservoir lithology and fluid content from pre-stack inversion of seismic data
US5924049A (en) 1995-04-18 1999-07-13 Western Atlas International, Inc. Methods for acquiring and processing seismic data
WO1996033425A1 (en) 1995-04-18 1996-10-24 Western Atlas International, Inc. Uniform subsurface coverage at steep dips
US5721710A (en) 1995-09-29 1998-02-24 Atlantic Richfield Company High fidelity vibratory source seismic method with source separation
US5719821A (en) 1995-09-29 1998-02-17 Atlantic Richfield Company Method and apparatus for source separation of seismic vibratory signals
US5715213A (en) 1995-11-13 1998-02-03 Mobil Oil Corporation High fidelity vibratory source seismic method using a plurality of vibrator sources
US5822269A (en) 1995-11-13 1998-10-13 Mobil Oil Corporation Method for separation of a plurality of vibratory seismic energy source signals
US5790473A (en) 1995-11-13 1998-08-04 Mobil Oil Corporation High fidelity vibratory source seismic method for use in vertical seismic profile data gathering with a plurality of vibratory seismic energy sources
US5838634A (en) 1996-04-04 1998-11-17 Exxon Production Research Company Method of generating 3-D geologic models incorporating geologic and geophysical constraints
US5798982A (en) 1996-04-29 1998-08-25 The Trustees Of Columbia University In The City Of New York Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models
GB9612471D0 (en) 1996-06-14 1996-08-14 Geco As Method and apparatus for multiple seismic vibratory surveys
US5878372A (en) 1997-03-04 1999-03-02 Western Atlas International, Inc. Method for simultaneous inversion processing of well log data using a plurality of earth models
US6014342A (en) 1997-03-21 2000-01-11 Tomo Seis, Inc. Method of evaluating a subsurface region using gather sensitive data discrimination
US5999489A (en) 1997-03-21 1999-12-07 Tomoseis Inc. High vertical resolution crosswell seismic imaging
US5920828A (en) 1997-06-02 1999-07-06 Baker Hughes Incorporated Quality control seismic data processing system
US5920838A (en) * 1997-06-02 1999-07-06 Carnegie Mellon University Reading and pronunciation tutor
FR2765692B1 (fr) 1997-07-04 1999-09-10 Inst Francais Du Petrole Methode pour modeliser en 3d l'impedance d'un milieu heterogene
GB2329043B (en) 1997-09-05 2000-04-26 Geco As Method of determining the response caused by model alterations in seismic simulations
US5999488A (en) 1998-04-27 1999-12-07 Phillips Petroleum Company Method and apparatus for migration by finite differences
US6219621B1 (en) 1998-06-30 2001-04-17 Exxonmobil Upstream Research Co. Sparse hyperbolic inversion of seismic data
US6388947B1 (en) 1998-09-14 2002-05-14 Tomoseis, Inc. Multi-crosswell profile 3D imaging and method
US6574564B2 (en) 1998-10-01 2003-06-03 Institut Francais Du Petrole 3D prestack seismic data migration method
FR2784195B1 (fr) 1998-10-01 2000-11-17 Inst Francais Du Petrole Methode pour realiser en 3d avant sommation, une migration de donnees sismiques
US6225803B1 (en) 1998-10-29 2001-05-01 Baker Hughes Incorporated NMR log processing using wavelet filter and iterative inversion
US6021094A (en) 1998-12-03 2000-02-01 Sandia Corporation Method of migrating seismic records
US6754588B2 (en) * 1999-01-29 2004-06-22 Platte River Associates, Inc. Method of predicting three-dimensional stratigraphy using inverse optimization techniques
CA2362285C (en) 1999-02-12 2005-06-14 Schlumberger Canada Limited Uncertainty constrained subsurface modeling
US6058073A (en) 1999-03-30 2000-05-02 Atlantic Richfield Company Elastic impedance estimation for inversion of far offset seismic sections
FR2792419B1 (fr) 1999-04-16 2001-09-07 Inst Francais Du Petrole Methode pour obtenir un modele optimal d'une caracteristique physique dans un milieu heterogene, tel que le sous-sol
