CN102908984A - 分等级多孔金属氢氧化物-SiO2复合甲醛吸附剂及其制备方法 - Google Patents

分等级多孔金属氢氧化物-SiO2复合甲醛吸附剂及其制备方法 Download PDF

Info

Publication number
CN102908984A
CN102908984A CN2012104399492A CN201210439949A CN102908984A CN 102908984 A CN102908984 A CN 102908984A CN 2012104399492 A CN2012104399492 A CN 2012104399492A CN 201210439949 A CN201210439949 A CN 201210439949A CN 102908984 A CN102908984 A CN 102908984A
Authority
CN
China
Prior art keywords
formaldehyde
adsorbent
formaldehyde adsorbent
metal hydroxides
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012104399492A
Other languages
English (en)
Other versions
CN102908984B (zh
Inventor
余家国
徐志花
程蓓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201210439949.2A priority Critical patent/CN102908984B/zh
Publication of CN102908984A publication Critical patent/CN102908984A/zh
Application granted granted Critical
Publication of CN102908984B publication Critical patent/CN102908984B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

一种分等级多孔金属氢氧化物 -SiO 2 复合甲醛吸附剂及其制备方法,在油包水型乳液中,以水溶性金属盐、可溶性碱性物质和含有硅的前躯体为原料,在不断搅拌的过程中,通过水解-共沉积,然后经过干燥制得产品。本方法利用油包水型乳液,在20~70℃间,合成得到高度分散的分等级多孔金属氢氧化物-SiO2复合甲醛吸附剂。金属氢氧化物的质量含量在90wt%~20wt%之间,更优的含量在80wt%~40wt%之间。在室温条件下,所制备的金属氢氧化物-SiO2复合吸附剂对空气中的甲醛有非常大的吸附容量和快的吸附速率,多次再生使用中活性基本保持不变。该制备方法简单,易操作,且室温吸附甲醛速率快及吸附甲醛容量大。

