CN102900611B - 风力涡轮机扭矩-速度控制 - Google Patents

风力涡轮机扭矩-速度控制 Download PDF

Info

Publication number
CN102900611B
CN102900611B CN201210158289.0A CN201210158289A CN102900611B CN 102900611 B CN102900611 B CN 102900611B CN 201210158289 A CN201210158289 A CN 201210158289A CN 102900611 B CN102900611 B CN 102900611B
Authority
CN
China
Prior art keywords
blade
monitoring
wind turbine
tip speed
pitch angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210158289.0A
Other languages
English (en)
Other versions
CN102900611A (zh
Inventor
D·李
S·赫尔
K·U·克格勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Renovables Espana SL
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN102900611A publication Critical patent/CN102900611A/zh
Application granted granted Critical
Publication of CN102900611B publication Critical patent/CN102900611B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0276Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling rotor speed, e.g. variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/101Purpose of the control system to control rotational speed (n)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/32Wind speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/327Rotor or generator speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/328Blade pitch angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/335Output power or torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

本发明涉及用于操作风力涡轮机的方法和系统,在一些实施例中该风力涡轮机可以包括齿轮箱。该风力涡轮机设有叶片,叶片具有可调节的桨距角,并且监测叶片的尖端速度比(TSR)。在操作中,该方法和系统被配置成与TSR的增加同时地增加叶片的桨距角以将涡轮机的操作保持在叶片的被识别的高功率系数(Cp)操作区域内。可以通过监测叶片的尖端的速度、风速、叶片的转速或齿轮箱内的部件的转速中的一个来监测TSR。

Description

风力涡轮机扭矩-速度控制
技术领域
本发明总体上涉及风力涡轮机,并且更特别地涉及一种用于风力涡轮机的扭矩-速度控制的方法。
背景技术
风力涡轮机作为环境安全并且相对廉价的备选能源受到的关注增加。随着该关注的增长,已做出了相当大的努力来开发可靠并且高效的风力涡轮机。
通常,风力涡轮机包括具有多个叶片的转子。转子安装到外壳或机舱,所述外壳或机舱定位在桁架或管状塔架的顶部上。被设计成将电力提供给公用电网的实用级风力涡轮机可以具有大转子(例如,长度为30米或以上)。另外,风力涡轮机典型地安装在高度为至少60米的塔架上。这些转子上的叶片将风能转换为驱动一个或多个发电机的旋转扭矩或力,所述发电机可以通过齿轮箱旋转地联接到转子。齿轮箱提升发电机的涡轮机转子的固有低转速以将机械能高效地转换为电能,所述电能被馈送到公用电网。
风力涡轮机叶片在尺寸上不断地增加以便增加能量捕获。然而,当叶片在尺寸上增加时,控制最佳能量捕获也变得越来越困难。叶片负荷取决于风速、尖端速度比(TSR)和/或叶片的桨距设置。正如本领域的普通技术人员所理解,TSR是叶片尖端的转速与实际风速的比率。通常,重要的是,优化风力涡轮机的操作(包括叶片能量捕获)以减小所产生的能量的成本。叶片的桨距设置(即,翼型状叶片的迎角)提供在风力涡轮机控制中使用的参数中的一个。典型地,控制器被配置成:通过以提供来自风的增加或减小的能量转移(因此预期调节转子速度)的方式调节叶片桨距来调节毂的转速(即,转速),其中叶片围绕毂旋转。
可以从风提取的能量的大小基于许多因素,包括旋转叶片所覆盖的扫掠面积。这当然直接取决于叶片的长度,使得对于单独的涡轮机,提取能量的增加至少部分地取决于提供更长的叶片。
然而,不断增加涡轮机尺寸产生的一个问题是需要增加齿轮箱的扭矩处理能力。然而有利的是保持发电机扭矩低,使得也可以保持齿轮箱额定扭矩低并因此可以保持尺寸和成本低。
所以,需要一种用于操作风力涡轮机的方法,以允许在高功率系数(Cp)操作区域中操作更长时间,从而允许控制发电机扭矩极限。
发明内容
本发明的方面和优点将部分地在以下描述中进行阐述,或者可以从该描述变得明显,或者可以通过本发明的实施而获悉。
本发明涉及一种用于操作风力涡轮机的方法,该方法包括提供具有叶片的风力涡轮机,其中叶片具有可调节的桨距角,以及监测叶片的尖端速度比(TSR)。该方法也识别叶片的高功率系数(Cp)操作区域,并且与TSR的增加同时地增加叶片的桨距角以将涡轮机的操作保持在被识别的Cp区域内。在所选择的方法中,可以通过监测叶片的尖端的速度、风速或叶片的转速中的一个来监测TSR。
本发明也涉及一种用于限制与风力涡轮机关联的齿轮箱中的扭矩的方法。在这些方法中,提供具有叶片的风力涡轮机,其中叶片具有可调节的桨距角。将齿轮箱联接到风力涡轮机并且监测叶片的尖端速度比(TSR)。根据这样的方法,识别叶片的高功率系数(Cp)操作区域,并且与TSR的增加同时地增加叶片的桨距角以将涡轮机的操作保持在被识别的Cp区域内。
在所选择的这样的方法中,监测TSR包括监测叶片的尖端的速度、风速或叶片的转速中的一个。在其它实施例中,监测TSR包括监测齿轮箱的旋转部件的转速。
本发明也涉及一种用于控制风力涡轮机的操作的系统。在这样的系统中,提供具有叶片的风力涡轮机,同时提供被配置成监测叶片的尖端速度比(TSR)的传感器,其中叶片具有可调节的桨距角。与风力涡轮机关联的控制器被配置成导致叶片的桨距角与TSR的增加同时地增加以将涡轮机的操作保持在叶片的高功率系数(Cp)操作区域内。在本发明的这些实施例中,可以通过监测叶片的尖端的速度、风速或叶片的转速中的任何一个来监测TSR。在所选择的另外的实施例中,该系统也可以包括联接到风力涡轮机的齿轮箱。在这样的实施例中,可以通过监测齿轮箱部件的转速来监测TSR。
参考以下描述和附带的权利要求,本发明的这些和其它特征、方面和优点将变得更好理解。包含在该说明书中并且构成该说明书的一部分的附图示出了本发明的实施例,并且与该描述一起用于解释本发明的原理。
附图说明
参考附图,在说明书中阐述了本发明的针对本领域技术人员的完整和可实现的公开(包括其最佳模式),在附图中:
图1提供了风力涡轮机的典型操作功率曲线的图示;
图2示出了扭矩-速度曲线,示出了低扭矩要求和高扭矩要求之间的不同操作曲线;
图3是由以速度限幅操作的涡轮机产生的功率系数(Cp)图谱;
图4是由以扭矩限幅操作的涡轮机产生的功率系数(Cp)图谱;以及
图5是由根据本发明操作的涡轮机产生的功率系数(Cp)图谱,其中当尖端速度增加时控制桨距以将保持操作在高Cp区域。
图6是根据本发明的示例性风力涡轮机600的透视图。
附图标记的贯穿本说明书和附图的重复使用旨在表示本发明的相同或相似特征或元件。
附图标记列表:
具体实施方式
现在将详细地参考本发明的实施例,所述实施例的一个或多个例子在附图中示出。提供每个例子用于解释本发明而不是限制本发明。实际上,本领域的技术人员将显而易见的是,可以在本发明中进行各种修改和变化而不脱离本发明的范围或精神。例如,作为一个实施例的一部分示出或描述的特征可以用于另一个实施例以产生又一个实施例。因此,旨在:本发明涵盖属于附带的权利要求及其等效物的范围内的这样的修改和变化。
现在将详细地参考本风力涡轮机扭矩-速度控制方法和系统的当前优选实施例。现在参考附图,图1示出了风力涡轮机的典型操作功率曲线100。如通常所理解并且如图1中所示,风力涡轮机可以沿着操作线102操作,从风速为零的点“1”通过点“2”到达点“5”处的额定功率水平104。在到达额定功率水平104之后,增加的风速不会导致额外的涡轮机功率输出。
类似地,在转子速度和扭矩之间存在关系,如图2中所示的扭矩-速度曲线200所示。扭矩-速度曲线200示出了由不同叶片设计产生的不同操作曲线,其中沿着点1-2-5-6延伸的曲线202表示低扭矩要求设计,而沿着点1-3-4-5-6延伸的曲线204表示高扭矩要求设计。将注意到,低扭矩要求曲线202将在点“2”到达最大转子速度206,在这样的涡轮机在点“6”到达它的额定功率之前将在点“2”观察到速度限幅(speed clipping)。在另一方面,高扭矩要求曲线204将在点“4”到达它的最大扭矩并且因此在点“5”到达它的额定功率之前受到扭矩限幅(torque clipping)。本发明大体上涉及在该后一种情况下沿着曲线204的操作,其中风力涡轮机首先在额定功率之下到达最大扭矩极限,并且旨在即使用较低的发电机扭矩也能获得改善的总体性能。
现在参考图3和图4,图3和图4示出了一对功率系数(Cp)图谱300、400,图谱300、400示出了各种功率系数与尖端速度比(TSR)与桨距角的关系,其中图3的图谱由以速度限幅操作的涡轮机产生,而图4的图谱由以扭矩限幅操作的涡轮机产生。
大体上各种Cp水平在图3和图4中由轮廓线302、304、306、402、404、406表示,其中轮廓线302、402表示较高的Cp水平并且线304、404和之后的线306、406表示逐渐更低的Cp水平。本领域的普通技术人员将领会,各种轮廓线302、304、306、402、404、406取决于涡轮机叶片的具体设计。此外,通常优选的是,如果可能的话使涡轮机操作在最高Cp点,所述最高Cp点表示在图3中的点1-2-5和图4中的3-4。
回看图3表示以速度限幅操作的涡轮机系统。简单地返回参考图2,当在到达额定功率之前到达最大转子速度206时发生速度限幅。在该情况下,如图3中更一般地所示,为了到达额定功率,可以增加桨距角,但是这通常将导致较低的TSR。
在发生扭矩限幅的操作的情况下,如图4中所示,在点3-4的最大Cp仍然需要增加转子速度以到达额定功率,但是朝着点“6”相对快速地增加桨距角会产生在较高Cp区域402之外的操作。
现在参考图5,示出了由根据本发明操作的涡轮机产生的功率系数(Cp)图谱500。轮廓线506、504、502表示逐渐更高的功率系数,并且根据本发明,当尖端速度比改变时控制桨距角以保持操作在相对较高的Cp区域502中,但是不必在峰值Cp点3-4。通过当尖端速度比在点3-4至点5之间增加时控制桨距角,扭矩被限制,并且在桨距角朝着点“6”的进一步增加导致操作朝着轮廓线504和506所示的较低Cp区域移动之前,涡轮机能够在较高Cp区域502内操作更长的时间。
根据本发明,可以以许多方式主动地监测TSR并且将TSR用作调节桨距角的参数。如先前所述,TSR对应于叶片尖端速度与实际风速的比率。而且,当然,叶片尖端速度是叶片长度和转速的函数。于是对于任何给定长度的叶片,可以通过直接测量实际尖端速度、叶片转速或风速中的任何一个来监测TSR。当齿轮箱联接到涡轮机时也可以通过监测齿轮箱或齿轮箱内的任何齿轮的输出的转速来间接地监测TSR。
通过与增加TSR同时地增加桨距角,实现了许多优点。原则上,由于该操作限制了扭矩,因此可以使用较低额定齿轮箱,由此减小成本和设备尺寸。以该方式使齿轮箱的尺寸变得比在没有公开所述操作方法的情况下适合的尺寸更小。另外,提高了全年发电量(AEP)并且降低了风产生的倾向于推翻涡轮机的推力。通过本发明的使用,由于对于相同的额定功率风力涡轮机叶片变得更长,因此不太需要升级齿轮箱以增加扭矩极限。
图6是可以使用本发明的示例性风力涡轮机600的透视图。在该示例性实施例中,风力涡轮机600是水平轴线风力涡轮机。备选地,风力涡轮机600可以是竖直轴线风力涡轮机。在示例性实施例中,风力涡轮机600包括从支撑系统614延伸的塔架612、安装在塔架612上的机舱616和联接到机舱616的转子618。转子618包括可旋转毂620和至少一个转子叶片622,所述转子叶片联接到毂620并且从所述毂向外延伸。在示例性实施例中,转子618具有三个转子叶片622。在备选实施例中,转子618包括三个以上或以下的转子叶片622。在示例性实施例中,塔架612由钢管制成以在支撑系统614和机舱616之间限定腔室(未在图6中显示)。在备选实施例中,塔架612是具有任何合适高度的任何合适类型的塔架。
转子叶片622围绕毂620间隔以便于旋转转子618,从而能够使从风转移来的动能转换为可使用的机械能,并且随后转换为电能。通过在多个负荷转移区域626将叶片根部624联接到毂620而将转子叶片622配合到毂620。负荷转移区域626具有毂负荷转移区域和叶片负荷转移区域(两者未在图6中显示)。引至转子叶片622的负荷经由负荷转移区域626转移到毂620。
当风从方向628吹向转子叶片622时,转子618围绕旋转轴线630旋转。当转子叶片622旋转并且受到离心力时,转子叶片622也受到各种力和力矩。因而,转子叶片622可以从中立或非偏转位置偏转和/或旋转到偏转位置。而且,转子叶片622的桨距角或叶片桨距(即,确定转子叶片622相对于风向628的方位的角)可以由桨距调节系统632改变,以通过调节至少一个转子叶片622相对于风向量的角位置来控制风力涡轮机600所生成的负荷和功率,如先前所述。显示了转子叶片622的变桨轴线634。在风力涡轮机600的操作期间,桨距调节系统632可以改变转子叶片622的叶片桨距。
该书面描述使用例子来公开本发明,包括最佳模式,并且也使本领域的任何技术人员能够实施本发明,包括制造和使用任何装置或系统并且执行任何包含的方法。本发明的可专利范围由权利要求限定,并且可以包括本领域的技术人员想到的其它例子。这样的其它例子旨在属于权利要求的范围内,只要它们包括与权利要求的文字语言没有区别的结构元件,或者只要它们包括与权利要求的文字语言无实质区别的等效结构元件。

Claims (14)

1.一种用于操作风力涡轮机的方法,包括:
提供具有至少一个叶片的风力涡轮机,所述至少一个叶片具有可调节的桨距角;
监测所述至少一个叶片的尖端速度比(TSR);
识别所述至少一个叶片的高功率系数(Cp)操作区域(502);
增加尖端速度比的同时增加所述至少一个叶片的桨距角(3-4-5)以将涡轮机的操作保持在被识别的高功率系数区域内,增加桨距角的同时限制风力涡轮机的扭矩;以及
尖端速度比降低的同时增加所述至少一个叶片的桨距角以将涡轮机的操作保持在被识别的高功率系数区域内。
2.根据权利要求1所述的方法,其特征在于,监测尖端速度比包括监测所述至少一个叶片的尖端的速度。
3.根据权利要求1所述的方法,其特征在于,监测尖端速度比包括监测风速。
4.根据权利要求1所述的方法,其特征在于,监测尖端速度比包括监测所述至少一个叶片的转速。
5.一种用于限制与风力涡轮机关联的齿轮箱中的扭矩的方法,包括:
提供具有至少一个叶片的风力涡轮机,所述至少一个叶片具有可调节的桨距角;
将齿轮箱联接到所述风力涡轮机;
监测所述至少一个叶片的尖端速度比(TSR);
识别所述至少一个叶片的高功率系数(Cp)操作区域(502);
增加尖端速度比的同时增加所述至少一个叶片的桨距角(3-4-5)以将涡轮机的操作保持在被识别的高功率系数区域内,增加桨距角的同时限制风力涡轮机的扭矩;以及
尖端速度比降低的同时增加所述至少一个叶片的桨距角以将涡轮机的操作保持在被识别的高功率系数区域内。
6.根据权利要求5所述的方法,其特征在于,监测尖端速度比包括监测所述至少一个叶片的尖端的速度。
7.根据权利要求5所述的方法,其特征在于,监测尖端速度比包括监测风速。
8.根据权利要求5所述的方法,其特征在于,监测尖端速度比包括监测所述至少一个叶片的转速。
9.根据权利要求5所述的方法,其特征在于,监测尖端速度比包括监测所述齿轮箱的旋转部件的转速。
10.一种用于控制风力涡轮机的操作的系统,包括:
具有至少一个叶片的风力涡轮机,所述至少一个叶片具有可调节的桨距角;
传感器,所述传感器被配置成监测所述至少一个叶片的尖端速度比(TSR);以及
控制器,所述控制器被配置成增加所述至少一个叶片的桨距角的同时增加尖端速度比(3-4-5)以将涡轮机的操作保持在所述至少一个叶片的高功率系数(Cp)操作区域(502)内,其中当控制器在增加所述至少一个叶片的桨距角时,风力涡轮机的扭矩被限制,
所述控制器被进一步配置成尖端速度比降低的同时增加所述至少一个叶片的桨距角以将涡轮机的操作保持在被识别的高功率系数区域内。
11.根据权利要求10所述的系统,其特征在于,所述传感器通过监测所述至少一个叶片的尖端的速度来监测尖端速度比。
12.根据权利要求10所述的系统,其特征在于,所述传感器通过监测风速来监测尖端速度比。
13.根据权利要求10所述的系统,其特征在于,所述传感器通过监测所述至少一个叶片的转速来监测尖端速度比。
14.根据权利要求10所述的系统,其特征在于,所述系统还包括:
联接到所述风力涡轮机的齿轮箱,
其中所述传感器通过监测齿轮箱部件的转速来监测尖端速度比。
CN201210158289.0A 2011-05-12 2012-05-11 风力涡轮机扭矩-速度控制 Active CN102900611B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/106007 2011-05-12
US13/106,007 2011-05-12
US13/106,007 US8858174B2 (en) 2011-05-12 2011-05-12 Wind turbine torque-speed control

Publications (2)

Publication Number Publication Date
CN102900611A CN102900611A (zh) 2013-01-30
CN102900611B true CN102900611B (zh) 2016-08-24

Family

ID=45526920

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210158289.0A Active CN102900611B (zh) 2011-05-12 2012-05-11 风力涡轮机扭矩-速度控制

Country Status (5)

Country Link
US (1) US8858174B2 (zh)
EP (1) EP2522853B1 (zh)
CN (1) CN102900611B (zh)
DK (1) DK2522853T3 (zh)
ES (1) ES2657395T3 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9863400B2 (en) * 2013-12-11 2018-01-09 General Electric Company System and method for controlling a wind turbine system
ES2563092B1 (es) * 2014-09-10 2016-12-19 Acciona Windpower, S.A. Método de control de un aerogenerador
US10767633B2 (en) 2014-12-23 2020-09-08 Vestas Wind Systems A/S Method and system for determining the dynamic twist of a wind turbine blade
CN107208606B (zh) * 2015-01-29 2019-05-28 维斯塔斯风力系统集团公司 风力涡轮机的部分负载控制器和满载控制器
US10473088B2 (en) 2015-03-13 2019-11-12 General Electric Company System and method for variable tip-speed-ratio control of a wind turbine
CN105909469B (zh) * 2016-04-29 2018-09-25 南京理工大学 一种减小变桨动作的变速恒频风电机组的限功率控制方法
US11136961B2 (en) * 2017-06-01 2021-10-05 General Electric Company System and method for optimizing power output of a wind turbine during an operational constraint
US10634121B2 (en) 2017-06-15 2020-04-28 General Electric Company Variable rated speed control in partial load operation of a wind turbine
CN111608858B (zh) * 2020-05-29 2021-08-24 上海电气风电集团股份有限公司 调整风力发电机组输出功率的方法及装置、计算机可读存储介质及风力发电系统
CN114320741A (zh) * 2020-09-30 2022-04-12 新疆金风科技股份有限公司 风力发电机组的功率控制方法及设备
CN114294153B (zh) * 2022-01-10 2023-03-31 江苏金风科技有限公司 一种风力发电机组控制方法、装置及设备

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4703189A (en) 1985-11-18 1987-10-27 United Technologies Corporation Torque control for a variable speed wind turbine
US5155375A (en) 1991-09-19 1992-10-13 U.S. Windpower, Inc. Speed control system for a variable speed wind turbine
US5798631A (en) 1995-10-02 1998-08-25 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Performance optimization controller and control method for doubly-fed machines
JP2006523292A (ja) 2003-03-19 2006-10-12 ザ リージェンツ オブ ザ ユニヴァーシティー オブ カリフォルニア 無段変速機における比の変化率を制御する方法およびシステム
DE10341504A1 (de) * 2003-09-03 2005-06-09 Repower Systems Ag Verfahren zum Betrieb einer Windenergieanlage, Windenergieanlage und Verfahren zur Bereitstellung von Regelleistung mit Windenergieanlagen
US7528496B2 (en) * 2003-09-03 2009-05-05 Repower Systems Ag Method for operating or controlling a wind turbine and method for providing primary control power by means of wind turbines
US7504738B2 (en) 2005-09-29 2009-03-17 General Electric Company Wind turbine and method for operating same
DE102005059888C5 (de) 2005-12-15 2016-03-10 Nordex Energy Gmbh Verfahren zur Momenten- und Pitchsteuerung für eine Windenergieanlage abhängig von der Drehzahl
US8174136B2 (en) 2006-04-26 2012-05-08 Alliance For Sustainable Energy, Llc Adaptive pitch control for variable speed wind turbines
US7602075B2 (en) 2006-07-06 2009-10-13 Acciona Windpower, S.A. Systems, methods and apparatuses for a wind turbine controller
US7417332B2 (en) * 2006-08-24 2008-08-26 General Electric Company Method and apparatus of monitoring a machine
US7420289B2 (en) * 2006-12-06 2008-09-02 General Electric Company Method for predicting a power curve for a wind turbine
US8215906B2 (en) * 2008-02-29 2012-07-10 General Electric Company Variable tip speed ratio tracking control for wind turbines
US8096761B2 (en) * 2008-10-16 2012-01-17 General Electric Company Blade pitch management method and system
ES2589384T3 (es) * 2010-06-02 2016-11-14 Vestas Wind Systems A/S Método de operación de una turbina eólica con salida de potencia mejorada

Also Published As

Publication number Publication date
ES2657395T3 (es) 2018-03-05
DK2522853T3 (en) 2018-02-05
EP2522853B1 (en) 2018-01-03
EP2522853A3 (en) 2015-04-08
EP2522853A2 (en) 2012-11-14
CN102900611A (zh) 2013-01-30
US8858174B2 (en) 2014-10-14
US20120027587A1 (en) 2012-02-02

Similar Documents

Publication Publication Date Title
CN102900611B (zh) 风力涡轮机扭矩-速度控制
AU2007308515B2 (en) A method for damping tower oscillations, an active stall controlled wind turbine and use hereof
Balat A review of modern wind turbine technology
AU2014200423B2 (en) Method and apparatus for wind turbine noise reduction
US20120133138A1 (en) Plant power optimization
EP2657518B1 (en) Methods and systems for operating a wind turbine in noise reduced operation modes
EP2306003A2 (en) System and methods for controlling a wind turbine
EP2757252B1 (en) Method of operating a wind turbine
US20110006526A1 (en) Pitch control arrangement for wind turbine
EP2757253B1 (en) Method of starting a wind turbine
EP2769089B1 (en) Vertical axis wind turbine with variable pitch mechanism
EP1612412A3 (en) Storm control for horizontal axis wind turbine
US20120112460A1 (en) Probing power optimization for wind farms
CN106640533A (zh) 自适应变桨的垂直轴风力发电机驱动装置及风力风电机
KR102042259B1 (ko) 풍력발전시스템 및 그것의 구동 정지 방법
Dick Wind turbines
EP4039967A1 (en) Method and system for optimizing power output of a wind turbine with yaw misalignment
CN201925086U (zh) 一种风力发电机风轮
CN106640516A (zh) 中型变速风电机组及低风速叶片优化设计
KR20130009937A (ko) 날개각도 제어기능을 갖는 수직축 풍력발전시스템
Çokünlü Wind turbine modelling and controller design
Brown et al. High Specification Offshore Blades: Work Package: 1B: Blades Design

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240102

Address after: Barcelona, Spain

Patentee after: Ge renewable energy Spain Ltd.

Address before: New York, United States

Patentee before: General Electric Co.