GB9927395D0 (en) 1999-05-19 2000-01-19 Schlumberger Holdings Improved seismic data acquisition method
US6327537B1 (en) 1999-07-19 2001-12-04 Luc T. Ikelle Multi-shooting approach to seismic modeling and acquisition
FR2798197B1 (fr) 1999-09-02 2001-10-05 Inst Francais Du Petrole Methode pour former un modele d'une formation geologique, contraint par des donnees dynamiques et statiques
DE69932932D1 (de) 1999-10-22 2006-10-05 Jason Geosystems B V Verfahren zur Bestimmung der elastischen Parameter und Felszusammensetzung von unterirdischen Formationen mit Hilfe von seismischen Daten
FR2800473B1 (fr) 1999-10-29 2001-11-30 Inst Francais Du Petrole Methode pour modeliser en 2d ou 3d un milieu heterogene tel que le sous-sol decrit par plusieurs parametres physiques
US6480790B1 (en) 1999-10-29 2002-11-12 Exxonmobil Upstream Research Company Process for constructing three-dimensional geologic models having adjustable geologic interfaces
AU779802B2 (en) 2000-01-21 2005-02-10 Schlumberger Holdings Limited System and method for seismic wavefield separation
CN1188710C (zh) 2000-01-21 2005-02-09 施鲁博格控股有限公司 估算地震介质特性的系统和方法
US6826486B1 (en) 2000-02-11 2004-11-30 Schlumberger Technology Corporation Methods and apparatus for predicting pore and fracture pressures of a subsurface formation
FR2805051B1 (fr) 2000-02-14 2002-12-06 Geophysique Cie Gle Methode de surveillance sismique d'une zone souterraine par utilisation simultanee de plusieurs sources vibrosismiques
GB2359363B (en) 2000-02-15 2002-04-03 Geco Prakla Processing simultaneous vibratory seismic data
US6687659B1 (en) 2000-03-24 2004-02-03 Conocophillips Company Method and apparatus for absorbing boundary conditions in numerical finite-difference acoustic applications
US6317695B1 (en) 2000-03-30 2001-11-13 Nutec Sciences, Inc. Seismic data processing method
US6687619B2 (en) 2000-10-17 2004-02-03 Westerngeco, L.L.C. Method of using cascaded sweeps for source coding and harmonic cancellation
US20020120429A1 (en) 2000-12-08 2002-08-29 Peter Ortoleva Methods for modeling multi-dimensional domains using information theory to resolve gaps in data and in theories
FR2818753B1 (fr) 2000-12-21 2003-03-21 Inst Francais Du Petrole Methode et dispositif de prospection sismique par emission simultanee de signaux sismisques obtenus en codant un signal par des sequences pseudo aleatoires
FR2821677B1 (fr) 2001-03-05 2004-04-30 Geophysique Cie Gle Perfectionnements aux procedes d'inversion tomographique d'evenements pointes sur les donnees sismiques migrees
US6751558B2 (en) 2001-03-13 2004-06-15 Conoco Inc. Method and process for prediction of subsurface fluid and rock pressures in the earth
US6927698B2 (en) 2001-08-27 2005-08-09 Larry G. Stolarczyk Shuttle-in receiver for radio-imaging underground geologic structures
US6545944B2 (en) 2001-05-30 2003-04-08 Westerngeco L.L.C. Method for acquiring and processing of data from two or more simultaneously fired sources
US6882958B2 (en) * 2001-06-28 2005-04-19 National Instruments Corporation System and method for curve fitting using randomized techniques
GB2379013B (en) 2001-08-07 2005-04-20 Abb Offshore Systems Ltd Microseismic signal processing
US6593746B2 (en) * 2001-08-27 2003-07-15 Larry G. Stolarczyk Method and system for radio-imaging underground geologic structures
US7672824B2 (en) * 2001-12-10 2010-03-02 Westerngeco L.L.C. Method for shallow water flow detection
US7069149B2 (en) 2001-12-14 2006-06-27 Chevron U.S.A. Inc. Process for interpreting faults from a fault-enhanced 3-dimensional seismic attribute volume
US7330799B2 (en) 2001-12-21 2008-02-12 Société de commercialisation des produits de la recherche appliquée-Socpra Sciences et Génie s.e.c. Method and algorithm for using surface waves
US6842701B2 (en) 2002-02-25 2005-01-11 Westerngeco L.L.C. Method of noise removal for cascaded sweep data