Description

分等级多孔金属氢氧化物-SiO2复合甲醛吸附剂及其制备方法
技术领域
本发明涉及一种分等级多孔甲醛吸附剂及其制备方法,具体为一种分等级多孔金属氢氧化物-SiO2复合甲醛吸附剂及其制备方法。属于纳米材料和室内空气净化领域。
背景技术
甲醛是典型的室内污染物,其主要来自于建筑材料及室内装修材料等。在室内所使用的各种人造板材中由于使用了大量的脲醛胶和酚醛胶,其在很长时间内都会不断分解,从而造成了室内空气的污染。在较低浓度下,甲醛对人体健康的影响主要表现在刺激眼睛和呼吸道,造成胸闷和皮肤瘙痒,即病屋综合症(sick house syndrome)。在浓度大于15ppm时,甲醛会致人死亡。由于人的大部分时间是呆在室内场所的,如居住场所、工作场所、医院及学校等。因此,净化室内空气,去除甲醛污染已成为提高人们身体健康,改善人们生活环境的迫切任务。
目前,治理室内甲醛污染方法主要有异相催化和物理吸附法。其中,物理吸附法由于操作简单,无需外界条件而可以有效去除室内甲醛气体而受到关注。高锰酸钾、氧化铝以及一些陶瓷材料等都曾被研究作为甲醛气体的吸附剂。然而,较低的甲醛吸附容量阻止了这些吸附剂的广泛应用。近年来,具有大比表面积的多孔活性炭和二氧化硅也被用作去除甲醛气体的吸附剂。但是由于甲醛是一个典型的极性分子,其不能被多孔活性炭有效去除。目前,在多孔活性炭或二氧化硅表面进行功能化接枝胺基基团,是提高其吸附甲醛性能的一个重要途径。由于胺基可以作为Schiff碱,能与呈现酸性的甲醛作用,从而有效提高多孔活性炭或二氧化硅吸附甲醛的能力。然而,修饰有胺基的活性炭或二氧化硅不太稳定,尤其在高温下会放出氨气或含胺化合物而导致二次污染,因此,寻求高效、环境友好的甲醛吸附剂仍然具有十分重要的意义。
纳米材料比其本体块状材料具有更优异的性能,且其性能取决于微观颗粒尺寸大小和形状。近年来,人们对纳米材料的结构—性能间关系的研究十分感兴趣。纳米尺度颗粒的堆积及整个纳米结构间的协同作用对其用作吸附剂、催化剂及电极材料等的性能有较大的影响。例如,具有纳米尺度的颗粒可以导致较大的比表面积和较多的表面活性位;整个纳米颗粒的堆积(或有序排列)可以提供合适的多孔结构,从而有利于反应物或吸附质的传输。复合纳米材料由于单组份在纳米尺度的紧密接触,可能导致组份间的强烈相互作用,从而使得复合纳米材料的活性远远高于单个组份的活性,这为设计新型的复合催化剂、吸附剂等提供了重要思路。作为重要的过渡金属氢氧化物,Ni(OH)2被广泛应用在电极材料、催化剂和吸附剂等领域中。然而,目前分等级多孔Ni(OH)2-SiO2复合材料的合成,及将其用作去除甲醛气体的吸附剂的研究还鲜有报道。
发明内容
针对上述采用吸附法去除气体甲醛的问题及复合纳米材料的优点,本发明提供一种分等级多孔金属氢氧化物-SiO2复合甲醛吸附剂及其制备方法,该方法中合成温度相对较低,工艺简单,原料易得,并且合成的复合吸附剂分散度高,具有纳米尺寸,能够快速、有效地吸附甲醛气体。
为了实现本发明的目的,发明人通过大量试验研究,最终获得了如下技术方案:
