CN102893538A - 用于飞行器和船舶因特网服务的混合卫星和网状网络系统 - Google Patents

用于飞行器和船舶因特网服务的混合卫星和网状网络系统 Download PDF

Info

Publication number
CN102893538A
CN102893538A CN2011800244320A CN201180024432A CN102893538A CN 102893538 A CN102893538 A CN 102893538A CN 2011800244320 A CN2011800244320 A CN 2011800244320A CN 201180024432 A CN201180024432 A CN 201180024432A CN 102893538 A CN102893538 A CN 102893538A
Authority
CN
China
Prior art keywords
node
mobile section
satellite
mesh network
section node
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800244320A
Other languages
English (en)
Other versions
CN102893538B (zh
Inventor
A·加拉里
R·克里希南
B·田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of CN102893538A publication Critical patent/CN102893538A/zh
Application granted granted Critical
Publication of CN102893538B publication Critical patent/CN102893538B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18506Communications with or from aircraft, i.e. aeronautical mobile service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18504Aircraft used as relay or high altitude atmospheric platform
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18578Satellite systems for providing broadband data service to individual earth stations
    • H04B7/18584Arrangements for data networking, i.e. for data packet routing, for congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18578Satellite systems for providing broadband data service to individual earth stations
    • H04B7/18589Arrangements for controlling an end to end session, i.e. for initialising, synchronising or terminating an end to end link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/64Hybrid switching systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/64Hybrid switching systems
    • H04L12/6418Hybrid transport
    • H04L2012/6421Medium of transmission, e.g. fibre, cable, radio, satellite
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/64Hybrid switching systems
    • H04L12/6418Hybrid transport
    • H04L2012/6443Network Node Interface, e.g. Routing, Path finding

Abstract

包括地面段、移动段和卫星段的混合卫星-网状网络提供移动平台与因特网之间的高带宽通信。仅当移动段节点与地面段节点之间的网状网络通信链路不可用时才使用卫星段。移动段节点可在接入终端模式或接入点模式中起作用以在网络的网状部分中根据路由算法与其他移动段节点通信。移动段节点采用自适应频率重用、链路级数据率自适应、链路级功率控制以及自适应波束成形天线。