GB2387226C (en) 2002-04-06 2008-05-12 Westerngeco Ltd A method of seismic surveying
FR2839368B1 (fr) 2002-05-06 2004-10-01 Total Fina Elf S A Methode de decimation de traces sismiques pilotee par le trajet sismique
US6832159B2 (en) 2002-07-11 2004-12-14 Schlumberger Technology Corporation Intelligent diagnosis of environmental influence on well logs with model-based inversion
FR2843202B1 (fr) 2002-08-05 2004-09-10 Inst Francais Du Petrole Methode pour former un modele representatif de la distribution d'une grandeur physique dans une zone souterraine, affranchi de l'effet de bruits correles entachant des donnees d'exploration
AU2003279870A1 (en) 2002-10-04 2004-05-04 Paradigm Geophysical Corporation Method and system for limited frequency seismic imaging
GB2396448B (en) 2002-12-21 2005-03-02 Schlumberger Holdings System and method for representing and processing and modeling subterranean surfaces
US7027927B2 (en) * 2002-12-23 2006-04-11 Schlumberger Technology Corporation Methods for determining formation and borehole parameters using fresnel volume tomography
US6735527B1 (en) 2003-02-26 2004-05-11 Landmark Graphics Corporation 3-D prestack/poststack multiple prediction
US6999880B2 (en) 2003-03-18 2006-02-14 The Regents Of The University Of California Source-independent full waveform inversion of seismic data
WO2004095072A2 (en) 2003-03-27 2004-11-04 Exxonmobil Upstream Research Company Method to convert seismic traces into petrophysical property logs
CA2520640C (en) 2003-04-01 2012-10-23 Exxonmobil Upstream Research Company Shaped high frequency vibratory source
US7072767B2 (en) 2003-04-01 2006-07-04 Conocophillips Company Simultaneous inversion for source wavelet and AVO parameters from prestack seismic data
NO322089B1 (no) 2003-04-09 2006-08-14 Norsar V Daglig Leder Fremgangsmate for simulering av lokale prestakk dypmigrerte seismiske bilder
GB2400438B (en) 2003-04-11 2005-06-01 Westerngeco Ltd Determination of waveguide parameters
US6970397B2 (en) 2003-07-09 2005-11-29 Gas Technology Institute Determination of fluid properties of earth formations using stochastic inversion
US6882938B2 (en) 2003-07-30 2005-04-19 Pgs Americas, Inc. Method for separating seismic signals from two or more distinct sources
US6944546B2 (en) 2003-10-01 2005-09-13 Halliburton Energy Services, Inc. Method and apparatus for inversion processing of well logging data in a selected pattern space
US6901333B2 (en) 2003-10-27 2005-05-31 Fugro N.V. Method and device for the generation and application of anisotropic elastic parameters
US7046581B2 (en) 2003-12-01 2006-05-16 Shell Oil Company Well-to-well tomography
US20050128874A1 (en) 2003-12-15 2005-06-16 Chevron U.S.A. Inc. Methods for acquiring and processing seismic data from quasi-simultaneously activated translating energy sources
FR2872584B1 (fr) 2004-06-30 2006-08-11 Inst Francais Du Petrole Methode pour simuler le depot sedimentaire dans un bassin respectant les epaisseurs des sequences sedimentaires
US7646924B2 (en) 2004-08-09 2010-01-12 David Leigh Donoho Method and apparatus for compressed sensing
US7480206B2 (en) 2004-09-13 2009-01-20 Chevron U.S.A. Inc. Methods for earth modeling and seismic imaging using interactive and selective updating
GB2422433B (en) 2004-12-21 2008-03-19 Sondex Wireline Ltd Method and apparatus for determining the permeability of earth formations
US7373251B2 (en) 2004-12-22 2008-05-13 Marathon Oil Company Method for predicting quantitative values of a rock or fluid property in a reservoir using seismic data
US7230879B2 (en) 2005-02-12 2007-06-12 Chevron U.S.A. Inc. Method and apparatus for true relative amplitude correction of seismic data for normal moveout stretch effects
WO2006090374A2 (en) 2005-02-22 2006-08-31 Paradigm Geophysical Ltd. Multiple suppression in angle domain time and depth migration