一种甲醛吸附剂,其特征在于:该吸附剂为金属氢氧化物-SiO2复合物,呈分等级多孔结构,金属氢氧化物的质量含量在90wt%~20wt%之间,且呈现纳米颗粒状或纳米片状分散,该复合吸附剂的比表面积为大于或等于113m2/g,其中,所述的金属氢氧化物为镍氢氧化物、铁氢氧化物、铝氢氧化物、铜氢氧化物或铈氢氧化物。
本发明的甲醛吸附剂优选的金属氢氧化物的质量含量在80wt%~40wt%之间,且呈现纳米颗粒状或纳米片状分散。
本发明的甲醛吸附剂的制备方法,在油包水型乳液中,以水溶性金属盐、可溶性碱性物质和含有硅的前躯体为原料,在不断搅拌的过程中,通过水解-共沉积,然后经过干燥制得分等级多孔甲醛吸附剂;其中所述的油包水型乳液中:油性溶剂包括环己烷或正己烷中的一种或两种;表面活性剂包括分子量200-600聚乙二醇(PEG)、吐温20、吐温60、吐温80、丙三醇、司盘20中的一种或几种;所述的水溶性金属盐包括硝酸镍、硝酸铁、硝酸铝、硝酸铜、硝酸铈、氯化镍、氯化铁、氯化铝、氯化铜、醋酸镍、醋酸铜、硫酸镍、硫酸铝或硫酸铜;所述的可溶性碱性物质包括氨水、氢氧化钠或氢氧化钾;含有硅的前躯体包括碱金属硅酸盐或正硅酸乙酯。
本发明的甲醛吸附剂的制备方法,包括如下步骤:
(1)将表面活性剂在搅拌的作用下充分分散在油性溶剂中,其中油性溶剂与表面活性剂的体积比为5~20:1,搅拌0.1~0.5小时,得混合乳液;
(2)在步骤(1)的混合乳液中加入水溶性金属盐和可溶性碱性物质,水解得到金属氢氧化物,其中油性溶剂与水溶性金属盐和可溶性碱性物质水溶液体积比5~20:1;可溶性碱性物质与金属元素的摩尔比为1~20:1,继续搅拌0.5~6小时;
(3)在步骤(2)的混合液中,加入含有硅的前躯体,其中硅元素与金属元素的摩尔比为1~20:1,继续搅拌0.5~10小时,得共沉积的金属氢氧化物和SiO2复合物;
(4)将步骤(3)获得的共沉积的金属氢氧化物和SiO2复合物进行离心分离,然后在60~80℃下真空烘干,烘干时间为8~24小时;冷却后研磨得到分等级多孔金属氢氧化物-SiO2复合甲醛吸附剂。
上述的甲醛吸附剂的制备方法,其中步骤(1)优选油性溶剂与表面活性剂的体积比为10~15:1,在步骤(2)中油性溶剂与水溶性金属盐和可溶性碱性物质水溶液体积比10~15:1;可溶性碱性物质与金属元素的摩尔比为3~10:1,搅拌2~4小时;在步骤(3)中硅元素与金属元素的摩尔比为3~10:1,继续搅拌1~6小时。
上述的甲醛吸附剂的制备方法,其中步骤(2)和步骤(3)中所述的水溶性金属盐、可溶性碱性物质和含有硅的前躯体以溶液形式加入,并且是顺序加入。
上述的甲醛吸附剂的制备方法,其中在步骤(2)和(3)中反应温度范围为20~70°C之间。
上述的甲醛吸附剂的制备方法,所制得的样品中金属氢氧化物与SiO2的比例随着反应时间的增加而减少,金属氢氧化物的质量含量在90wt%~20wt%之间,优选含量在80wt%~40wt%之间,且呈现纳米颗粒状或纳米片状分散。
附图说明
图1为本发明实施例1所制备的样品的XRD谱图;
图2为本发明实施例1所制备的样品的SEM谱图;
图3为本发明实施例1所制备的样品的TEM谱图;
图4为本发明实施例1所制备的样品的等温吸附线及孔径分布图(插图);
图5为本发明实施例1中Ni(OH)2/SiO2和市售活性炭、沸石及所制备的SiO2吸附甲醛试验结果图;
图6为本发明实施例1中Ni(OH)2/SiO2和市售沸石吸附甲醛速率对比试验结果图。
具体实施方式
以下通过具体实施例,对本发明所涉及的分等级多孔金属氢氧化物-SiO2复合甲醛吸附剂的制备方法做进一步描述,但是本发明的保护范围并不限于这些实施例。凡是不背离本发明构思的改变或等同替代均包括在本发明的保护范围之内。
实施例1甲醛吸附剂的制备
(1)将PEG400在搅拌的作用下分散在环己烷中,在50°C下搅拌,使其充分分散均匀;
(2)在步骤(1)中依次加入硝酸镍水溶液和氨水(27wt%),其中加入的镍和氨水的摩尔比例为1:3,继续搅拌3小时;
(3)在步骤(2)的混合乳液中加入正硅酸乙酯,其中加入的硅和氨水的摩尔比例为1:3,继续搅拌4小时;
(4)将步骤(3)中获得的镍氢氧化物和SiO2复合物进行离心分离,然后在65°C下真空干燥12小时,冷却后研磨得到分等级多孔氢氧化镍和SiO2复合物甲醛吸附剂。
实施例1制备的产品的XRD、SEM、TEM、等温吸附线及孔径分布图分别如图1、图2、图3和图4所示。从图1中可知,该复合吸附剂是由结晶性不好或颗粒粒径较小的β-Ni(OH)2和SiO2组成;从图2、图3中可见,该复合吸附剂是由Ni(OH)2纳米片自组装成花状结构,SiO2纳米颗粒呈现絮状均匀分散在Ni(OH)2表面。图4可知,该复合吸附剂的比表面积为170m2/g,并且其孔结构是由微孔,介孔(主要是介孔)和大孔构成。结合图2、图3和图4可知,该复合吸附剂具有分等级多孔结构。镍氢氧化物的质量含量在50wt%。
实施例2
甲醛吸附剂的制备
(1)将PEG400在搅拌的作用下分散在环己烷中,在50°C下搅拌,使其充分分散均匀;
(2)在步骤(1)中依次加入Ni(NO3)2水溶液和氨水(27wt%),其中加入的镍和氨水的摩尔比例为1:3,继续搅拌3小时;
(3)在步骤(2)的混合乳液中加入正硅酸乙酯,其中加入的硅和氨水的摩尔比例为1:3,继续搅拌2小时;
(4)将步骤(3)中获得的镍氢氧化物和SiO2复合物进行离心分离,然后在65°C下真空干燥12小时,冷却后研磨得到分等级多孔氢氧化镍和SiO2复合物甲醛吸附剂。该复合吸附剂的比表面积为274m2/g。镍氢氧化物的质量含量在61wt%。
实施例3甲醛吸附剂的制备
(1)将PEG400在搅拌的作用下分散在环己烷中,在50°C下搅拌,使其充分分散均匀;
(2)在步骤(1)中依次加入Ni(NO3)2水溶液和氨水(27wt%),其中加入的镍和氨水的摩尔比例为1:3,继续搅拌3小时;
(3)在步骤(2)的混合乳液中加入正硅酸乙酯,其中加入的硅和氨水的摩尔比例为1:3,继续搅拌6小时;
(4)将步骤(3)中获得的镍氢氧化物和SiO2复合物进行离心分离,然后在65°C下真空干燥12小时,冷却后研磨得到分等级多孔氢氧化镍和SiO2复合物甲醛吸附剂。该复合吸附剂的比表面积为133m2/g。镍氢氧化物的质量含量在37wt%。
实施例4
甲醛吸附剂的制备
(1)将PEG400在搅拌的作用下分散在环己烷中,在50°C下搅拌,使其充分分散均匀;
(2)在步骤(1)中依次加入FeCl3水溶液和氨水(27wt%),其中加入的铁和氨水的摩尔比例为1:3,继续搅拌3小时;
(3)在步骤(2)的混合乳液中加入正硅酸乙酯,其中加入的硅和氨水的摩尔比例为1:3,继续搅拌3小时;
(4)将步骤(2)中获得铁氢氧化物和SiO2复合物进行离心分离,然后在65°C下真空干燥12小时,冷却后研磨得到分等级多孔水合铁和SiO2复合物甲醛吸附剂。该吸附剂的比表面积为408m2/g。水合铁的质量含量约在50wt%。
实施例5
甲醛吸附剂的制备
(1)将PEG400在搅拌的作用下分散在环己烷中,在50°C下搅拌,使其充分分散均匀;
(2)在步骤(1)中依次加入AlCl3水溶液和氨水(27wt%),其中加入的铝和氨水的摩尔比例为1:3,继续搅拌3小时;
(3)在步骤(2)的溶液中加入正硅酸乙酯,其中加入的硅和氨水的比例为1:3,继续搅拌3小时;
(4)将步骤(3)中获得铝氢氧化物和SiO2复合物进行离心分离,然后在65°C下真空干燥12小时,冷却后研磨得到分等级多孔铝氢氧化物和SiO2复合物甲醛吸附剂。该吸附剂的比表面积约为120m2/g。铝氢氧化物的质量含量约在50wt%。
实施例6
甲醛吸附剂试验
为考察本发明制备的吸附剂吸附甲醛效果,本发明人将实施例1-4中制备的吸附剂0.27g和实施例5中制备的吸附剂0.1g分散直径为14cm的表面皿中。测试过程如下:将装有吸附剂的表面皿置于5.9L的有机玻璃反应器中,反应前表面皿上有玻璃盖,反应器底部放置一个5W的风扇。将一定量的浓甲醛溶液注入反应器内,甲醛挥发直至浓度平衡,将玻璃盖移去,吸附剂与甲醛相互接触,甲醛的浓度变化通过多组分气体分析仪(INNOVA air TechInstruments Model 1412)在线监测。实施例1-5中吸附剂的活性数据见表1。实施例1中样品多次使用活性数据见表2。
对比例1
市售活性炭和沸石吸附甲醛试验
将0.27g市售活性炭和沸石与实施例6中甲醛吸附试验相同的步骤置于反应器中,市售活性炭、沸石、本发明实施例1中Ni(OH)2/SiO2和本实验室制备的SiO2吸附甲醛试验结果见图5。市售沸石和本发明实施例1中Ni(OH)2/SiO2吸附甲醛速率对比试验结果见图6。通过图5和图6可知,所制备的吸附剂的甲醛吸附容量大且吸附速率快,其性能明显优于活性炭或沸石。
表1为本发明实施例1-5中吸附剂的活性数据
Figure BDA00002367286200071
表1为实施例1-5中吸附剂比表面积和吸附甲醛的数据。表1中的甲醛吸附量的数据为吸附22分钟后(实施例1-4)和40分钟后(实施例5)平衡时的数据。从该数据可知,所制备的吸附剂吸附甲醛的效果与吸附剂本身的性质、Ni(OH)2/SiO2比例、比表面积和孔径大小等有关。结合实施例1和6及对比例1的结果,所制备的吸附剂对甲醛有很好的吸附效果。表2中的样品重复使用的数据说明在多次再生使用过程中,吸附剂吸附甲醛性能基本保持不变,吸附剂活性较稳定。
表2为本发明实施例1中吸附剂多次重复的活性数据
Figure BDA00002367286200072

Claims (10)

1.一种甲醛吸附剂,其特征在于:该吸附剂为金属氢氧化物-SiO2复合物,呈分等级多孔结构,金属氢氧化物的质量含量在90 wt%~20 wt%之间,且呈现纳米颗粒状或纳米片状分散,该复合吸附剂的比表面积为大于或等于113 m2/g,其中,所述的金属氢氧化物为镍氢氧化物、铁氢氧化物、铝氢氧化物、铜氢氧化物或铈氢氧化物。
2.如权利要求1所述的甲醛吸附剂,其特征在于:吸附剂中金属氢氧化物的质量含量在80 wt%~40 wt%之间,且呈现纳米颗粒状或纳米片状分散。
3.如权利要求1所述的一种甲醛吸附剂的制备方法,其特征在于:在油包水型乳液中,以水溶性金属盐、可溶性碱性物质和含有硅的前躯体为原料,在不断搅拌的过程中,通过水解-共沉积,然后经过干燥制得分等级多孔结构甲醛吸附剂;其中所述的油包水型乳液中:油性溶剂为环己烷或正己烷中的一种或两种;表面活性剂包括分子量200-600聚乙二醇、吐温20、吐温60、吐温80、丙三醇、司盘20中的一种或几种;所述的水溶性金属盐为硝酸镍、硝酸铁、硝酸铝、硝酸铜、硝酸铈、氯化镍、氯化铁、氯化铝、氯化铜、醋酸镍、醋酸铜、硫酸镍、硫酸铝或硫酸铜;所述的可溶性碱性物质包括氨水、氢氧化钠或氢氧化钾;含有硅的前躯体包括碱金属硅酸盐或正硅酸乙酯。
4.根据权利要求3所述的甲醛吸附剂的制备方法,其特征在于:包括如下步骤:
(1)将表面活性剂在搅拌的作用下充分分散在油性溶剂中,其中油性溶剂与表面活性剂的体积比为5~20:1,搅拌0.1~0.5小时,得混合乳液;
(2)在步骤(1)的混合乳液中加入水溶性金属盐和可溶性碱性物质,水解得到金属氢氧化物,其中油性溶剂与水溶性金属盐和可溶性碱性物质水溶液体积比5~20:1;可溶性碱性物质与金属元素的摩尔比为1~20:1,继续搅拌0.5~6小时;
(3)在步骤(2)的混合液中,加入含有硅的前躯体,其中硅元素与金属元素的摩尔比为1~20:1,继续搅拌0.5~10小时,得共沉积的金属氢氧化物和SiO2复合物;
(4)将步骤(3)获得的共沉积的金属氢氧化物和SiO2复合物进行离心分离,然后在60~80 ℃下真空烘干,烘干时间为8~24小时;冷却后研磨得到分等级多孔金属氢氧化物与SiO2复合甲醛吸附剂。
5.根据权利要求4所述的甲醛吸附剂的制备方法,其特征在于:油性溶剂与表面活性剂的体积比为10~15:1,在步骤(2)中油性溶剂与水溶性金属盐和可溶性碱性物质水溶液体积比10~15:1;可溶性碱性物质与金属元素的摩尔比为3~10:1,搅拌2~4小时。
6.根据权利要求4所述的甲醛吸附剂的制备方法,其特征在于:在步骤(3)中硅元素与金属元素的摩尔比为3~10:1,继续搅拌1~6小时。
7.根据权利要求4所述的甲醛吸附剂的制备方法,其特征在于:步骤(2)和步骤(3)中所述的水溶性金属盐、可溶性碱性物质和含有硅的前躯体以溶液形式加入,并且是顺序加入。
8.根据权利要求4所述的甲醛吸附剂的制备方法,其特征在于:在步骤(2)和(3)中反应温度范围为20~70℃之间。
9.根据权利要求4所述的甲醛吸附剂的制备方法,其特征在于:所获得的产品中金属氢氧化物与SiO2的比例随步骤(3)搅拌时间的延长而变小,金属氢氧化物的质量含量在90 wt%~20 wt%之间,且呈现纳米颗粒状或纳米片状分散。
10.根据权利要求4所述的甲醛吸附剂的制备方法,其特征在于:所获得的吸附剂样品中金属氢氧化物与SiO2的比例随步骤(3)搅拌时间的延长而变小,金属氢氧化物的质量含量在80 wt%~40 wt%之间,且呈现纳米颗粒状或纳米片状分散。
CN201210439949.2A 2012-11-07 2012-11-07 分等级多孔金属氢氧化物-SiO2复合甲醛吸附剂及其制备方法 Active CN102908984B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210439949.2A CN102908984B (zh) 2012-11-07 2012-11-07 分等级多孔金属氢氧化物-SiO2复合甲醛吸附剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210439949.2A CN102908984B (zh) 2012-11-07 2012-11-07 分等级多孔金属氢氧化物-SiO2复合甲醛吸附剂及其制备方法

Publications (2)

Publication Number Publication Date
CN102908984A true CN102908984A (zh) 2013-02-06
CN102908984B CN102908984B (zh) 2014-10-01

Family

ID=47607699

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210439949.2A Active CN102908984B (zh) 2012-11-07 2012-11-07 分等级多孔金属氢氧化物-SiO2复合甲醛吸附剂及其制备方法

Country Status (1)

Country Link
CN (1) CN102908984B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106345215A (zh) * 2016-08-17 2017-01-25 保护伞环保科技成都有限公司 一种除醛剂
CN107321351A (zh) * 2017-07-18 2017-11-07 沈阳化工大学 一种甲烷/二氧化碳重整反应的高效催化剂制备方法
CN111097422A (zh) * 2019-12-09 2020-05-05 广东省石油与精细化工研究院 一种除甲醛的催化剂及其制备方法和应用
US10906024B2 (en) 2015-03-23 2021-02-02 Basf Corporation Carbon dioxide sorbents for indoor air quality control
CN112811458A (zh) * 2021-01-27 2021-05-18 复旦大学 一种介孔稀土氢氧化物纳米材料及制备方法
US11229897B2 (en) 2016-02-12 2022-01-25 Basf Corporation Carbon dioxide sorbents for air quality control

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1673188A (zh) * 2005-03-03 2005-09-28 武汉理工大学 单分散二氧化硅与二氧化钛复合微球及制备方法
JP2005272170A (ja) * 2004-03-23 2005-10-06 National Institute For Materials Science 金属水酸化物/ゼオライト複合体及びその製造法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005272170A (ja) * 2004-03-23 2005-10-06 National Institute For Materials Science 金属水酸化物/ゼオライト複合体及びその製造法
CN1673188A (zh) * 2005-03-03 2005-09-28 武汉理工大学 单分散二氧化硅与二氧化钛复合微球及制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIAOGUANG MENG等: "MODELING CADMIUM AND SULFATE ADSORPTION BY Fe(OH)3/SiO2 MIXED OXIDES", 《WATER RESEARCH》 *
德温特数据库: "DE10224410A1德温特数据库摘要", 《DE10224410A1德温特数据库摘要 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10906024B2 (en) 2015-03-23 2021-02-02 Basf Corporation Carbon dioxide sorbents for indoor air quality control
US11229897B2 (en) 2016-02-12 2022-01-25 Basf Corporation Carbon dioxide sorbents for air quality control
CN106345215A (zh) * 2016-08-17 2017-01-25 保护伞环保科技成都有限公司 一种除醛剂
CN107321351A (zh) * 2017-07-18 2017-11-07 沈阳化工大学 一种甲烷/二氧化碳重整反应的高效催化剂制备方法
CN111097422A (zh) * 2019-12-09 2020-05-05 广东省石油与精细化工研究院 一种除甲醛的催化剂及其制备方法和应用
CN111097422B (zh) * 2019-12-09 2022-10-21 广东省石油与精细化工研究院 一种除甲醛的催化剂及其制备方法和应用
CN112811458A (zh) * 2021-01-27 2021-05-18 复旦大学 一种介孔稀土氢氧化物纳米材料及制备方法
CN112811458B (zh) * 2021-01-27 2021-11-19 复旦大学 一种介孔稀土氢氧化物纳米材料及制备方法

Also Published As

Publication number Publication date
CN102908984B (zh) 2014-10-01

Similar Documents

Publication Publication Date Title
CN102908984B (zh) 分等级多孔金属氢氧化物-SiO2复合甲醛吸附剂及其制备方法
CN104248985B (zh) 球形蒙脱石介孔复合载体和负载型催化剂及其制备方法和应用以及乙酸乙酯的制备方法
He et al. Hydrothermal preparation of boehmite nanorods by selective adsorption of sulfate
CN101804275B (zh) 纳米光触媒-活性炭纤维复合过滤介质
CN104248986B (zh) 球形凹凸棒石介孔复合载体和负载型催化剂及其制备方法和应用以及乙酸乙酯的制备方法
CN107096527A (zh) 一种常温高效催化氧化甲醛催化剂、制备方法及应用
Hou et al. High adsorption pearl‐necklace‐like composite membrane based on metal–organic framework for heavy metal ion removal
CN102895969A (zh) 一种甲醛室温氧化催化剂的制备方法
CN101884906B (zh) 具有吸附氮氧化物功能的改性蜂窝活性炭及其制备方法
Peng et al. Recent advances in the preparation and catalytic performance of Mn-based oxide catalysts with special morphologies for the removal of air pollutants
CN104474791B (zh) 有催化功能的微晶竹炭蜂窝陶质空气过滤板及其制备方法
CN104548926B (zh) 一种有机硫脱除工艺
CN112299436B (zh) 一种Cu-SSZ-39@SSZ-39核壳型分子筛及其制备方法和应用
CN105080529B (zh) 常温高效除VOCs催化材料
CN104148006B (zh) 一种用于脱除轻烃物料流中极性分子的吸附剂及其制备、再生方法
CN106890649A (zh) 一种负载型蜂窝陶瓷催化材料及制备方法
CN108939910B (zh) 一种催化氧化室内甲醛的贴膜及其制备和应用方法
CN112279266B (zh) 一种Cu-SSZ-13@SSZ-13核壳型分子筛及其制备方法和应用
CN104549146A (zh) 氧化铝修饰的多壁碳纳米管纳米复合材料及其制备方法和应用
Gong et al. Critical review of catalytic degradation of formaldehyde via MnO2: From the perspective of process intensification
CN107970877B (zh) 一种改性多孔氧化铝脱碳剂的制备方法
CN103382127A (zh) 一种复合陶瓷滤芯及其制备方法
Liu et al. Surfactant-aided hydrothermal synthesis and carbon dioxide adsorption behavior of three-dimensionally mesoporous calcium oxide single-crystallites with tri-, tetra-, and hexagonal morphologies
Zuo et al. Heat-treated Dolomite-palygorskite clay supported MnOx catalysts prepared by various methods for low temperature selective catalytic reduction (SCR) with NH3
CN107670632A (zh) 一种中温二氧化碳吸附剂及其制备和使用方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant