CN102891956A - Method for designing compression imaging system based on coded aperture lens array - Google Patents
Method for designing compression imaging system based on coded aperture lens array Download PDFInfo
- Publication number
- CN102891956A CN102891956A CN2012103597778A CN201210359777A CN102891956A CN 102891956 A CN102891956 A CN 102891956A CN 2012103597778 A CN2012103597778 A CN 2012103597778A CN 201210359777 A CN201210359777 A CN 201210359777A CN 102891956 A CN102891956 A CN 102891956A
- Authority
- CN
- China
- Prior art keywords
- array
- aperture
- sub
- coded
- lens array
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 43
- 238000000034 method Methods 0.000 title claims abstract description 17
- 230000006835 compression Effects 0.000 title claims description 7
- 238000007906 compression Methods 0.000 title claims description 7
- 238000005070 sampling Methods 0.000 claims abstract description 33
- 230000003287 optical effect Effects 0.000 claims abstract description 17
- 238000012545 processing Methods 0.000 claims abstract description 9
- 238000013461 design Methods 0.000 claims abstract description 5
- 125000004122 cyclic group Chemical group 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 abstract description 6
- 238000013500 data storage Methods 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 238000009795 derivation Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012634 optical imaging Methods 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229920005479 Lucite® Polymers 0.000 description 1
- -1 Merton Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920006383 Tyril Polymers 0.000 description 1
- 229920004738 ULTEM® Polymers 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000012732 spatial analysis Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/95—Computational photography systems, e.g. light-field imaging systems
Landscapes
- Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Theoretical Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Studio Devices (AREA)
Abstract
本发明为一种基于编码孔径透镜阵列的压缩成像系统设计方法。该发明包括视场光阑阵列、编码孔径模板阵列、子孔径拼接透镜阵列、编码采样模板阵列以及探测器像面阵列。视场光阑阵列实现对大场景的分块处理,编码孔径模板阵列对来自场景目标的光线进行空间光调制,调制后的光线经过子孔径拼接透镜阵列产生光线会聚,会聚光线再经位于焦平面前端的编码采样模板阵列进行空间光线采样,最终在探测器像面阵列上压缩成像。基于编码孔径透镜阵列的压缩成像系统能够对目标场景同步进行压缩采样,可大幅降低图像信号的采样频率及数据存储和传输代价,采用子孔径透镜阵列对大场景分块成像可大幅降低测量矩阵所需要的存储空间,大幅减少光学系统标定的工作量。
The invention is a design method of a compressed imaging system based on a coded aperture lens array. The invention includes a field diaphragm array, a coded aperture template array, a sub-aperture spliced lens array, a coded sampling template array and a detector image plane array. The field of view diaphragm array realizes the block processing of large scenes, and the coded aperture template array performs spatial light modulation on the light from the scene target. The front-end coded sampling template array performs spatial light sampling, and finally compresses the imaging on the detector image plane array. The compressed imaging system based on the coded aperture lens array can compress and sample the target scene synchronously, which can greatly reduce the sampling frequency of the image signal and the cost of data storage and transmission. The required storage space greatly reduces the workload of optical system calibration.
Description
技术领域 technical field
本发明涉及一种基于编码孔径透镜阵列的压缩成像系统设计方法,可用于不同谱段的高分辨率成像系统属于光学成像领域。The invention relates to a design method of a compressed imaging system based on a coded aperture lens array, and a high-resolution imaging system applicable to different spectral bands belongs to the field of optical imaging.
背景技术 Background technique
随着人们对图像信息需求量的不断增加,携带图像信息的信号带宽越来越宽。以Nyquist采样定理为基础的图像信号处理框架就必然要求成像系统的采样速率和处理速度与日剧增。更高分辨率、更密集采样、海量图像信号的获取和传输使得传统成像系统无论是硬件和算法方面都面临着巨大的挑战。为应对该问题,在实际应用过程中,人们常将DSP加入传感器,用压缩机制降低数据存储、处理和传输的成本。但是从另一方面却造成系统需要进行繁琐的图像域变换、系数排序以及编解码工作,额外增加了传感器的复杂度和成本。然而令人感到遗憾的是,高速采样的结果换来的却是,超过80%的非重要数据被抛弃。这种传统的“高速采样”再“压缩”的成像模式浪费了大量的采样资源。若能够实现对图像信息的同步压缩采样,在减少数据量的同时能够携带原始图像的完整信息,可避免传统成像方式先采样后压缩的复杂数据处理和传输过程。从而极大程度地降低图像信号的采样频率以及数据存储和传输代价,显著地降低成像系统的硬件成本。With the continuous increase of people's demand for image information, the signal bandwidth carrying image information is getting wider and wider. The image signal processing framework based on the Nyquist sampling theorem will inevitably require the sampling rate and processing speed of the imaging system to increase day by day. Higher resolution, denser sampling, acquisition and transmission of massive image signals make traditional imaging systems face huge challenges both in terms of hardware and algorithms. In order to deal with this problem, in the actual application process, people often add DSP to the sensor, and use the compression mechanism to reduce the cost of data storage, processing and transmission. However, on the other hand, the system needs to perform cumbersome image domain transformation, coefficient sorting, and codec work, which additionally increases the complexity and cost of the sensor. Unfortunately, the result of high-speed sampling is that more than 80% of non-important data is discarded. This traditional "high-speed sampling" and then "compression" imaging mode wastes a lot of sampling resources. If the synchronous compressed sampling of image information can be realized, the complete information of the original image can be carried while reducing the amount of data, and the complex data processing and transmission process of sampling first and then compressing in the traditional imaging method can be avoided. Therefore, the sampling frequency of the image signal and the cost of data storage and transmission are greatly reduced, and the hardware cost of the imaging system is significantly reduced.
压缩成像技术是在压缩感知理论的基础上迅速发展起来的崭新科学研究方向。2006年,美国著名科学家Candés和Donoho在相关研究基础上正式提出了压缩感知理论。该理论突破了Nyquist采样定理瓶颈,认为对信号的采样量不取决于信号的带宽,而取决于信号的内部结构。如果信号是稀疏的或者在某个变换域内是稀疏的,那么就可以用一个与变换基不相关并且满足约束等距性的测量矩阵将高维信号投影至低维空间。通过求解最小0-范数优化问题从少量的投影测量中以高概率重构出原始信号。目前针对压缩成像技术进行研究的主要单位有美国的Rice大学,Arizona大学、MIT、Duke大学以及瑞士联邦理工学院等。2006年美国的Rice大学成功研制出单像素数码相机。其设计原理是通过光路系统将成像目标投影至数字微镜器件上进行空间光调制,其反射光由透镜聚焦到单个光敏二极管,光敏二极管两端的电压值即为一个测量值。将此投影操作重复多次,即可获得多个观测值。采用最小全变分图像重构算法恢复出原始目标图像。WL Chan等人提出基于单像素相机概念的太赫兹成像新方法,克服了现有太赫兹成像系统的缺点,能够提供较高的处理速度和较强的探测能力。Arizona大学的Baheti和Neifeld等人对Rice大学开发的单像素相机进行了光路结构的改进,使其光学结构更加紧凑,光能利用率更加高效。特拉华大学的研究人员将单像素成像的思想应用于电子显微镜系统。然而,单像素压缩成像系统是以串行的工作方式输出压缩采样的图像信号。其采用的是数字微镜器件对成像目标进行空间光调制,需采样投影多次,才能获得重构出原始图像所需的测量值,因此系统较为耗时。对于运动场景或视频图像的压缩成像具有一定的局限性。Compressed imaging technology is a new scientific research direction developed rapidly on the basis of compressed sensing theory. In 2006, famous American scientists Candés and Donoho formally proposed the theory of compressed sensing based on related research. This theory breaks through the bottleneck of Nyquist sampling theorem, and believes that the sampling amount of a signal does not depend on the bandwidth of the signal, but on the internal structure of the signal. If the signal is sparse or sparse in a transform domain, then a measurement matrix that is uncorrelated with the transform basis and satisfies constrained isometry can be used to project the high-dimensional signal to a low-dimensional space. The original signal is reconstructed with high probability from a small number of projection measurements by solving the minimum 0-norm optimization problem. At present, the main units conducting research on compressed imaging technology include Rice University in the United States, University of Arizona, MIT, Duke University, and Swiss Federal Institute of Technology. In 2006, Rice University in the United States successfully developed a single-pixel digital camera. Its design principle is to project the imaging target onto the digital micromirror device through the optical path system for spatial light modulation, and the reflected light is focused by the lens to a single photodiode, and the voltage value at both ends of the photodiode is a measured value. Repeat this projection operation multiple times to obtain multiple observations. The original target image is recovered by using the minimum total variation image reconstruction algorithm. WL Chan et al. proposed a new terahertz imaging method based on the concept of a single-pixel camera, which overcomes the shortcomings of existing terahertz imaging systems and can provide higher processing speed and stronger detection capabilities. Baheti and Neifeld at the University of Arizona improved the optical path structure of the single-pixel camera developed by Rice University, making its optical structure more compact and its light energy utilization more efficient. Researchers at the University of Delaware have applied the idea of single-pixel imaging to an electron microscope system. However, the single-pixel compressed imaging system outputs compressed and sampled image signals in a serial working manner. It uses a digital micromirror device to perform spatial light modulation on the imaging target. It needs to sample and project multiple times to obtain the measurement values required to reconstruct the original image, so the system is time-consuming. Compressed imaging of moving scenes or video images has certain limitations.
MIT的freeman研究小组提出采用随机反射镜的压缩成像方式。与传统成像方式显著不同之处在于,系统由平面反射镜、随意拼接的反射镜片组和探测器构成。由于来自物体上每一点的光线都有可能经由随机反光镜片在探测器上成像,因此任意拼接的反光镜片实际上是实现了随机投影矩阵的功能。但是系统采用随意拼接的镜片实现对目标图像的随机测量,因此存在投影矩阵标定难的问题。MIT's freeman research group proposed a compression imaging method using random mirrors. The significant difference from the traditional imaging method is that the system is composed of a plane mirror, a random spliced mirror group and a detector. Since the light from every point on the object may be imaged on the detector through the random mirror, the arbitrary splicing of the mirror actually realizes the function of the random projection matrix. However, the system uses randomly spliced lenses to achieve random measurement of the target image, so there is a problem of difficult calibration of the projection matrix.
Duke大学的研究小组提出采用编码孔径以并行的方式实现目标物体的压缩成像。但是,由于该工作才初步展开,就孔径的编码模式,孔径的尺寸大小以及编码孔径模板与压缩图像的恢复精度之间的关系均未进行深入的研究。此外,该压缩成像系统的投影矩阵标定工作量巨大。大场景图像的压缩成像成为该系统的技术难点。The Duke University research group proposes the use of coded apertures to achieve compressed imaging of target objects in a parallel fashion. However, since this work has only been carried out initially, no in-depth research has been carried out on the coding mode of the aperture, the size of the aperture, and the relationship between the coding aperture template and the recovery accuracy of the compressed image. In addition, the projection matrix calibration workload of the compressed imaging system is huge. Compressed imaging of large scene images has become a technical difficulty of the system.
发明内容 Contents of the invention
本发明旨在克服现有压缩成像系统成像时间过长,投影矩阵标定工作量大的问题。基于编码孔径透镜阵列的压缩成像系统采用视场光阑阵列实现对大场景的分块处理,将整个光学系统分为若干具有相同形式与功能的子光学系统,编码孔径模板阵列对场景目标进行空间光调制,利用子孔径拼接透镜阵列实现大视场的光学系统成像,并采用编码采样模板阵列对系统产生的会聚光线进行随机采样,实现单次曝光的压缩成像。系统易于加工和检测,可实现大视场、低分辨率探测器的高分辨率成像,可应用于不同谱段的高分辨率光学成像。The invention aims to overcome the problems of long imaging time and heavy calibration workload of projection matrix in the existing compressed imaging system. The compressed imaging system based on the coded aperture lens array uses the field diaphragm array to realize the block processing of the large scene, divides the entire optical system into several sub-optical systems with the same form and function, and the coded aperture template array performs spatial analysis of the scene objects. Light modulation, using the sub-aperture splicing lens array to realize the imaging of the optical system with a large field of view, and using the coded sampling template array to randomly sample the converging light generated by the system to realize the compressed imaging of a single exposure. The system is easy to process and detect, and can realize high-resolution imaging with a large field of view and a low-resolution detector, and can be applied to high-resolution optical imaging of different spectral bands.
本发明的详细内容如图1所示,由视场光阑阵列1,编码孔径模板阵列2,子孔径拼接透镜阵列3,编码采样模板阵列4和探测器像面阵列5构成。The details of the present invention are shown in FIG. 1 , which consists of a field stop array 1 , a coded aperture template array 2 , a sub-aperture spliced
视场光阑阵列1位于场景与编码孔径模板阵列2之间,编码孔径模板阵列2中的所有子模板都是采用特殊编码方式的编码孔径光阑,子孔径拼接透镜阵列3是n×n个子孔径拼接的正光焦度子透镜,n为正实数,其子孔径拼接透镜阵列的结构如图2所示,编码采样模板阵列4中所有子模板的编码方式都为高斯随机编码方式,编码采样模板阵列4位于焦平面探测器阵列像面5的前端。The field stop array 1 is located between the scene and the coded aperture template array 2. All sub-templates in the coded aperture template array 2 are coded aperture stops using a special coding method. The sub-aperture spliced
本发明的工作原理:为了使大视场范围内的场景目标物体能够在探测器像面阵列5上压缩成像,系统采用编码孔径透镜阵列的成像方式。设目标场景到子孔径拼接阵列的距离为d,视场光阑阵列1的作用是完成对大场景的均等分块,其位于场景与编码孔径模板阵列之间,设其到子孔径拼接透镜阵列的距离为t,编码孔径模板阵列2用于对场景目标进行空间光调制,将其紧贴子孔径拼接阵列中的透镜球面放置,场景目标经过编码孔径模板阵列2的空间光调制后照射到子孔径拼接的透镜阵列3上产生会聚的像,经过紧贴于探测器表面的编码采样模板阵列4的随机采样,最终在探测器像面阵列5上成像。其中,该光学系统是由若干具有相同形式与功能的子光学系统拼接构成,而每个子光学系统的光学结构的具体参数的确定可由几何光学知识得到,按如下步骤可进行计算推导:The working principle of the present invention: In order to compress and image the scene target objects within a large field of view on the detector image plane array 5, the system adopts the imaging mode of the coded aperture lens array. Assuming that the distance from the target scene to the sub-aperture splicing array is d, the function of the field stop array 1 is to complete the equal division of the large scene, which is located between the scene and the coded aperture template array, and set it to the sub-aperture splicing lens array The distance is t, the coded aperture template array 2 is used to perform spatial light modulation on the scene target, and it is placed close to the lens spherical surface in the sub-aperture splicing array, and the scene target is irradiated to the sub- A converging image is generated on the aperture-stitched
设h为子视场光阑半宽,hl为子透镜的通光口径半宽,hm为每一个分块区域的垂直半宽,L为视场光阑阵列中子视场光阑的间距,Δ为子孔径拼接透镜阵列中子透镜的间距,t为视场光阑阵列到子孔径拼接阵列的距离,d为场景到子孔径拼接阵列的距离,S为场景到视场光阑阵列的距离。Suppose h is the half-width of the sub-field diaphragm, h l is the half-width of the light aperture of the sub-lens, h m is the vertical half-width of each block area, and L is the value of the sub-field diaphragm in the field diaphragm array Δ is the distance between the sub-lenses in the sub-aperture spliced lens array, t is the distance from the field stop array to the sub-aperture spliced array, d is the distance from the scene to the sub-aperture spliced array, and S is the scene to the field stop array distance.
首先确定视场光阑阵列中每一个视场光阑的半宽h,子孔径拼接透镜阵列中每一个子透镜的通光口径半宽hl及分块场景半宽hm之间的关系。First determine the relationship between the half-width h of each field stop in the field stop array, the half-width h l of the clear aperture of each sub-lens in the sub-aperture spliced lens array, and the half-width h m of the segmented scene.
由图4所示,可根据几何知识得到如下式子:As shown in Figure 4, the following formula can be obtained according to geometric knowledge:
ΔMNG相似于ΔCDG可得:ΔMNG is similar to ΔCDG to obtain:
ΔGZC相似于ΔGOB可得:ΔGZC is similar to ΔGOB:
又因:d1+d2=tAnd because: d 1 +d 2 =t
由上述三式可得到公式:The formula can be obtained from the above three formulas:
其次,确定子视场光阑的间距。如图5所示,其推导过程如下:Second, determine the spacing of the sub-field diaphragms. As shown in Figure 5, the derivation process is as follows:
PO=QZ=2h+LPO=QZ=2h+L
所以子视场光阑的间距为:L=2hm-2h (2)Therefore, the distance between the sub-field diaphragms is: L=2h m -2h (2)
最后确定子孔径拼接透镜阵列中子透镜的间距。如图6所示,其具体推导过程如下:Finally, the pitch of the sub-lenses in the sub-aperture stitching lens array is determined. As shown in Figure 6, the specific derivation process is as follows:
ΔMUV相似于ΔFDV,可得:ΔMUV is similar to ΔFDV, and it can be obtained:
ΔFDV相似于ΔEBV,可得:ΔFDV is similar to ΔEBV, and it can be obtained:
其中,S=d-t。Among them, S=d-t.
由上述两式可得到公式:From the above two formulas, the formula can be obtained:
由上述(1)、(2)、(3)式可知,若我们选定其中某些参量,即可完全确定该系统的光学结构。From the above formulas (1), (2) and (3), it can be seen that if we select some of the parameters, the optical structure of the system can be completely determined.
本成像系统按照x、y、z右手空间坐标系有序排列,z轴方向为光轴方向,y轴在图示2平面内,x轴垂直于yz平面,yz坐标平面为光学系统的子午面。视场光阑阵列1,编码孔径模板阵列2,子孔径拼接透镜阵列3,编码采样模板阵列4和探测器像面阵列5中所有子系统的光轴和系统的光轴平行,在光的传播方向上依次排列,如图3所示。The imaging system is arranged in an orderly manner according to the x, y, z right-hand space coordinate system, the z-axis direction is the direction of the optical axis, the y-axis is in the plane shown in Figure 2, the x-axis is perpendicular to the yz plane, and the yz coordinate plane is the meridian plane of the optical system . Field diaphragm array 1, coded aperture template array 2, sub-aperture spliced
本发明有益效果:本压缩成像系统采用编码孔径透镜阵列对场景目标物体进行空间光调制,同步完成图像信号的采样与压缩,实现大视场、高分辨率的压缩成像,从而极大程度的降低图像信号的采样频率以及数据存储和传输代价,从源头上大幅降低所需获取的图像数据量。系统结构简单、易于加工和检测,特别适合应用在硬件资源受限的野外、机载或嵌入式的高分辨率轻型成像系统。Beneficial effects of the present invention: the compressed imaging system uses a coded aperture lens array to perform spatial light modulation on scene target objects, and simultaneously completes sampling and compression of image signals, thereby realizing compressed imaging with a large field of view and high resolution, thereby greatly reducing the The sampling frequency of image signals and the cost of data storage and transmission greatly reduce the amount of image data that needs to be acquired from the source. The system has a simple structure and is easy to process and detect, and is especially suitable for field, airborne or embedded high-resolution light imaging systems with limited hardware resources.
附图说明 Description of drawings
图1为本发明的结构示意图。Fig. 1 is a structural schematic diagram of the present invention.
图中,1-视场光阑阵列,2-编码孔径模板阵列,3-子孔径拼接透镜阵列,4-编码采样模板阵列,5-探测器像面阵列。In the figure, 1-field diaphragm array, 2-coded aperture template array, 3-sub-aperture spliced lens array, 4-coded sampling template array, 5-detector image plane array.
图2为本发明所采用的子孔径拼接透镜阵列示意图。FIG. 2 is a schematic diagram of a sub-aperture stitched lens array used in the present invention.
图3为本发明采用的坐标系示意图。Fig. 3 is a schematic diagram of a coordinate system used in the present invention.
图4为计算子视场光阑的半宽,子透镜通光口径半宽及分块场景半宽之间关系的几何示意图。Fig. 4 is a geometrical schematic diagram for calculating the half-width of the sub-field diaphragm, the half-width of the light aperture of the sub-lens and the half-width of the sub-block scene.
图5为计算子视场光阑间距的几何示意图。Fig. 5 is a schematic diagram of the geometry for calculating the distance between the diaphragms of the sub-fields of view.
图6为计算子孔径拼接透镜阵列中子透镜间距的几何示意图。Fig. 6 is a schematic diagram of the geometry for calculating the sub-lens spacing in the sub-aperture stitched lens array.
具体实施方式 Detailed ways
下面结合具体实施实例对本发明做进一步详细说明。在此,本发明的示意性实施例及其说明用于解释本发明,但并不作为对本发明的限定。The present invention will be described in further detail below in conjunction with specific implementation examples. Here, the exemplary embodiments and descriptions of the present invention are used to explain the present invention, but not to limit the present invention.
本发明按图1所示的结构实施,其详细内容如图1所示,系统由视场光阑阵列1,编码孔径模板阵列2,子孔径拼接透镜阵列3,编码采样模板阵列4和探测器像面阵列5构成。The present invention is implemented by the structure shown in Fig. 1, and its detailed content is as shown in Fig. 1, and system is by field stop array 1, code aperture template array 2, sub-aperture
如图1所示,以场景中的一个子系统B为例说明。子系统B的场景光线先通过所对应的子视场光阑,此子视场光阑能有效的使区域B的场景光线通过,并阻隔临近场景区域的光线通过,从而实现对整个场景的均等分块。通过子视场光阑的光线经过该子光学系统所对应的子编码孔径模版,实现对该区域图像信息的空间光调制,调制后的光线照射在子孔径拼接透镜阵列中所对应的子透镜上,其中,所述透镜阵列中的所有子透镜包括下述任一材料:丙烯酸树脂,环烯烃共聚物,聚苯乙烯,卢塞特树脂,Ultem,Tyril,Merton,或聚甲基戊烯等。最终通过一个相对应的子编码采样模版后成像于CCD探测器或其它阵列探测器以实现压缩成像。其中,编码孔径模板阵列2中的所有子编码孔径模板、编码采样模板阵列4中的所有子编码采样模板可采用栅格型分布的方形或圆形模板,栅格的尺寸大小介于纳米至微米之间,材质可采用玻璃材料。子编码孔径模板上各栅格的透光率可采用循环编码方式,子编码采样模板上各栅格透光率可采用0-1的伪高斯随机编码方式。As shown in Figure 1, a subsystem B in the scene is taken as an example for illustration. The scene light of subsystem B first passes through the corresponding sub-field diaphragm, which can effectively allow the scene light of area B to pass through, and block the light of the adjacent scene area from passing through, so as to achieve equalization of the entire scene. Block. The light passing through the sub-field diaphragm passes through the sub-coded aperture template corresponding to the sub-optical system to realize the spatial light modulation of the image information in the area, and the modulated light is irradiated on the corresponding sub-lens in the sub-aperture spliced lens array , wherein, all sub-lenses in the lens array include any of the following materials: acrylic resin, cycloolefin copolymer, polystyrene, Lucite resin, Ultem, Tyril, Merton, or polymethylpentene, etc. Finally, the image is imaged on a CCD detector or other array detectors through a corresponding sub-code sampling template to realize compressed imaging. Wherein, all the sub-coded aperture templates in the coded aperture template array 2 and all the sub-coded sampling templates in the coded sampling template array 4 can adopt grid-type distributed square or circular templates, and the size of the grid is between nanometers and micrometers Between, material can adopt glass material. The light transmittance of each grid on the sub-coding aperture template can adopt a cyclic coding method, and the light transmittance of each grid on the sub-coding sampling template can adopt a 0-1 pseudo-Gaussian random coding method.
本光学系统按照x、y、z右手空间坐标系有序排列,z轴方向为光轴方向,y轴在图示3平面内,x轴垂直于yz平面,yz坐标平面为光学系统的子午面。The optical system is arranged in an orderly manner according to the x, y, z right-hand space coordinate system, the z-axis direction is the direction of the optical axis, the y-axis is in the 3 planes shown in the figure, the x-axis is perpendicular to the yz plane, and the yz coordinate plane is the meridian plane of the optical system .
以上所述的具体描述,对发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific description above further elaborates the purpose, technical solution and beneficial effect of the invention. It should be understood that the above description is only a specific embodiment of the present invention and is not used to limit the protection of the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included in the protection scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012103597778A CN102891956A (en) | 2012-09-25 | 2012-09-25 | Method for designing compression imaging system based on coded aperture lens array |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012103597778A CN102891956A (en) | 2012-09-25 | 2012-09-25 | Method for designing compression imaging system based on coded aperture lens array |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102891956A true CN102891956A (en) | 2013-01-23 |
Family
ID=47535306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012103597778A Pending CN102891956A (en) | 2012-09-25 | 2012-09-25 | Method for designing compression imaging system based on coded aperture lens array |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102891956A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103384300A (en) * | 2013-07-03 | 2013-11-06 | 西安电子科技大学 | Super-resolution imaging system based on compressed coding apertures |
CN104503070A (en) * | 2014-12-10 | 2015-04-08 | 上海交通大学 | Wide-visual-field microscopic imaging system and method based on compressed sensing |
CN106067162A (en) * | 2016-06-03 | 2016-11-02 | 西安电子科技大学 | Integration imaging super-resolution micro unit pattern matrix gathers and reconstructing method |
CN108051368A (en) * | 2017-11-28 | 2018-05-18 | 华中科技大学 | A kind of periodicity sub-wavelength array of orifices sample template and its imaging method |
CN109410153A (en) * | 2018-12-07 | 2019-03-01 | 哈尔滨工业大学 | Object phase restoration methods based on code aperture and spatial light modulator |
CN109596069A (en) * | 2018-12-07 | 2019-04-09 | 哈尔滨工业大学 | Object phase restoration methods based on distortion grating and code aperture |
CN110231292A (en) * | 2019-06-28 | 2019-09-13 | 深圳先进技术研究院 | A kind of single pixel THz wave imaging method and system |
CN110569824A (en) * | 2019-09-18 | 2019-12-13 | 成都费恩格尔微电子技术有限公司 | optical structure for collecting biological characteristic graph and preparation method and application thereof |
CN111458861A (en) * | 2020-05-13 | 2020-07-28 | 中国科学院上海技术物理研究所 | Transformable spatial light modulator assembly and method based on diaphragm and electric platform |
CN114119343A (en) * | 2021-10-21 | 2022-03-01 | 浙江大学 | A Darkfield Image Storage Method Using Sparse Matrix Characteristics |
CN115103198A (en) * | 2022-06-14 | 2022-09-23 | 北京理工大学 | An intensity-encoded dual-channel compression imaging method and system with a real exit pupil |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1959341A (en) * | 2006-11-17 | 2007-05-09 | 中国科学院上海光学精密机械研究所 | Optical imaging distance measuring device for single-aperture multiple imaging |
CN101211005A (en) * | 2007-12-21 | 2008-07-02 | 中国科学院上海技术物理研究所 | Linear Wide Field of View Image Space Segmentation Optical Components |
CN101228460A (en) * | 2005-05-23 | 2008-07-23 | 秦内蒂克有限公司 | Coded Aperture Imaging System |
WO2010063991A1 (en) * | 2008-12-06 | 2010-06-10 | Qinetiq Limited | Optically diverse coded aperture imaging |
US20110079725A1 (en) * | 2009-10-02 | 2011-04-07 | Ut-Battelle, Llc | Apparatus and method to achieve high-resolution microscopy with non-diffracting or refracting radiation |
CN102438102A (en) * | 2011-10-26 | 2012-05-02 | 西安电子科技大学 | Super-resolution imaging system and imaging method based on compressed coding aperture |
-
2012
- 2012-09-25 CN CN2012103597778A patent/CN102891956A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101228460A (en) * | 2005-05-23 | 2008-07-23 | 秦内蒂克有限公司 | Coded Aperture Imaging System |
CN1959341A (en) * | 2006-11-17 | 2007-05-09 | 中国科学院上海光学精密机械研究所 | Optical imaging distance measuring device for single-aperture multiple imaging |
CN101211005A (en) * | 2007-12-21 | 2008-07-02 | 中国科学院上海技术物理研究所 | Linear Wide Field of View Image Space Segmentation Optical Components |
WO2010063991A1 (en) * | 2008-12-06 | 2010-06-10 | Qinetiq Limited | Optically diverse coded aperture imaging |
US20110079725A1 (en) * | 2009-10-02 | 2011-04-07 | Ut-Battelle, Llc | Apparatus and method to achieve high-resolution microscopy with non-diffracting or refracting radiation |
CN102438102A (en) * | 2011-10-26 | 2012-05-02 | 西安电子科技大学 | Super-resolution imaging system and imaging method based on compressed coding aperture |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103384300A (en) * | 2013-07-03 | 2013-11-06 | 西安电子科技大学 | Super-resolution imaging system based on compressed coding apertures |
CN104503070A (en) * | 2014-12-10 | 2015-04-08 | 上海交通大学 | Wide-visual-field microscopic imaging system and method based on compressed sensing |
CN104503070B (en) * | 2014-12-10 | 2016-08-24 | 上海交通大学 | A kind of wide visual field micro imaging system based on compressed sensing and method |
CN106067162A (en) * | 2016-06-03 | 2016-11-02 | 西安电子科技大学 | Integration imaging super-resolution micro unit pattern matrix gathers and reconstructing method |
CN106067162B (en) * | 2016-06-03 | 2019-03-01 | 西安电子科技大学 | The acquisition of integration imaging super-resolution micro unit pattern matrix and reconstructing method |
CN108051368A (en) * | 2017-11-28 | 2018-05-18 | 华中科技大学 | A kind of periodicity sub-wavelength array of orifices sample template and its imaging method |
CN109410153B (en) * | 2018-12-07 | 2021-11-16 | 哈尔滨工业大学 | Object phase recovery method based on coded aperture and spatial light modulator |
CN109410153A (en) * | 2018-12-07 | 2019-03-01 | 哈尔滨工业大学 | Object phase restoration methods based on code aperture and spatial light modulator |
CN109596069A (en) * | 2018-12-07 | 2019-04-09 | 哈尔滨工业大学 | Object phase restoration methods based on distortion grating and code aperture |
CN110231292A (en) * | 2019-06-28 | 2019-09-13 | 深圳先进技术研究院 | A kind of single pixel THz wave imaging method and system |
CN110569824A (en) * | 2019-09-18 | 2019-12-13 | 成都费恩格尔微电子技术有限公司 | optical structure for collecting biological characteristic graph and preparation method and application thereof |
CN111458861A (en) * | 2020-05-13 | 2020-07-28 | 中国科学院上海技术物理研究所 | Transformable spatial light modulator assembly and method based on diaphragm and electric platform |
CN114119343A (en) * | 2021-10-21 | 2022-03-01 | 浙江大学 | A Darkfield Image Storage Method Using Sparse Matrix Characteristics |
CN114119343B (en) * | 2021-10-21 | 2023-02-28 | 浙江大学 | Dark field image storage method utilizing sparse matrix characteristic |
CN115103198A (en) * | 2022-06-14 | 2022-09-23 | 北京理工大学 | An intensity-encoded dual-channel compression imaging method and system with a real exit pupil |
CN115103198B (en) * | 2022-06-14 | 2024-06-04 | 北京理工大学 | Intensity coding type dual-channel compression imaging method and system with real exit pupil |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102891956A (en) | Method for designing compression imaging system based on coded aperture lens array | |
CN103428500B (en) | A kind of super-resolution big visual field infrared imaging method | |
CN107817641B (en) | Single-pixel camera system based on multimode optical fiber | |
CN103308189B (en) | Entanglement imaging system and method based on dual-compression coincidence measurements | |
CN103472457A (en) | Three-dimensional imaging system and method for calculating correlation flight time by means of sparse aperture compression | |
CN104021522A (en) | Target image separating device and method based on intensity correlated imaging | |
CN104407506A (en) | Compressive sensing theory-based digital holographic imaging device and imaging method | |
CN103217872B (en) | Detection device and detection method of micro-lens array for photoetching machine | |
CN110553955B (en) | A method and system for measuring particle size distribution based on light scattering field | |
CN104121990A (en) | Random grating based compressed sensing broadband hyperspectral imaging system | |
CN106405546B (en) | Rapid correlation imaging system and method based on compressed speckles | |
CN114659634A (en) | Micro-snapshot compressed spectral imaging detection device and detection method | |
CN108156399A (en) | Single pixel camera video imaging system based on compressive sensing theory | |
CN108663118B (en) | Infrared broadband hyperspectral computational imaging device and method | |
CN104992424A (en) | Single-pixel rapid active imaging system based on discrete cosine transform | |
CN112113661B (en) | A deep learning type snapshot spectral imaging device and its detection method | |
CN113365014B (en) | A parallel compressed sensing GPU accelerated real-time imaging system and method | |
Teng et al. | Time-encoded single-pixel 3D imaging | |
CN104581166A (en) | Multichannel acquired image-based compressive imaging system and method | |
CN104301634A (en) | Short-wave infrared single-pixel camera based on random sampling | |
CN117911784A (en) | Target image recognition system based on high-fidelity simulated photon neural network | |
CN105509880A (en) | Method and device for detecting terahertz radiation intensity distribution based on compressed sensing | |
CN103954357A (en) | Obtaining method of measurement matrixes of compression spectral imaging system | |
CN103986936B (en) | A kind of video compress acquisition system and its acquisition method | |
CN108881732A (en) | Single pixel camera high-quality video imaging system based on double Scale Matrixes algorithms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C05 | Deemed withdrawal (patent law before 1993) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130123 |