Description

用于飞行器和船舶因特网服务的混合卫星和网状网络系统
优先权要求
本专利申请要求2010年5月18日提交的题为“Hybrid Satellite and MeshNetwork System for Aircraft and Ship Internet Service System(用于飞行器和船舶因特网服务系统的混合卫星和网状网络系统)”的美国临时申请No.61/345,884的权益,该临时申请已转让给本申请受让人并且由此通过援引整体纳入于此。
背景
领域
本公开的诸方面一般涉及无线通信系统,尤其涉及移动网状网络节点、地面站节点和卫星节点的混合网络。
背景
在海洋或远程陆地上行进的飞行器可能不具有经由电缆(例如,基于铜的电缆或光纤)接入用于因特网连通性的直接无线电链路。基于卫星的因特网服务已在一些飞行器和船舶上可用并且主要用于为工作人员提供对于任务而言关键的连通性。在卫星已被用于提供乘客因特网服务的情况下,尚不能以可行的成本向乘客提供宽带服务。向飞行器上的乘客提供基于卫星的宽带服务的现有尝试的高成本已经导致远程飞行器的覆盖是不可行的。
概述
本公开的诸方面提供移动网络节点、地面站节点和卫星节点的混合网络,该混合网络改善了飞行器和船舶对诸如因特网之类的基于地面的网络的接入。本公开的诸实施例提供至可能例如由于缺少视线通信路径而不能连接至基于陆地的基站的飞行器和船舶的低成本、高带宽因特网连通性。
根据本公开的诸方面所描述的设计通过在飞行器、船舶、专用浮标和基于陆地的基站之中建立网状网络来减少使用昂贵的卫星带宽。在解说性实施例中,系统默认使用网状网络中的链路来抵达至公共因特网的连通性的点并且仅将卫星链路用于经由网状网络来桥接连通性的丧失。
在根据本公开的一个方面的用于无线通信的方法中,由混合卫星-网状网络的第一移动段节点执行第一尝试以直接地或经由混合卫星-网状网络的第二移动段节点来建立至混合卫星-网状网络的任何地面段节点的通信路径。随后确定由第一移动段节点进行的第一尝试的失败或成功。响应于确定第一尝试的失败,由第一移动段节点执行第二尝试以经由混合卫星-网状网络的卫星段来建立至混合卫星-网状网络的任何地面段节点的通信路径。
本公开的另一方面提供一种通信网络,其中地面段包括与因特网处于通信的至少一个地面段节点。该网络的空间段包括与地面段节点处于通信的至少一个空间段节点。该网络的移动段包括配置成自适应地彼此通信和与地面段节点通信以接入因特网的数个移动段节点。这些移动段节点还可被配置成仅在与地面段节点的通信链路不直接可用或者经由其他移动段节点的与地面段节点的通信链路不可用时才与空间段节点通信。
附图简要说明
图1是根据本公开的解说性实施例的混合网状网络卫星通信系统的系统框图。
图2是根据本公开的解说性实施例的网状无线电收发机系统的系统框图。
图3a-3b是根据本公开的解说性实施例的具有网状网络天线和卫星天线的飞行器的系统框图。
图4是根据本公开的解说性实施例的在用于飞行器和船舶因特网服务的混合卫星和网状网络系统上进行无线通信的方法的过程流程图。
图5是根据本公开的解说性实施例的用于使新的AP节点发现网状网络中的其他节点的方法的过程流程图。
图6是根据本公开的解说性实施例的用于由新的AT节点检测现有AP节点的方法的过程流程图。
图7是根据本公开的解说性实施例的用于调度从一个AP节点至多个AT节点的通信的载波侦听多址(CSMA)方法的过程流程图。
图8是根据本公开的解说性实施例的用于由AP进行中央调度的方法的过程流程图。
图9是根据本公开的解说性实施例的用于链路级数据率自适应的方法的过程流程图。
图10是根据本公开的解说性实施例的用于网状网络中的链路级功率控制的方法的过程流程图。
图11是根据本公开的解说性实施例的用于自适应地调整波束以使链路数据率最大化的方法的过程流程图。
图12是根据本公开的解说性实施例的用于FDD双工方案中的波束成形的方法的过程流程图。
图13是根据本公开的解说性实施例的用于调整地面段节点与移动段节点之间的波束的方法的过程流程图。
图14是根据本公开的解说性实施例的用于划分移动节点至地面节点话务的方法的过程流程图。
图15是根据本公开的解说性实施例的用于减小网状网络与地面微波链路之间的干扰的方法的过程流程图。
具体描述
参照图1来描述根据本公开的解说性实施例的网络架构。网络架构100包括分成三段的一组节点102、108、110:地面段、移动段和空间段。每一段可具有多个节点。
地面段节点包括可经由电缆、光纤或卫星回程106连接至因特网104的站102。这些站102可以是基于陆地的地面站或者可以是连接至在海底运行的光纤的基于海洋的浮标。在解说性实施例中,地面段中的节点具有允许它们与移动段中的节点通信的高带宽无线电。注意,这些基于陆地的基站中的一些基站可在电缆或光纤不可用的情况下经由卫星回程连接至因特网。对于来自陆地基站的卫星回程,可以使用非常大的天线来与卫星通信。由于非常大的地面站天线,卫星回程成本将比从飞行器至卫星的直接连接的成本低得多。然而,可以期望在任何可能的地方将电缆或光纤用于至地面站的回程。
移动段节点包括非系留的并且可在空中或海上的移动飞行器108。具体地,这种系统设计实现了不具有至地面上的电缆因特网接入点的直接视线连通性的移动飞行器108的连通性。移动段中的节点具有允许它们与移动段的其他节点或与电缆段的节点通信的网状无线电。移动段中的节点还具有允许它们与以下所描述的空间段中的节点通信的无线电(以下称为卫星无线电)。
在网状无线电链路提供至地面段的路径的任何地方,移动段中的节点使用网状无线电来路由因特网数据。如果没有经由地面站102至因特网的路由,则移动段中的节点使用卫星无线电以经由空间段中的节点来路由因特网数据。如果网状无线电链路不能抵达地面段并且没有卫星是可见的,则移动段中的节点将经由网状无线电将因特网数据路由至具有至卫星的可见性的另一移动节点。
空间段节点包括可经由卫星地面网关将数据中继至因特网的卫星110。
地面段、移动段和空间段一起可达成移动节点的高等级连通性,而同时经由网状网络将绝大多数话务路由至地面段并且随后路由到因特网上。卫星组件可预期具有相对较高的资本支出成本,而网状节点可具有低得多的资本支出成本。因此,本公开的诸方面通过寻求使通过网状网络发送的话务量增大或最大化来减小总成本。网状网络组件因此有助于使网络成本减小或最小化并且使因特网至飞行器服务是负担得起的。卫星组件有助于提供普遍存在性并且填补网状网络可能具有的任何漏洞。换言之,在网状节点不具有通过地面站102至因特网的路由的情况下,卫星组件提供服务的稳健性。结果是高度稳健且成本高效的系统。
在解说性实施例中,网络可包括较小数目的(例如,20-40个)构成地面段的地面站102。移动段可由商业航空公司的多种不同的组合构成。空间段可以是诸如举例而言在L频带或Ku频带卫星系统中运行的Inmarsat之类的对地静止卫星系统。
尽管本公开中所描述的解说性实施例主要被描述为将飞行器用作移动节点,但是应当理解,相同的实施例还可包括诸如举例而言船舶和汽车之类的其他移动节点。
根据本公开的诸方面,网络中的每个飞行器被配置成与多个其他飞行器并且在一些情形中与地面站通信。在解说性实施例中,每个飞行器具有至少两个收发机/天线系统以帮助提供网状网络中朝至少两个一般方向的链路,其中一条链路去往飞行器前面的节点并且另一条链路去往飞行器后面的节点。在每个飞行器上使用多个网状无线电收发机/天线系统,因为每个飞行器的单个网状无线电收发机/天线可能不提供至其他飞行器(节点)的充分可见性以促成至地面站的连续网状无线电路由的创建。
给定飞行器上的网状网络收发机系统中的每个系统可被认为是节点本身。移动网络中的术语“节点”可指代可在相同飞行器上安装的两个或更多个网状网络收发机系统中的任何一个。每个节点一旦接收到来自另一节点的数据就可根据为改进或优化某个准则所设计的路由算法来将该数据路由至网状网络中的节点。每个飞行器可接收来自多个节点的数据并且将接收自该多个节点的数据复用成在该飞行器至网络中的地面站的路由上向另一节点发送的流。
参照图2,每个网状网络收发机系统200可包括多个调制解调器模块(MM)。根据本公开的诸方面,每个MM支持至少两个模式:接入终端(AT)模式和接入点(AP)模式。在AT模式中,MM搜索网络中与其相关联的另一AP节点。在AP模式中,MM恳请其他节点,这些其他节点可能正在搜索与其相关联的节点。每个收发机可支持多个MM。因此,每个节点可通过例如在硬件和/或软件中实例化多个MM来建立多个AP或AT链路。
参照图3a,根据本公开的诸方面,还在移动段中的飞行器上安装卫星无线电收发机系统300。卫星无线电收发机系统300耦合至飞行器中的网状网络收发机系统200中的一个或多个网状网络收发机系统。在某些实施例中,卫星无线电收发机安装在网状网络中的每个飞行器上。其他实施例可包括不具有自己的卫星无线电收发机系统300的飞行器。这些飞行器可以例如依赖至装备有卫星无线电收发机系统300的其他飞行器的网状无线电链路以经由空间段来建立通信。
网状网络收发机系统200各自包括至少一个天线,从而每个飞行器将具有至少两个网状网络天线。这两个天线可允许给定飞行器建立与在该飞行器前面飞行的飞行器以及在该飞行器后面飞行的飞行器的连通性。在一种天线配置中,第一网状网络天线302位于飞行器的顶部并且第二网状网络天线304位于飞行器的底部。在一个飞行器正以较高的海拔在另一飞行器前面飞行的情况下,这种配置允许在后面飞行的飞行器的顶部上的天线能够看到在前面飞行的飞行器的腹部上的天线。
图3b中所示的另一种天线放置配置将第一网状网络天线306定位在飞行器的尾部并且将第二网状网络天线308定位在飞行器的前部。在这种配置中,两个飞行器可以经由一个飞行器的尾部中的一个天线306或者另一飞行器的前面的天线308来连接。例如,使用这种天线配置,在另一飞行器前方和下方的飞行器使用其尾部天线与拖尾的飞行器的前部天线通信。
根据本公开的解说性实施例中,地面站节点还包括一个或多个网状无线电接收机系统200并且可以作为网状网络的一部分连同移动站节点起作用。地面站节点还可例如经由电缆连接直接连接至诸如因特网之类的广域网。