US7840625B2 (en) 2005-04-07 2010-11-23 California Institute Of Technology Methods for performing fast discrete curvelet transforms of data
WO2006122146A2 (en) 2005-05-10 2006-11-16 William Marsh Rice University Method and apparatus for distributed compressed sensing
US7376517B2 (en) * 2005-05-13 2008-05-20 Chevron U.S.A. Inc. Method for estimation of interval seismic quality factor
EP1941386A4 (en) * 2005-10-18 2010-03-17 Sinvent As IMAGING OF GEOLOGICAL RESPONSES DATA WITH FLOW PROCESSORS
AU2006235820B2 (en) 2005-11-04 2008-10-23 Westerngeco Seismic Holdings Limited 3D pre-stack full waveform inversion
FR2895091B1 (fr) * 2005-12-21 2008-02-22 Inst Francais Du Petrole Methode pour mettre a jour un modele geologique par des donnees sismiques
GB2436626B (en) 2006-03-28 2008-08-06 Westerngeco Seismic Holdings Method of evaluating the interaction between a wavefield and a solid body
US7620534B2 (en) 2006-04-28 2009-11-17 Saudi Aramco Sound enabling computerized system for real time reservoir model calibration using field surveillance data
US20070274155A1 (en) 2006-05-25 2007-11-29 Ikelle Luc T Coding and Decoding: Seismic Data Modeling, Acquisition and Processing
US7725266B2 (en) 2006-05-31 2010-05-25 Bp Corporation North America Inc. System and method for 3D frequency domain waveform inversion based on 3D time-domain forward modeling
US7599798B2 (en) 2006-09-11 2009-10-06 Westerngeco L.L.C. Migrating composite seismic response data to produce a representation of a seismic volume
EP2104869B1 (en) 2007-01-20 2012-01-25 Spectraseis AG Time reverse reservoir localization
JP2009063942A (ja) 2007-09-10 2009-03-26 Sumitomo Electric Ind Ltd 遠赤外線カメラ用レンズ、レンズユニット及び撮像装置
US20090070042A1 (en) 2007-09-11 2009-03-12 Richard Birchwood Joint inversion of borehole acoustic radial profiles for in situ stresses as well as third-order nonlinear dynamic moduli, linear dynamic elastic moduli, and static elastic moduli in an isotropically stressed reference state
US20090083006A1 (en) * 2007-09-20 2009-03-26 Randall Mackie Methods and apparatus for three-dimensional inversion of electromagnetic data
US20090164186A1 (en) 2007-12-20 2009-06-25 Bhp Billiton Innovation Pty Ltd. Method for determining improved estimates of properties of a model
EP2105765A1 (en) 2008-03-28 2009-09-30 Schlumberger Holdings Limited Simultaneous inversion of induction data for dielectric permittivity and electric conductivity
US8494777B2 (en) 2008-04-09 2013-07-23 Schlumberger Technology Corporation Continuous microseismic mapping for real-time 3D event detection and location
US8345510B2 (en) 2008-06-02 2013-01-01 Pgs Geophysical As Method for aquiring and processing marine seismic data to extract and constructively use the up-going and down-going wave-fields emitted by the source(s)
CN102124374B (zh) * 2008-08-15 2013-07-17 Bp北美公司 用于分离单独的同时震源的方法
US20100054082A1 (en) * 2008-08-29 2010-03-04 Acceleware Corp. Reverse-time depth migration with reduced memory requirements
US20100142316A1 (en) 2008-12-07 2010-06-10 Henk Keers Using waveform inversion to determine properties of a subsurface medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1040099A (zh) * 1987-11-01 1990-02-28 大庆石油管理局地球物理勘探公司 地震勘探烃类检测方法
WO2008042081A1 (en) * 2006-09-28 2008-04-10 Exxonmobil Upstream Research Company Iterative inversion of data from simultaneous geophysical sources
US20090187391A1 (en) * 2008-01-23 2009-07-23 Schlumberger Technology Corporation Three-dimensional mechanical earth modeling
WO2009117174A1 (en) * 2008-03-21 2009-09-24 Exxonmobil Upstream Research Company An efficient method for inversion of geophysical data

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103207409A (zh) * 2013-04-17 2013-07-17 中国海洋石油总公司 一种频率域全波形反演地震速度建模方法