本公开的诸方面包括一种用于在混合卫星和网状网络系统上进行无线通信以供飞行器和船舶因特网服务的方法。参照图4,在框402中,移动段节点尝试直接经由地面段节点或者经由网状网络中的其他移动段节点来建立至因特网的通信路径。在框404中,如果通信路径被建立,则在该路径上在移动段节点与地面段节点之间路由分组。
例如,在框406中,当移动段节点不能通过网状网络节点建立至因特网的路由时,该移动段节点尝试通过至空间段节点的链路来建立与因特网的通信并且开始经由卫星将分组路由至地面站。同时,在框408中,移动段节点继续搜索至地面段节点的可能路由。在框410中,至地面段节点的路由一旦被移动段节点发现,移动段节点就改变其从卫星节点至网状网络的路由。
每个移动段节点可能不总是能够建立与空间段节点的通信。例如,当飞行器具有至卫星非常小的仰角时,诸如在北极点时,飞行器不能直接连接至卫星。在框412中,当移动段节点不能经由网状网络建立至地面段节点的通信并且不能建立与空间段节点的通信时,该节点可经由网状网络中具有至空间段节点的连接的其他节点来建立至空间段节点的链路。
根据本公开的一方面,通过地面基站或者通过卫星链路的至因特网的所有可能路由可被提供给路由算法。该路由算法确定用于来自特定移动节点的话务的较好或最佳路由。换言之,每个飞行器或网状网络节点可建立与其他飞行器或其他网状网络节点以及与空间段中的一个或多个卫星的链路。这些链路以一定的约束输入到路由算法。在一个示例中,这些约束可包括特定链路的成本和该链路的数据率及其延迟。该路由算法确定改进或优化诸如易受某些成本约束影响的最小延迟之类的某个准则的路由。在解说性实施例中,一旦飞行器与其他网状网络节点和卫星之间的潜在链路被建立,就将该路由算法降低到现有的网际协议和路由算法。
本公开的诸方面提供一种用于发现网状网络中的节点和用于向路由算法提供候选链路的方法。该路由算法可以基本上与广泛用于路由因特网话务的路由算法相同。
本公开的诸方面包括用于将移动段节点彼此连接并且将其连接至地面段节点的多个接入协议。可使用频分多址(FDMA)、OFDMA(正交频分多址)、时分多址(TDMA)、码分多址(CDMA)、或这些方案的组合。根据本公开的诸方面,数种可能的办法可被用于使可用频谱的带宽效率增大或最大化。
网络中的干扰可通过在网状网络中施加频率重用模式来减少。减少的干扰可允许移动段节点之间增加的数据率。根据该技术,可用带宽被分成具有中心频率fi,i=1,...,N的数个子带。每个节点可在数个频率fi上操作。两个节点可按时分双工(TDD)的方式在相同频率上彼此传送和接收或者可按频分双工(FDD)的方式在不同频率上接收和传送。频率重用模式对系统施加FDMA方案。
本公开的诸实施例包括一种用于一节点最初发现网状网络中的其他节点的方法。该方法可例如在飞行器已抵达海拔高度并且已打开其收发机的情况下使用。飞行器搜索网状网络中的其他节点并且建立与一组节点的链路以建立至因特网的高效率路由。
参照图5来描述根据本公开的解说性实施例的用于新的AP节点发现网状网络中的其他节点的方法。在框502中,网络中的每个AP节点在预定的时隙中并且以周期性的方式传送探测消息。该探测消息包含关于AP节点的参数的信息。根据本公开的诸方面,每个AP节点将因节点而异的导频信号模式用作其探测消息传输的一部分。在框504中,该导频信号模式由网络中的AT节点用于搜索该节点的探测消息。AT可在指定的时隙中向这些AT从其接收到探测消息的AP发送这些AT的响应消息。更一般地,在框506中,可以在由AP支持的复用接入信道上发送响应消息。
如果已检测到探测消息的任何AT节点希望建立与检测到的AP节点的链路,则该AT节点在响应时隙/消息中向检测到的AP节点发送该AT节点的链路关联请求。此系统中的发射机和接收机使用被调整以使链路两端之间的数据率增大或最大化的定向天线。因此,探测和相关联的导频信号应当在宽波束上发送,以使得它们可被网络中的大量飞行器/节点接收。
在替换实施例中,导频信号模式和探测信号可顺序地在不同的窄波束上发送,以允许发送移动段节点附近的所有节点接收到该探测消息。根据本公开的诸方面,可发送两种类型的导频信号。一种类型的导频信号是如以上所描述的用于节点发现目的的广播导频信号,并且另一种类型的导频信号是在数据传输期间在特定链路的两端之间专用的导频信号。这允许接收机为解调目的而作出信道估计并且为速率控制和功率控制而作出因链路而异的信号干扰加噪声比(SINR)测量。
参照图6来描述根据本公开的解说性实施例的用于由新的AT节点来检测现有AP节点的方法。在框602处,新的AT节点搜索所有频率和所有导频模式以检测网络中所有的现有AP节点。在框604中,新的AT节点随后根据某个度量来对所有检测到的AP节点进行排序。例如,用于排序的一个度量可包括收到导频C/(No+I)强度,其中C是收到载波功率,No是热噪声功率,并且I是总收到干扰功率。在框606中,新的AT节点的网状无线电收发机的每个MM(调制解调器模块)实例根据某个准则来建立与一个AP节点的链路。例如,用于建立与特定AP节点的链路的一个准则可以是C/(No+I)最高强度。至AP的链路可以使用如以上所描述的响应消息机制来建立。
在框608中,新的AT节点从与其建立了链路的节点接收关于现有网络配置的路由表信息。在框610中,新的AT随后根据网络路由优化准则和算法来维护与提供最高效率路由和网络吞吐量的链路的通信。新的AT节点由此通过探测/响应消息序列连接至网状网络。在框612中,新的节点还可在给定频率上在AP模式中传送它自己的探测信号以恳请正在搜索与其相关联的AP的节点。
参照图7,本公开的诸方面提供了用于调度从一个AP节点至可在相同频率上和使用相同的导频序列进行通信的多个AT节点的通信的载波侦听多址(CSMA)方法。在框702中,所有节点监听载波频率并且抑制传送直至该频率变得空闲。在框704中,当该频率变得空闲时,其他节点可根据随机接入办法或者根据避免竞争节点之间的冲突的预定机制来占用信道。例如,一旦该频率变得空闲,其他节点可根据数种可能的算法每次一个地顺序接入该频率。
在解说性实施例中,用于避免竞争节点之间的冲突的算法根据节点的媒体接入控制(MAC)地址的降序来选择下一传送节点。在此实施例中,一旦发现频率空闲,具有最高MAC地址的节点将在其有数据要发送的情况下占用该频率。如果该频率继续空闲,则剩余节点集合中具有最高MAC地址的节点可尝试进行传送。根据本公开的实施例,各种其他机制可提供节点之间的公平裁决。在另一解说性实施例中,例如,每个节点可被允许传送最大数目的分组,在此之后该节点释放该频率以供由其他节点使用。
根据本公开的诸方面的CSMA的替换方案是由AP进行中央调度。由多个节点共享一个载波频率上的可用带宽导致施加在先前提及的FDMA方案之上的TDMA(时分多址)方案。注意,取代使多个AT在给定的所指派的带宽上以TDMA的方式与AP通信,不同的AT可使用共享指派给AP的带宽的CDMA或OFDMA方案来与AP通信。
参照图8来描述根据本公开的诸方面的由AP进行中央调度的方法。在框802中,每个AT被给予保留请求带宽。该保留请求带宽在TDMA办法中可以是时隙的形式、或者在OFDMA办法中可以是数个频调的形式、或者在CDMA办法中可以是码片的形式。在框804中,AT可在需要时使用该保留请求带宽来请求附加带宽。
根据本公开的诸方面,可对毗邻AP使用的频率施加频率重用以减少干扰并且改善数据率。在框804中,在AP发送宽波束的情况下,每个AP可周期性地测量在探测消息序列期间由其他AP传送的所有导频和所有频率上的SINR。网络中的干扰是可变的并且例如取决于网络中的话务负载以及例如作为天线误指向的其他路径损耗变化。因此,在框806中,每个AP对数个测量上的测得SINR取平均以使干扰变化达到平均数。
在框808中,给定的AP可通过所有频率的SINR来对所有频率进行排序。在框810中,AP选择具有最高SINR的频率用于其AP模式。在框812中,AP通知其相关联的AT节点将频率改变至新选定的频率。改变频率信道的请求可例如在由AP在前向链路上在广播控制信道上发送的消息中向AT发送。这将导致网络中自适应的频率重用。在替换实施例中,中央处理器可确定用于网络中的所有节点的频率重用模式并且向所有节点发送频率重用计划。
本公开的诸方面提供了用于根据每对AT/AP移动段节点之间的链路上的信道和干扰状况来调整该链路的数据率的方法。参照图9来描述根据本公开的解说性实施例的用于链路级数据率自适应的方法。在框902中,接收机测量收到C/(No+I)。在框904中,接收机向收到信号的发射机发送表示收到C/(No+I)的数据率控制(DRC)索引。在框906中,发射机基于收到DRC来选择用于其至特定节点的传输的数据率。
根据本公开的解说性实施例,为了增加系统的带宽效率,诸如举例而言由3G/4G系统使用的递增冗余(IR)技术之类的纠错技术可被纳入到链路自适应机制中。IR技术编码给定分组并将冗余位分成多个帧。在一帧中发送经编码分组的第一段。如果接收机成功地解码该帧并且恢复出预期的分组,则该接收机向发射机发送确认。否则,发射机发送相同分组的附加冗余帧直至该分组被成功解码。
为了使网状网络中的干扰减小或最小化,网状网络中的两个移动段节点之间的每条链路可受功率控制以满足该链路上的数据率要求而同时传送减小的或最小的功率。移动段节点之间的路径损耗是多种可变因素的函数,诸如飞行器的方位、因氧气而导致的大气损失、水蒸气、雨水等。
参照图10来描述根据本公开的解说性实施例的用于网状网络中的链路级功率控制的方法。在框1002中,确定两条链路之间满足网络的总吞吐量要求的期望数据率。在框1004中,确定链路将支持的平均数据率。在框1006中,速率控制机制使发射功率减小或最小化,如参照图9所描述的。在框1008中,链路上的发射机以开环方式最初估计发射功率以达成链路上的期望数据率。在框1010中,接收机从其对由发射机传送的导频信号作出的测量来估计收到SINR。
在框1012中,由接收机在多址或专用控制信道上将此SINR测量发送回发射机。在框1014中,发射机作出在数据传输模式期间发送多少功率的开环估计,从而可在该链路上达成期望数据率。该开环估计基于接收机处的SINR估计以及关于在导频信号上传送多少功率的知识。