CN103207409B (zh) * 2013-04-17 2016-01-06 中国海洋石油总公司 一种频率域全波形反演地震速度建模方法
CN109478208A (zh) * 2016-05-23 2019-03-15 沙特阿拉伯石油公司 用于石油勘探和生产评估的综合数据和过程集成的迭代且可重复的工作流程
CN109478208B (zh) * 2016-05-23 2023-09-19 沙特阿拉伯石油公司 用于石油勘探和生产评估的综合数据和过程集成的迭代且可重复的工作流程
CN109586688A (zh) * 2018-12-07 2019-04-05 桂林电子科技大学 基于迭代计算的时变可分非下采样图滤波器组的设计方法
CN109586688B (zh) * 2018-12-07 2022-10-18 桂林电子科技大学 基于迭代计算的时变可分非下采样图滤波器组的设计方法
CN110471106A (zh) * 2019-09-20 2019-11-19 西南石油大学 一种基于滤波器设计的时移地震反演方法

Also Published As

Publication number Publication date
WO2011123197A1 (en) 2011-10-06
CA2789714C (en) 2016-07-26
EP2553601A1 (en) 2013-02-06
US8223587B2 (en) 2012-07-17
AU2011233680B2 (en) 2016-01-07
AU2011233680A1 (en) 2012-10-11
EP2553601B1 (en) 2019-05-01
CN102918521B (zh) 2016-05-18
SG183794A1 (en) 2012-10-30
MY156075A (en) 2016-01-15
BR112012019562A2 (pt) 2020-08-18
EA201290773A1 (ru) 2013-03-29
CA2789714A1 (en) 2011-10-06
US20110238390A1 (en) 2011-09-29
KR20130054236A (ko) 2013-05-24
EA028104B1 (ru) 2017-10-31
KR101797450B1 (ko) 2017-11-14
EP2553601A4 (en) 2017-11-22

Similar Documents

Publication Publication Date Title
CN102918521A (zh) 使用时变滤波器的全波场反演
Anemangely et al. Machine learning technique for the prediction of shear wave velocity using petrophysical logs
Anemangely et al. Shear wave travel time estimation from petrophysical logs using ANFIS-PSO algorithm: A case study from Ab-Teymour Oilfield
Li et al. Quantifying stratigraphic uncertainties by stochastic simulation techniques based on Markov random field
Duputel et al. Accounting for prediction uncertainty when inferring subsurface fault slip
Kreimer et al. Tensor completion based on nuclear norm minimization for 5D seismic data reconstruction
Aghamiry et al. Implementing bound constraints and total-variation regularization in extended full-waveform inversion with the alternating direction method of multiplier: Application to large contrast media
Minson et al. Bayesian inversion for finite fault earthquake source models I—Theory and algorithm
Zhang et al. Multiparameter elastic full waveform inversion with facies-based constraints
Zhu et al. Building good starting models for full-waveform inversion using adaptive matching filtering misfit
Bodin et al. Seismic tomography with the reversible jump algorithm
Wellmann et al. Validating 3-D structural models with geological knowledge for improved uncertainty evaluations
SG173039A1 (en) Stochastic inversion of geophysical data for estimating earth model parameters
Zelt et al. Blind test of methods for obtaining 2-D near-surface seismic velocity models from first-arrival traveltimes
Aleardi Seismic velocity estimation from well log data with genetic algorithms in comparison to neural networks and multilinear approaches
Todaro et al. Ensemble smoother with multiple data assimilation for reverse flow routing
Kim et al. Highly efficient Bayesian joint inversion for receiver-based data and its application to lithospheric structure beneath the southern Korean Peninsula
Xu et al. Measuring higher mode surface wave dispersion using a transdimensional Bayesian approach
GB2510873A (en) Method of modelling a subsurface volume
Gadylshin et al. Optimization of the training dataset for numerical dispersion mitigation neural network
Li et al. Time-lapse full waveform inversion for subsurface flow problems with intelligent automatic differentiation
Coles et al. Toward efficient computation of the expected relative entropy for nonlinear experimental design
Sánchez‐Reyes et al. An evolutive linear kinematic source inversion
Ma et al. Research of step-length estimation methods for full waveform inversion in time domain
Esmailzadeh et al. Varying dimensional Bayesian acoustic waveform inversion for 1D semi-infinite heterogeneous media

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160518

Termination date: 20210221