在框1016中,在数据传输模式期间使用闭环功率控制以微调开环估计并且跟踪由于天线的失准和大气改变而导致的任何路径损耗变化。该闭环功率控制基于数据率控制(DRC)索引,该DRC索引是对接收机向发射机发送的SINR的间接测量。在框1018中,如果由接收机报告的DRC索引不同于期望的DRC索引,则发射机调整其链路发射功率以将DRC索引调整至期望水平。
根据本公开的另一方面,移动段节点天线可被配置成是定向的并且可被配置成将发射波束的瞄准线对准接收飞行器的天线。当AP传送探测或其他控制消息时,该AP使用其最宽的波束,以使得网络中的所有节点都可以接收到广播消息。天线波束可例如通过使多个天线元件正确地定相(即,使用基于相控阵波束成形系数的相控阵波束成形)来形成。
参照图11来描述根据解说性实施例的用于自适应地调整波束以使链路数据率最大化的方法。在框1104中,在宽波束上接收导频信号。在框1104中,导频信号由接收机用于确定相控阵接收波束成形系数。
根据本公开的一个方面,使用TDD技术,其中链路的两端在相同的频率上传送和接收并且传播信道在这两个方向上是互易的。因此,在框1106中,当使用TDD双工时,发射机也可使用所确定的相控阵接收波束成形系数来形成发射方向上的波束。在框1108中,发射机和接收机将使用在其中在广播波束上发送导频的广播时隙期间确定的系数来形成数据通信模式期间的波束。
在另一实施例中,可使用FDD双工方案,其中发射和接收频率是不同的并且传播信道可以在这两个方向上是不同的。在这种情形中,可在发射机与接收机之间使用反馈机制以确定最佳的发射和接收波束。参照图12来描述根据本公开的解说性实施例的用于FDD双工方案中的波束成形的反馈方法。该用于确定较好或最佳发射波束的方法使用诸如参照图10所描述的闭环方法之类的DRC反馈机制。在框1202中,发射机顺序地改变其发射波束。在框1024中,发射机基于从另一节点接收到的DRC索引来确定最优发射波束。在框1206中,在接收机处调整接收波束以使收到SINR增大或最大化。
除了DRC机制之外,根据本公开的替换实施例,也可使用发射机与接收机之间的其他反馈机制来调整发射波束以达成最高SINR。由于DRC机制也被用于功率控制目的(如参照图10所描述的),因而发射机不同时调整功率及其发射波束以确保对收到DRC索引的正确调整。
根据本公开的诸方面,诸如基站处的地面段节点的天线具有比移动段节点上的天线高得多的增益。这允许诸如飞行器之类的移动段节点与诸如地面基站之类的地面段节点之间的链路上的数据率增大。由于飞行器与地面站之间的链路携带比飞行器之间的链路更多的话务,因而对飞行器至地面链路的数据率要求可能相当高。
在地面段节点上使用较高增益的天线可能导致基站天线的非常窄的波束宽度。本公开的诸方面提供了用于调整从基站至期望飞行器的波束或者反过来的方法。本公开的诸方面还提供了用于检测基站附近的新节点的方法。
参照图13来描述根据本公开的解说性实施例的用于调整地面段节点与移动段节点之间的波束的方法。在框1302中,地面段节点或移动段节点可在宽波束上发送探测消息和/或广播导频信号。这允许视野中的其他节点检测到这些导频信号并且发现该节点。尽管宽波束天线增益较低,但是这对于发现阶段而言是足够的,因为在此阶段数据率非常低。在框1304中,从另一节点接收到探测/广播导频的节点还将在宽波束上发送自己的响应消息。响应消息的宽波束传输是恰当的,因为此消息中的数据率要求较低。
在框1306中,在探测和响应阶段期间,地面段节点确定反向链路上用于接收特定移动段节点的较好或最佳窄波束。在阶段1308中,地面段节点使用所确定的波束来向特定的移动段节点进行传送。在框1310中,移动段节点使用来自探测/响应阶段的SINR测量来估计最佳接收和发射波束。在阶段1312中,在数据传输模式期间,基于如参照图10所描述的那些DRC机制之类的DRC机制以闭环方式进一步调整发射波束。这允许相同频带被重用多次并且可例如增加从网状网络至因特网的吞吐量。
根据本公开的诸方面,除了在地面段节点中使用高度定向的天线之外,分集方案可划分从移动段节点至多个地面段节点的话务。因为地面站节点可能间隔数十千米,因而移动段节点可形成至特定基站的窄波束并且由此避免对其他基站造成过多干扰。参照图14来描述根据本公开的一方面的用于划分移动节点至地面节点话务的方法。在框1402中,每个移动段节点发现较小地理区域中的多个地面站节点。在阶段1404中,移动站节点向路由算法提供所发现的链路以及可在那些链路上达成的相关联的数据率。在框1406中,该路由算法分发从移动站节点至地面段节点的话务以调整每条链路上的负载。
根据本公开的诸方面在较小地理区域中使用多个地面段节点还提供了针对诸如因雨水导致的损耗之类的大气损耗的分集。根据本文中所描述的各个实施例,每条链路上的功率和每条链路上的数据率可单独控制以补偿诸如举例而言因大气状况而导致的损耗之类的各种损耗。
用于移动段节点之间和从移动段节点至地面段节点的网状网络的特定频谱也可由地面微波链路使用。参照图15来描述根据本公开的诸方面的用于减少网状网络与地面微波链路之间的干扰的方法。该方法可将干扰减小到热噪声电平以下,以使得网状网络对微波链路的性能的影响可忽略不计。在框1502中,选择地面段天线的位置,以使得地面段节点不干扰地面微波链路。为了使来自移动段节点的干扰减小或最小化,网状网络地面段节点的天线增益被配置成等于或大于地面微波链路的增益。网状网络地面站节点天线的大增益降低了对移动段节点发射机的发射功率要求。
在本公开的解说下实施例中,移动段节点还可在较大的带宽上扩展其信号,以减小在地面微波站点处接收到的信号的功率谱密度。本文中所描述的链路级功率控制方法也可被采用以确保信号在地面上以某个电平接收以减少干扰。例如,可为从飞行器至地面基站的链路选择目标数据率。大于数据率的频谱量被用于扩展信号。开环和闭环功率控制的组合确保在基站处接收到的信号电平将达成指定的数据率。
根据本公开的另一方面,地面微波天线可被定向,以使得它们的瞄准线偏离某些飞行器走廊达某个较小的角位移,诸如举例而言偏离几度。这将导致微波链路天线与飞行器天线之间一定的天线辨别以进一步减少从飞行器网站网络发射机进入微波链路的干扰。
本领域技术人员应理解,信息和信号可使用各种不同技术和技艺中的任何一种来表示。例如,贯穿上面描述始终可能被述及的数据、指令、命令、信息、信号、位(比特)、码元、和码片可由电压、电流、电磁波、磁场或磁粒子、光场或光粒子、或其任何组合来表示。
本文中所描述的功能框和模块可包括处理器、电子器件、硬件设备、电子组件、逻辑电路、存储器、软件代码、固件代码等,或其任何组合。
本领域技术人员将进一步领会,结合本文公开所描述的各种解说性逻辑框、模块、电路、和算法步骤可被实现为电子硬件、计算机软件、或两者的组合。为清楚地解说硬件与软件的这一可互换性,以上已经以其功能性的形式一般化地描述了各种解说性组件、框、模块、电路、和步骤。此类功能性是被实现为硬件还是软件取决于具体应用和加诸于整体系统的设计约束。技术人员可针对每种特定应用以不同方式来实现所描述的功能性,但此类实现决策不应被解读为致使脱离本公开的范围。
结合本文公开描述的各种解说性逻辑框、模块、以及电路可用被设计成用于执行本文中描述的功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其他可编程逻辑器件、分立的门或晶体管逻辑、分立的硬件组件、或其任何组合来实现或执行。通用处理器可以是微处理器,但在替换方案中,处理器可以是任何常规的处理器、控制器、微控制器、或状态机。处理器还可以被实现为计算设备的组合,例如,DSP与微处理器、多个微处理器、与DSP核心协作的一个或更多个微处理器的组合、或任何其它此类配置。
结合本文公开描述的方法或算法的步骤可直接在硬件中、在由处理器执行的软件模块中、或在这两者的组合中实施。软件模块可驻留在RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动盘、CD-ROM、或本领域中所知的任何其他形式的存储介质中。示例性存储介质耦合到处理器以使得该处理器能从/向该存储介质读写信息。在替换方案中,存储介质可以被整合到处理器。处理器和存储介质可驻留在ASIC中。ASIC可驻留在用户终端中。在替换方案中,处理器和存储介质可作为分立组件驻留在用户终端中。
在一个或更多个示例性设计中,所描述的功能可以在硬件、软件、固件、或其任何组合中实现。如果在软件中实现,则诸功能可以作为一条或更多条指令或代码存储在计算机可读介质上或藉其进行传送。计算机可读介质包括计算机存储介质和通信介质两者,其包括促成计算机程序从一地向另一地转移的任何介质。存储介质可以是能被通用或专用计算机访问的任何可用介质。作为示例而非限定,这样的计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储或其他磁存储设备、或能被用来携带或存储指令或数据结构形式的期望程序代码手段且能被通用或专用计算机、或者通用或专用处理器访问的任何其他介质。另外,任何连接也被正当地称为计算机可读介质。例如,如果软件是使用同轴电缆、光纤电缆、双绞线、数字订户线(DSL)、或诸如红外、无线电、以及微波之类的无线技术从web站点、服务器、或其他远程源传送的,那么该同轴电缆、光纤电缆、双绞线、DSL、或诸如红外、无线电、以及微波之类的无线技术就被包括在介质的定义之中。如本文中所使用的,盘(disk)包括压缩碟(CD)、激光碟、光碟、数字多用碟(DVD)、软盘和蓝光碟,其中盘(disk)往往以磁的方式再现数据,而碟(disc)用激光以光学方式再现数据。上述的组合也应被包括在计算机可读介质的范围内。
提供对本公开的先前描述是为使得本领域任何技术人员皆能够制作或使用本公开。对本公开的各种修改对本领域技术人员来说都将是显而易见的,且本文中所定义的普适原理可被应用到其他变体而不会脱离本公开的精神或范围。由此,本公开并非旨在被限定于本文中所描述的示例和设计,而是应被授予与本文中所公开的原理和新颖性特征相一致的最广范围。

Claims (20)

1.一种方法,包括:
由混合卫星-网状网络中的第一移动段节点执行第一尝试以直接地或经由所述混合卫星-网状网络中的第二移动段节点来建立至所述混合卫星-网状网络中的任何地面段节点的通信路径;
确定由所述第一移动段节点进行的所述第一尝试的失败或成功;以及
响应于确定所述第一尝试的失败,由所述第一移动段节点执行第二尝试以经由所述混合卫星-网状网络中的卫星段来建立至所述混合卫星-网状网络中的任何地面段节点的通信路径。
2.如权利要求1所述的方法,其特征在于,进一步包括:
响应于确定所述第一尝试的成功,由所述第一移动段节点在所建立的通信路径上向和从因特网发送和接收分组。
3.如权利要求1所述的方法,其特征在于,进一步包括:
响应于确定所述第二尝试的成功,由所述第一移动段节点在所建立的通信路径上经由所述卫星段向和从因特网发送和接收分组;以及
在经由所述卫星段发送和接收分组时,由所述第一移动段节点连续重复所述第一尝试。
4.如权利要求3所述的方法,其特征在于,进一步包括:
响应于确定所重复的第一尝试中的任何一个第一尝试的成功,中止由所述第一移动段节点经由所述卫星段进行的通信。
5.如权利要求4所述的方法,其特征在于,进一步包括:
由所述第一移动段节点在所建立的通信路径上向和从因特网发送和接收分组。
6.一种通信网络,包括:
地面段,其包括与因特网处于通信且与包括至少一个空间段节点的卫星段处于通信的至少一个地面段节点;以及
移动段,其包括多个移动段节点,所述多个移动段节点被配置成自适应地彼此通信和与所述至少一个地面段节点通信以接入所述因特网并且被配置成仅在直接与地面段节点的通信链路或者经由与所述多个移动段节点中的其他移动段节点与地面段节点的通信链路为不可用时才与所述至少一个空间段节点通信。
7.如权利要求6所述的网络,其特征在于,所述移动段节点包括配置成支持接入终端(AT)模式和接入点(AP)模式的至少一个调制解调器模块。
8.如权利要求6所述的网络,其特征在于,所述移动段节点被配置成:
传送探测信号以供由其他移动段节点发现;
接收来自所述其他移动段节点的响应消息;以及
响应于接收到所述响应消息而建立与所述其他移动段节点的通信链路。
9.如权利要求6所述的网络,其特征在于,所述移动段节点被配置成基于通信链路的测得的信号干扰加噪声比(SINR)来自适应地重用频率。
10.如权利要求6所述的网络,其特征在于,所述移动段节点被配置成响应于与所述移动段节点中的另一移动段节点对应的链路上的信号干扰加噪声比(SINR)测量而自适应地改变链路级数据率。
11.如权利要求10所述的网络,其特征在于,所述移动段节点被配置成根据所述链路级数据率来自适应地改变链路级功率电平。
12.如权利要求6所述的网络,其特征在于,所述移动段节点配置有自适应波束成形天线以将波束指向所述移动段节点中的其他移动段节点。
13.如权利要求12所述的网络,其特征在于,所述移动段节点被配置成在宽波束上发送探测消息并且在定向波束上接收响应。
14.一种用于无线通信的系统,包括:
用于由混合卫星-网状网络中的第一移动段节点执行第一尝试以直接地或经由所述混合卫星-网状网络中的第二移动段节点来建立至所述混合卫星-网状网络中的任何地面段节点的通信路径的装置;
用于确定由所述第一移动段节点进行的所述第一尝试的失败或成功的装置;以及
用于响应于确定所述第一尝试的失败而由所述第一移动段节点执行第二尝试以经由所述混合卫星-网状网络中的卫星段来建立至所述混合卫星-网状网络中的任何地面段节点的通信路径的装置。
15.一种用于无线通信的装置,包括:
至少一个处理器;以及
耦合至所述至少一个处理器的存储器,所述至少一个处理器被配置成:
由混合卫星-网状网络中的第一移动段节点执行第一尝试以直接地或经由所述混合卫星-网状网络中的第二移动段节点来建立至所述混合卫星-网状网络中的任何地面段节点的通信路径;
确定由所述第一移动段节点进行的所述第一尝试的失败或成功;以及
响应于确定所述第一尝试的失败而由所述第一移动段节点执行第二尝试以经由所述混合卫星-网状网络中的卫星段来建立至所述混合卫星-网状网络中的任何地面段节点的通信路径。
16.如权利要求15所述的装置,其特征在于,所述处理器被配置成:
响应于确定所述第一尝试的成功而由所述第一移动段节点在所建立的通信路径上向和从因特网发送和接收分组。
17.如权利要求15所述的装置,其特征在于,所述处理器被配置成:
响应于确定所述第二尝试的成功而由所述第一移动段节点在所建立的通信路径上经由所述卫星段向和从因特网发送和接收分组;以及
在经由所述卫星段发送和接收分组时,由所述第一移动段节点连续重复所述第一尝试。
18.如权利要求17所述的装置,其特征在于,所述处理器被配置成:
响应于确定所重复的第一尝试中的任何一个第一尝试的成功,中止由所述第一移动段节点经由所述卫星段进行的通信。
19.如权利要求18所述的装置,其特征在于,所述处理器被配置成:
由所述第一移动段节点在所建立的通信路径上向和从因特网发送和接收分组。
20.一种用于在无线网络中进行无线通信的计算机程序产品,包括:
其上记录有程序代码的计算机可读介质,所述程序代码包括:
用于由混合卫星-网状网络中的第一移动段节点执行第一尝试以直接地或经由所述混合卫星-网状网络中的第二移动段节点来建立至所述混合卫星-网状网络中的任何地面段节点的通信路径的程序代码;
用于确定由所述第一移动段节点进行的所述第一尝试的失败或成功的程序代码;以及
用于响应于确定所述第一尝试的失败而由所述第一移动段节点执行第二尝试以经由所述混合卫星-网状网络中的卫星段来建立至所述混合卫星-网状网络中的任何地面段节点的通信路径的程序代码。
CN201180024432.0A 2010-05-18 2011-05-18 用于飞行器和船舶因特网服务的混合卫星和网状网络系统、方法和装置 Active CN102893538B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US34588410P 2010-05-18 2010-05-18
US61/345,884 2010-05-18
US13/109,302 2011-05-17
US13/109,302 US9397745B2 (en) 2010-05-18 2011-05-17 Hybrid satellite and mesh network system for aircraft and ship internet service
PCT/US2011/036994 WO2011146613A1 (en) 2010-05-18 2011-05-18 A hybrid satellite and mesh network system for aircraft and ship internet service

Publications (2)

Publication Number Publication Date
CN102893538A true CN102893538A (zh) 2013-01-23
CN102893538B CN102893538B (zh) 2016-02-10

Family

ID=44972437

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180024432.0A Active CN102893538B (zh) 2010-05-18 2011-05-18 用于飞行器和船舶因特网服务的混合卫星和网状网络系统、方法和装置

Country Status (6)

Country Link
US (1) US9397745B2 (zh)
EP (1) EP2572459B1 (zh)
JP (1) JP5571245B2 (zh)
KR (1) KR101478688B1 (zh)
CN (1) CN102893538B (zh)
WO (1) WO2011146613A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103313259A (zh) * 2013-05-20 2013-09-18 南京邮电大学 低空气球荷载的中继应急无线数据通信架构
CN105917596A (zh) * 2014-03-28 2016-08-31 谷歌公司 全球通信网络
CN106612540A (zh) * 2015-10-23 2017-05-03 华为技术有限公司 下行同步的方法、用户设备以及基站
CN109379902A (zh) * 2016-03-24 2019-02-22 世界卫星有限公司 基于卫星互联网访问和传输的准入控制系统
CN109417420A (zh) * 2016-07-15 2019-03-01 高通股份有限公司 用于无人飞行器的动态波束转向
CN110999128A (zh) * 2017-08-02 2020-04-10 高通股份有限公司 使用网状网络来共享关键飞行信息

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2477960A (en) * 2010-02-19 2011-08-24 Thales Holdings Uk Plc Integrated aircraft radio system in which a plurality of radios are networked together
DE102011004363B4 (de) * 2011-02-18 2023-10-05 Airbus Operations Gmbh Steuervorrichtung zum Steuern von Netzwerkteilnehmern, Verfahren zum Betreiben eines Computernetzwerks und Computernetzwerk
KR20130074901A (ko) * 2011-12-27 2013-07-05 한국전자통신연구원 해상 통신 시스템 및 방법
US9088332B2 (en) 2012-10-05 2015-07-21 Telefonaktiebolaget L M Ericsson (Publ) Mitigation of interference from a mobile relay node to heterogeneous networks
CN103731194A (zh) * 2012-10-15 2014-04-16 中国科学院光电研究院 应急无线通信系统及方法
US9686008B2 (en) * 2013-03-15 2017-06-20 Orbital Sciences Corporation Protection of commercial communications
CN103402235B (zh) * 2013-07-22 2016-01-13 上海交通大学 基于定向天线的多速率多路径路由优化方法
US9473230B2 (en) * 2013-12-19 2016-10-18 It Centricity, Llc System and method for wireless broadband communication
US9438341B2 (en) * 2014-01-21 2016-09-06 Laser Light Communications Llc Optical communication system
US9859972B2 (en) * 2014-02-17 2018-01-02 Ubiqomm Llc Broadband access to mobile platforms using drone/UAV background
US9479964B2 (en) 2014-04-17 2016-10-25 Ubiqomm Llc Methods and apparatus for mitigating fading in a broadband access system using drone/UAV platforms
US9614608B2 (en) 2014-07-14 2017-04-04 Ubiqomm Llc Antenna beam management and gateway design for broadband access using unmanned aerial vehicle (UAV) platforms
EP2999136B1 (en) * 2014-09-17 2018-10-31 Iridium Satellite LLC Satellite communications networking
US9692499B2 (en) * 2014-10-06 2017-06-27 Harris Corporation Terrestrial based air-to-ground communications system and related methods
CN104408278A (zh) * 2014-10-09 2015-03-11 哈尔滨工程大学 一种基于干扰噪声协方差矩阵估计的稳健波束形成方法
US9571180B2 (en) 2014-10-16 2017-02-14 Ubiqomm Llc Unmanned aerial vehicle (UAV) beam forming and pointing toward ground coverage area cells for broadband access
US9712228B2 (en) 2014-11-06 2017-07-18 Ubiqomm Llc Beam forming and pointing in a network of unmanned aerial vehicles (UAVs) for broadband access
US10165405B2 (en) * 2014-11-28 2018-12-25 Joel Ho EMP-shielded, power-independent SMS text tower system for nuclear communications
KR101606408B1 (ko) * 2015-05-08 2016-03-28 군산대학교산학협력단 항공 통신 네트워크의 성능 측정방법
US9590720B2 (en) 2015-05-13 2017-03-07 Ubiqomm Llc Ground terminal and gateway beam pointing toward an unmanned aerial vehicle (UAV) for network access
US9660718B2 (en) 2015-05-13 2017-05-23 Ubiqomm, LLC Ground terminal and UAV beam pointing in an unmanned aerial vehicle (UAV) for network access
US9622277B1 (en) 2015-06-22 2017-04-11 X Development Llc Coordinating backhaul links between ground stations and airborne backhaul network
EP3363072A1 (en) * 2015-10-14 2018-08-22 Telefonaktiebolaget LM Ericsson (PUBL) Antenna alignment using unmanned aerial vehicle
US9980267B2 (en) 2016-05-06 2018-05-22 Bridgewest Finance Llc Unmanned aerial vehicle (UAV) beam pointing and data rate optimization for high throughput broadband access
US9900082B1 (en) 2016-06-13 2018-02-20 Stitel Networks, LLC Converged data communications in satellite networks
US10313686B2 (en) 2016-09-20 2019-06-04 Gopro, Inc. Apparatus and methods for compressing video content using adaptive projection selection
CN107888239B (zh) * 2016-09-30 2020-05-15 电信科学技术研究院 一种波束扫描方法及相关设备
US10206161B2 (en) * 2016-10-13 2019-02-12 The Boeing Company Wireless communications system and method for managing and optimizing a wireless communications network
FR3069523A1 (fr) * 2017-07-27 2019-02-01 Prodose Procede de realisation d'un reseau pour la fourniture notamment d'internet sur toute la surface du globe terrestre, avion permettant de le mettre en oeuvre
CN107707292B (zh) * 2017-11-07 2023-10-27 海南大学 基于无人船基站组网的lte海上应急通信系统
US11258575B2 (en) * 2017-11-09 2022-02-22 Qualcomm Incorporated Duplexing modes based on beam configurations for wireless communications
KR102026641B1 (ko) * 2018-01-16 2019-09-30 국방과학연구소 위성 통신망을 이용한 통신 시스템
US10534404B2 (en) 2018-02-09 2020-01-14 Onet Global, Inc. Wireless network systems and related methods for marine applications
US11443640B2 (en) 2018-10-19 2022-09-13 Anduril Industries, Inc. Ruggedized autonomous helicopter platform
US10819437B2 (en) * 2019-03-05 2020-10-27 Meadowave, Llc Miniature embedded self-organized optical network
US10892818B2 (en) * 2019-05-07 2021-01-12 Contec Co., Ltd. System, apparatus and method for managing satellite operation service
US11621768B2 (en) 2019-12-24 2023-04-04 Huawei Technologies Co., Ltd. Terrestrial and non-terrestrial communication systems, apparatuses, and methods
US20220095303A1 (en) * 2020-09-18 2022-03-24 EOS Defense Systems USA, Inc. Satellite system for allocating portions of a frequency band
US11444844B2 (en) * 2020-10-13 2022-09-13 Softbank Corp. Simulating a dynamic hybrid network
US11816937B2 (en) * 2020-11-18 2023-11-14 Honeywell International Inc. Systems and methods for reconfigurable on-vehicle data routing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1239848A (zh) * 1998-05-07 1999-12-29 洛拉尔太空通讯公司 双向/广播移动和便携卫星通信系统
CN1282154A (zh) * 1999-07-08 2001-01-31 环球星有限合伙人公司 低地球轨道分布网关通信系统
CN1579056A (zh) * 2001-08-30 2005-02-09 波音公司 使用多个同步数据率的卫星通信系统和方法
US20050053026A1 (en) * 2003-09-10 2005-03-10 Arinc, Incorporated Mobile airborne high-speed broadband communications systems and methods
EP1926234A2 (en) * 2006-11-21 2008-05-28 Honeywell International, Inc. System and method for transmitting information using aircraft as transmission relays

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03151618A (ja) 1989-11-08 1991-06-27 Nippon Chemicon Corp 電解コンデンサ用電解液
US7107062B2 (en) * 1992-03-06 2006-09-12 Aircell, Inc. System for managing call handoffs between an aircraft and multiple cell sites
US6018659A (en) 1996-10-17 2000-01-25 The Boeing Company Airborne broadband communication network
US8982856B2 (en) 1996-12-06 2015-03-17 Ipco, Llc Systems and methods for facilitating wireless network communication, satellite-based wireless network systems, and aircraft-based wireless network systems, and related methods
US5818389A (en) * 1996-12-13 1998-10-06 The Aerospace Corporation Method for detecting and locating sources of communication signal interference employing both a directional and an omni antenna
US6262659B1 (en) * 1998-03-03 2001-07-17 General Electric Company Telemetry of diagnostic messages from a mobile asset to a remote station
EP1017188A3 (en) 1998-12-30 2001-12-12 Lucent Technologies Inc. Method and system for high speed data access from remote locations
JP3799904B2 (ja) 1999-10-25 2006-07-19 三菱電機株式会社 通信装置
US7072977B1 (en) 2001-04-10 2006-07-04 Codem Systems, Inc. Method and apparatus for creating links to extend a network
US6990350B2 (en) 2002-07-09 2006-01-24 University Of Maryland Optical wireless networks with adjustable topologies
GB0324763D0 (en) 2003-10-23 2003-11-26 Oxagen Ltd Use of compounds in therapy
US7440451B2 (en) 2004-04-16 2008-10-21 The Boeing Company Global internet protocol prefix number mobility
US8023936B2 (en) 2004-04-19 2011-09-20 The Boeing Company Method and system for monitoring ad-hoc network nodes
US20070042773A1 (en) 2005-08-18 2007-02-22 Alcorn Donald L Broadband wireless communication system for in-flight aircraft
US8254913B2 (en) 2005-08-18 2012-08-28 Smartsky Networks LLC Terrestrial based high speed data communications mesh network
US8125961B2 (en) 2005-10-25 2012-02-28 Qualcomm Incorporated Four way handshake for robust channel estimation and rate prediction
US20090092074A1 (en) 2005-11-22 2009-04-09 The University Of Sydney Aeronautical ad-hoc networks
US8671432B2 (en) 2007-10-16 2014-03-11 Livetv, Llc Aircraft in-flight entertainment system having a dual-beam antenna and associated methods
WO2009036391A2 (en) 2007-09-12 2009-03-19 Proximetry, Inc. Systems and methods for delivery of wireless data and multimedia content to aircraft
US9264126B2 (en) 2007-10-19 2016-02-16 Honeywell International Inc. Method to establish and maintain an aircraft ad-hoc communication network
US9467221B2 (en) 2008-02-04 2016-10-11 Honeywell International Inc. Use of alternate communication networks to complement an ad-hoc mobile node to mobile node communication network
TW201001955A (en) 2008-06-19 2010-01-01 Hsin-Chi Su Wireless communication system of sea-based vehicle and flight vehicle, and the wireless communication system of the sea-based vehicle thereof
US8190147B2 (en) 2008-06-20 2012-05-29 Honeywell International Inc. Internetworking air-to-air network and wireless network
US20090318138A1 (en) * 2008-06-20 2009-12-24 Honeywell International Inc. System and method for in-flight wireless communication
KR101159889B1 (ko) * 2008-12-19 2012-06-25 한국전자통신연구원 위성 및 위성의 지상보조장치를 이용한 이동위성서비스의 주파수 공유 장치 및 방법
ES2473515T3 (es) * 2009-03-30 2014-07-07 The Boeing Company Red ad hoc móvil
US8559391B2 (en) 2010-02-12 2013-10-15 Wei Lu Open wireless architecture (OWA) unified airborne and terrestrial communications architecture
US20110280178A1 (en) * 2010-05-12 2011-11-17 ODN, Inc. Method and System for Providing Emergency Communications via Satellite

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1239848A (zh) * 1998-05-07 1999-12-29 洛拉尔太空通讯公司 双向/广播移动和便携卫星通信系统
CN1282154A (zh) * 1999-07-08 2001-01-31 环球星有限合伙人公司 低地球轨道分布网关通信系统
CN1579056A (zh) * 2001-08-30 2005-02-09 波音公司 使用多个同步数据率的卫星通信系统和方法
US20050053026A1 (en) * 2003-09-10 2005-03-10 Arinc, Incorporated Mobile airborne high-speed broadband communications systems and methods
EP1926234A2 (en) * 2006-11-21 2008-05-28 Honeywell International, Inc. System and method for transmitting information using aircraft as transmission relays

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103313259A (zh) * 2013-05-20 2013-09-18 南京邮电大学 低空气球荷载的中继应急无线数据通信架构
CN103313259B (zh) * 2013-05-20 2018-05-04 南京邮电大学 低空气球荷载的中继应急无线数据通信架构
CN105917596A (zh) * 2014-03-28 2016-08-31 谷歌公司 全球通信网络
CN105917596B (zh) * 2014-03-28 2019-09-10 谷歌有限责任公司 全球通信网络
CN106612540A (zh) * 2015-10-23 2017-05-03 华为技术有限公司 下行同步的方法、用户设备以及基站
CN106612540B (zh) * 2015-10-23 2020-12-15 华为技术有限公司 下行同步的方法、用户设备以及基站
CN109379902A (zh) * 2016-03-24 2019-02-22 世界卫星有限公司 基于卫星互联网访问和传输的准入控制系统
CN109379902B (zh) * 2016-03-24 2021-04-16 世界卫星有限公司 基于卫星互联网访问和传输的准入控制系统
CN109417420A (zh) * 2016-07-15 2019-03-01 高通股份有限公司 用于无人飞行器的动态波束转向
CN109417420B (zh) * 2016-07-15 2021-10-12 高通股份有限公司 用于无人飞行器的动态波束转向
CN110999128A (zh) * 2017-08-02 2020-04-10 高通股份有限公司 使用网状网络来共享关键飞行信息
CN111034070A (zh) * 2017-08-02 2020-04-17 高通股份有限公司 用于飞行器的定向波束网状网络

Also Published As

Publication number Publication date
JP5571245B2 (ja) 2014-08-13
EP2572459A1 (en) 2013-03-27
KR20130023273A (ko) 2013-03-07
US9397745B2 (en) 2016-07-19
WO2011146613A1 (en) 2011-11-24
EP2572459B1 (en) 2018-06-27
KR101478688B1 (ko) 2015-01-02
CN102893538B (zh) 2016-02-10
US20110286325A1 (en) 2011-11-24
JP2013532415A (ja) 2013-08-15

Similar Documents

Publication Publication Date Title
CN102893538B (zh) 用于飞行器和船舶因特网服务的混合卫星和网状网络系统、方法和装置
US10292058B2 (en) Radio over fiber antenna extender systems and methods for high speed trains
US9537545B2 (en) Millimeter wave non-line-of-sight
US9614608B2 (en) Antenna beam management and gateway design for broadband access using unmanned aerial vehicle (UAV) platforms
CN107070532B (zh) 用于在机载无线蜂窝网络中提供高速通信服务的系统
EP1881635B1 (en) Hierarchical networks utilizing frame transmissions pipelining
US10833824B2 (en) Self-configurable mesh network for wireless broadband access
CN109565324A (zh) 用户设备操作管理的系统和方法
US20150236779A1 (en) Broadband access system via drone/uav platforms
KR101854899B1 (ko) 다중 셀을 가지는 이동 통신 시스템에서의 통신 방법 및 빔 형성 장치
WO2008127814A1 (en) Radio resource management in wireless cellular networks having multi-hop relay stations
US10644784B2 (en) Communications system for providing broadband access to aerial platforms
CN110430542B (zh) 一种面向无人机站点群组网的快速波束跟踪方法
US9231832B2 (en) Automatically-reconfigurable tropospheric scatter communication link
CN113228533A (zh) 通信网络和进行连接的方法
CN113228534A (zh) 通信网络和维持连接的方法
Nomikos et al. Uplink NOMA for UAV-aided maritime Internet-of-Things
Al-Bzoor et al. A directional selective power routing protocol for the internet of underwater things
WO2006115288A1 (en) Wireless communications system
CN116388836B (zh) 一种星地融合网络波束成形设计方法
Na et al. Joint trajectory and power optimization for NOMA-based high altitude platform relaying system
WO2021241678A1 (ja) 通信システム
Takai et al. Seamless radio area formation by distributed antennas using PSK-VP scheme for communication with high-speed objects

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant