CN102890107A - 具有集成温度控制的微传感器 - Google Patents

具有集成温度控制的微传感器 Download PDF

Info

Publication number
CN102890107A
CN102890107A CN2012102379831A CN201210237983A CN102890107A CN 102890107 A CN102890107 A CN 102890107A CN 2012102379831 A CN2012102379831 A CN 2012102379831A CN 201210237983 A CN201210237983 A CN 201210237983A CN 102890107 A CN102890107 A CN 102890107A
Authority
CN
China
Prior art keywords
transducer
sensing region
heat energy
temperature sensor
semiconductor devices
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012102379831A
Other languages
English (en)
Inventor
O·莱恩尔
S·谢里安
R·山卡尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics Asia Pacific Pte Ltd
STMicroelectronics Pte Ltd
Original Assignee
STMicroelectronics Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STMicroelectronics Pte Ltd filed Critical STMicroelectronics Pte Ltd
Publication of CN102890107A publication Critical patent/CN102890107A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3272Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Ecology (AREA)
  • Urology & Nephrology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

本发明公开的实施例提供了一种具有集成温度控制的微传感器。包括集成热能源和集成温度传感器的微传感器能够提供对微传感器内的个别感测区域的局部化加热和温度控制。局部化温度控制允许在与校准传感器的相同温度下或者基本上相同温度下的分析物检测。通过在校准温度附近实现感测,可以获得更精确结果。此外,可以控制感测区域的温度,从而涉及到感测区域中的分析物的化学反应在它们的峰值反应速率出现。在峰值反应速率附近实现感测提高传感器的灵敏度,这之所以重要是因为传感器尺度减少并且生成的信号的量值减少。

Description

具有集成温度控制的微传感器
技术领域
本发明涉及一种包括一个或者多个传感器的集成半导体器件,该传感器用于感测和标识研究的样本中的分析物。
背景技术
对小尺度微传感器的需求已经造成对如下集成解决方案的研究,这些解决方案使用在制造半导体时获取的技术和知识。具体而言,已经研究了可以连接到用于化学和生化分析的外部装置的一次性类型的检测和诊断设备。
利用微传感器的检测和诊断设备包括承载芯片(特定传感器连接到该芯片)的一般为平坦类型的固体基底。这些传感器可能对各种分析物灵敏,该分析物例如包括生物分子(DNA、RNA、蛋白质、抗原、抗体、激素等)、微生物或者其部分(细菌、病菌、孢子、细胞等)和化学物(氧、一氧化碳、二氧化碳、葡萄糖等)。这些微传感器一般为具有有限使用(在使用特定微传感器的次数上或者微传感器被设计成检测的内容上有限)的类型。
例如在用于糖尿病患者的手持血液葡萄糖计量器中使用常见的有限使用的微传感器。校验个人的血液葡萄糖水平通常涉及到对手指的疼痛扎破以抽出血滴。将抽取的血液放置成与测试条接触,该测试条具有形式为各种电极的换能器,这些电极对在血液中的葡萄糖与电极之一上的葡萄糖氧化酶之间的化学反应灵敏。检测和处理来自电极的信号以确定在屏幕上向用户显示的血液葡萄糖数目。
微传感器的小型化转化成更小样本体积并且需要更小器件尺度。随着样本体积更小并且器件尺度更小,电化学传感器产生的电信号可以减少至纳安培级或者皮安培级。鉴于这样小的电信号以及对准确和可再现结果的需要,控制取得测量的条件变得越来越重要。
已知比如温度这样的条件直接影响化学反应速率。例如,存在如下最优温度,在葡萄糖与葡萄糖氧化酶之间的反应速率在该温度以上未增加。这一温度灵敏性造成从换能器输出的电流随着温度迫近最优反应温度而增加并且电流响应随着温度增加超出最优反应温度而减少。通过控制微传感器在化学反应出现的局部区域中的温度,可以最大化从换能器输出的电流,这将造成灵敏度增加并且干扰信号的影响减少。
微传感器的使用温度可以以其它方式影响传感器的准确度。例如,如果在特定温度校准传感器并且在不同温度实现测试,则可能不利地影响测量的准确度。
此外,在一些生物或者化学微传感器中,要求分析物经过膜扩散以到达换能器。膜的可渗透性可以依赖于扩散类别的特性和温度。当膜的可渗透性受温度影响时,在与校准温度不同的温度实现测量时,测量的准确度将减少。
发明内容
在本公开内容中描述对微传感器检测感兴趣的分析物的温度进行控制的解决方案。在某些实施例中,描述一种包括微传感器的半导体器件,该微传感器能够检测样本中的少量分析物。在这样的实施例中,微传感器产生响应于样本中存在的分析物浓度的信号(例如电信号或者光信号)。公开的微传感器包括形成于半导体衬底之上的感测区域。感测区域包括响应于在分析物与感测区域之间的相互作用而产生信号的换能器。微传感器包括产生热能的集成热能源和检测感测区域的温度的集成温度传感器。热能源和温度传感器与感测区域相邻并且配合以提供对感测区域的局部化加热和温度控制。
通过将感测区域的温度控制于传感器的校准温度或者附近,可以提高测量的准确度。此外,可以通过控制感测区域的温度以迫近如下温度来增加微传感器的灵敏度,在分析物与感测区域之间的相互作用在该温度接近它的峰值。例如在换能器为电化学换能器并且相互作用为化学反应的实施例中,将感测区域的温度控制成在化学反应速率处于其最大值情况下的温度。
在一些实施例中,在换能器之下提供热能源。在一些实施例中,也在温度传感器之下提供热能源。在其它更多一些实施例中,在换能器之下提供热能源和温度传感器二者。在其它更多一些实施例中,热能源和温度传感器不在换能器下面。在某些实施例中,换能器和温度传感器由相同材料形成。在其它一些实施例中,换能器和温度传感器由不同材料形成。
本公开内容描述热能源生成如下热能,该热能提供对感测区域的局部化加热。集成温度传感器检测感测区域的温度并且产生指示该温度的信号。该信号可以由控制单元使用以控制由热能源产生的热能。通过这一反馈回路,可以调整和控制对感测区域的局部化加热以实现希望的温度。
可以通过生长、沉积、图案化和蚀刻步骤的序列形成本公开内容描述的、作为半导体器件的微传感器。在一个实施例中,这样的方法涉及到提供包括热绝缘层的硅衬底。在热绝缘层之上形成难熔材料的热能源层。图案化所得热能源层以形成热能源。在热能源之上形成热传导层。在形成热传导层之后,在热传导层之上形成工作电极、反电极和温度传感器。然后在温度传感器之上形成钝化层。图案化钝化层以限定感测区域并且暴露工作电极和反电极的至少一部分。
附图说明
图1是用于根据本公开内容一个实施例的微传感器的截面的示意图;
图2示出了用于根据一个实施例的微传感器的布局的平面俯视图;
图3示出了沿着图2中的线3-3取得的截面图;
图4A-图4G示出了用于制作根据图2的一个实施例的微传感器的工艺流程中的不同步骤的截面图;
图5示出了根据本公开内容的微传感器的一个替选实施例的示意图;
图6示出了本公开内容的微传感器的另一替选实施例的示意图;
图7示出了本公开内容的微传感器的另一替选实施例的示意图;以及
图8示出了用于根据图2的实施例的半导体裸片的、包括感测区域和热能源的部分的温度分布图模型。
具体实施方式
在下文描述中阐述某些具体细节以便提供对公开的主题内容的各种方面的透彻理解。然而在不具有这些具体细节的情形下仍然可以实现所公开的主题内容。在一些实例中,尚未具体描述形成与半导体器件关联的结构的公知结构和方法以免模糊对本公开内容的其它方面的描述。
除非上下文另有要求,否则在说明书和所附权利要求书全文中,词语“包括”将解释成开放式包含意义,也就是说,解释为“包括但不限于”。
在本说明书全文中引用“一个实施例”或者“实施例”意味着结合该实施例描述的特定特征、结构或者特性包含于至少一个实施例中。因此,在本说明书全文中各处出现短语“在一个实施例中”或者“在实施例中”未必都是指相同方面。另外,可以在本公开内容的一个或者多个方面中以任何适当方式组合特定特征、结构或者特性。
在本说明书全文中引用“化学或者生物元素”或者“化学物”包括用这里描述的传感器感测的并且与传感器相互作用的所有化学原子、原子部分、分子、粒子、生物材料等。术语“化学物”不应狭义地解释为使化学元素仅限于原子或者分子,而是实际上,术语“化学物”广义地解释为覆盖化学和生物元素或者其成分。
在以下描述全文中,在包括工作电极、反电极和可选参考电极的电化学换能器方面描述换能器。注意引用电化学换能器及其电极仅出于示例目的而将不解释为限制描述的实施例和所附权利要求的范围。例如换能器可以是测量表面或者电解质传导率的电换能器。换能器的其它例子包括光学(测量荧光、反射或者吸收)换能器、质量灵敏或者热敏换能器。
在附图中,相同标号标识相似特征或者元件。特征在附图中的尺寸和相对位置未按比例绘制。
图1示出了根据本公开内容的作为半导体器件的一部分而形成的微传感器100。图1是如下示意图,该示意图未示出比如金属互连线、过孔、接触焊盘和其它常规特征之类的元件。可以使用已知结构和加工技术来提供这些特征。概括而言,在图1中,传感器100包括如下感测区域102,在该感测区域中接收包含感兴趣的分析物的样本(未示出)。感测区域102包括换能器104,该换能器响应于在分析物与感测区域之间的相互作用而产生信号。传感器也包括温度传感器108、热能源106和下层热绝缘层202(例如二氧化硅)。热绝缘层202形成于下层半导体衬底200(例如硅衬底)上。
这一下层半导体衬底200可以包括为了操作传感器而需要的各种传导和非传导结构元件。例如半导体衬底200可以包括用于向热能源106提供电功率并且处理来自换能器104和温度传感器108的信号的金属互连结构元件、过孔、接触焊盘等。可以使用已知结构和加工技术来提供这些部件并且未具体描述这些部件。
热绝缘层202可以将下层半导体衬底200与热能源106热绝缘。层202可以使用常规热生长或者沉积工艺由二氧化硅形成。可以使用具有相似或者更低热传导率系数的其它电介质材料取代二氧化硅。
如图1中所示,热能源106与感测区域102相邻地形成于热绝缘层202上。热能源106由难熔材料(比如共同溅射的钽铝)形成并且响应于电流流动而生成热能。用于形成热能源106的材料不限于钽铝。可以使用其它难熔材料(比如氮化钽)。优选地具有高热传导率的层204在热能源106与换能器104之间。
换能器104定位于热能源106之上并且形成感测区域102的一部分。虽然在图1中未示出,但是换能器104包括多个电极(例如工作电极、反电极和由适合电化学的惰性可极化金属(包括金、铂、钯和银)形成的可选参考电极)。尽管在图1中将工作电极、反电极和可选参考电极示意地图示为单个结构104,但是应当理解换能器104包括多个电极。这些电极配合以检测由于在感兴趣的分析物与感测区域102之间的相互作用而产生的电性质改变。例如当微传感器100作为电化学传感器来工作时,换能器104的工作电极可以具有在它的表面上形成的化学受体(未示出)。例如受体可以是以电极可以检测的方式与感兴趣的分析物化学反应的生物细胞、抗体、酶、DNA/RNA序列或者定制分子。尽管本公开内容描述运用电化学传感器的实施例,但是对分析物与感测区域的相互作用的诸如光学、电容性、频率、重量等其它响应也可以用来检测感兴趣的分析物。
在图1中所示实施例中,温度传感器106与加热器106和换能器104相邻。更具体而言,在图1中,传感器108在加热器106之上。类似于换能器104,温度传感器108位于感测区域102内,其中它可以容易检测感测区域102的温度。类似于换能器104,温度传感器108的一部分暴露而未由钝化层212覆盖。温度传感器108可以是由如下材料制成的热阻器,该材料表现随温度改变的电阻(比如硅化铬或硅化铂)。温度传感器108可以由除了硅化铂或者硅化铬之外的适当金属形成。
如图1中所示,换能器104和温度传感器108的一部分由钝化层212覆盖,该钝化层由比如聚酰亚胺这样的材料形成。换能器104和温度传感器108的其它部分暴露而未由钝化层212覆盖。换能器104和温度传感器108的这些未覆盖部分限定感测区域102,在该区域中接收包含感兴趣的分析物的样本。一旦分析物在感测区域102中被接收,分析物与感测区域102相互作用,例如通过在工作电极处经历化学反应,这一化学反应由换能器的电极检测为电信号。
尽管参照依赖于电化学原理来检测分析物的感测区域,但是本发明并不限于依赖于电化学原理的感测区域。例如感测区域可以依赖于在分析物与感测区域之间的其它类型的相互作用,比如产生其它类型的可测量信号(比如光学信号、质量改变、声学性质改变、热传导率性质改变或者热扩散性质改变)的相互作用。
参照图2和图3,图2示出了根据一个具体实施例的微传感器的平面俯视图,该微传感器包括感测区域102、形成热能源106的金属结构元件、电极206、208和210以及温度传感器108。在这一实施例中,换能器104由电极206、208和210组成。图3示出了沿着图2中的线3-3取得的截面图。
感测区域102包括反电极206、工作电极208和参考电极210。反电极206、工作电极208和参考电极210由形成为层间金属化部件的常规金属互连线216电连接到接触焊盘214。反电极206、工作电极208和参考电极210可以经由接触焊盘214和线216连接到其它器件(这些器件可以是换能器104的一部分(比如稳压器(未示出)),并且也连接到模数(A/D)转换器(未示出)和用于操作电极、收集信号并且处理信号的微处理器(未示出)。
温度传感器108在感测区域102的三侧周围延伸。温度传感器108的每个端部通过层间过孔220与层间金属化线222的组合连接到接触焊盘218。温度传感器108可以连接到附加器件(比如模数转换器和微处理器)以收集与感测区域102的温度有关的电信号。微处理器优选地能够从温度传感器108接收信号并且基于从温度传感器108接收的信号控制热能源106的热输出。以这一方式,向感测区域102提供受控的局部化加热。
如图3中最佳地所示,温度传感器108由钝化层212覆盖。在这一实施例中,温度传感器108在所有位置由层212覆盖而未如图1中所示暴露于开放环境。反电极206、工作电极208和参考电极210的一部分通过钝化层212中的开口保持暴露。这一开口限定用于接收样本的井。当感测区域102的温度改变时,如温度传感器108感测的温度将改变,从而造成温度传感器108的电阻改变。可以使用已知部件和技术来检测这一电阻改变,并且将该改变转换成温度读数。因而温度传感器108能够对感测区域102的温度进行感测。如上文描述的那样,温度传感器108感测的温度可以由微处理器用来控制热能源106的热输出。
在图2和图3的实施例中,热能源106位于反电极206、工作电极208、参考电极210和温度传感器108之下。热传导层204将热能源106与温度传感器108和电极206、208、210分开。热能源106是如下蛇形元件,该元件的每个端部由互连金属线226电连接到分开的接触焊盘224。由具有与二氧化硅相似的热传导率的材料形成的热绝缘层202将热能源106与下层硅衬底200分开。
通过提供与感测区域102直接相邻(例如在感测区域102之下)的热能源106,可以向感测区域提供局部化加热。局部化加热具有不影响相邻感测区域(将在这些区域感测不同的相互作用)的温度的优点。此外,局部化加热对感兴趣的区域(即感测区域)加热,而最小化对感测区域以外的如下区域的加热,这些区域可能包含如下部件,这些部件如果它们被加热至与感测区域相同的温度则受不利影响。
除了图1-图3中所示热能源106和温度传感器108的布置之外,也可以提供如下文参照图5-图7描述的局部化加热的其它布置。
图4A-图4G示出了根据本公开内容的一种用于形成包括微传感器的半导体器件的方法。如图4A中所示,微传感器形成于硅衬底200上,已经使用已知技术(比如热氧化)在该硅衬底200上形成二氧化硅的热绝缘层202。
如图4B中所示,难熔材料(比如钽铝)层402沉积于热绝缘层202之上。可以使用已知金属沉积技术(比如溅射或者化学气相沉积)来沉积钽铝。在沉积钽铝之后,在其之上沉积铝层404。可以使用已知金属沉积技术(比如物理气相沉积)来沉积铝层404。在形成钽铝层402和铝层404之后,图案化铝层404以形成图4C中未示出、但是图2中示出的接触和互连线以形成诸如216、222、226等互连线。然后图案化钽铝层402以形成热能源106。形成的热能源106然后如图4D中所示由热传导层204覆盖。热传导层204由如下材料形成,这些材料具有促进热能从热能源106向感测区域102传导的热传导性质。热传导层204可以由比如氮化硅或者碳化硅这样的材料形成。可以使用已知技术(比如化学气相沉积)来实现氮化硅或者碳化硅的沉积。图案化经沉积的热传导层204以在所形成的铝接触和互连线之上形成过孔(在图4D中未示出)以提供与它们的电接触。如图4E中所示,在已经图案化氮化硅层204之后,使用已知技术(比如化学气相沉积)在热传导层204之上沉积金属层406(比如铂)。然后图案化这一经沉积的铂层406以形成温度传感器108、反电极206、工作电极208和参考电极210。尽管温度传感器108、反电极206、工作电极208和参考电极210可以由相同材料制成,但是应当理解这并非必需。温度传感器108、反电极206、工作电极208和参考电极210可以由不同材料形成。
如图4F中所示,在图案化铂层406之后,聚酰亚胺钝化层212形成于其之上。可以通过旋涂来涂敷聚酰亚胺以形成均匀层。然后使用已知技术来图案化经沉积的聚酰亚胺层,以显露电极206、208和210并且限定感测区域102。聚酰亚胺层212的、在图案化步骤期间未去除的部分保持于温度传感器108之上并且覆盖温度传感器108。在图案化聚酰亚胺之后,通过加热来固化它、继而进行氧等离子体清洁以去除有机污染物。
尽管在图4G中将钝化层212图示为覆盖温度传感器108,但是在其它一些实施例中,可以图案化钝化层212,从而感测区域102更宽并且包括温度传感器108。换而言之,在其它一些实施例中,可以用与电极206、208和210未由钝化层212覆盖而保持暴露相同的方式暴露温度传感器108。在图1中示意地图示了根据这一实施例的传感器。
图5示出了微传感器100的一个替选实施例,其中热能源106和温度传感器108与包括换能器104的感测区域102相邻。在图5中所示实施例中,在感测区域102之下提供热能源106和温度传感器108。上文参照图1-图4提供的对热能源106和温度传感器108的描述也适用于图5。在图5的实施例中,热能源106和温度传感器108形成于热绝缘层202上。热传导层204将热能源106和温度传感器108与电极104分开。形成感测区域102的一部分的换能器104可以包括与上文参照图1-图4描述的电极相似的电极。通过钝化层212暴露换能器104的一部分。钝化层212的保留部分限定传感器区域102的边界。使用相同标号参照图1-图4来描述图5中的半导体衬底200和热绝缘层202。
图6示出了传感器100的另一实施例,其中与电极部件104相邻但不限于在电极部件104之下提供热能源106和温度传感器108。在图6中所示的实施例中,热能源106、换能器104和温度传感器108各自形成于热绝缘层202上。钝化层212覆盖热能源106和温度传感器108以及换能器104的一部分。换能器104的通过钝化层212暴露的部分限定传感器区域102。在图6与图1-图4之间共同的其它元件由相同标号标识。
图7示出了传感器100的另一实施例,其中温度传感器108在换能器104和热能源106之下。在图7中所示实施例中,温度传感器108形成于热绝缘层202之上。热传导层204形成于温度传感器108之上。热能源106和换能器104形成于热传导层204之上。换能器104的一部分和热能源106由钝化层212覆盖。换能器104的未由钝化层212覆盖的部分保持暴露并且限定感测区域102。在图7与图1-图4之间共同的其它元件由相同标号标识。
本公开内容描述的每个实施例提供对传感器区域102的局部化加热。半导体器件可以包括多个传感器区域102,并且可以向每个感测区域提供局部化加热,并且可以利用在本公开内容中描述的主题内容来感测和控制每个个别传感器区域的温度。通过局部化加热来控制感测区域的温度,可以减少由于在不同温度下取得多个测量而产生的测量变化。此外,通过控制感测区域的温度,可以使感测区域中出现的相互作用(例如化学反应)的速率迫近最大速率,这将增加微传感器的灵敏度。增加微传感器的灵敏度在传感器的小尺度和/或小体积样本造成小信号时特别有利。
局部化加热产生感测区域的温度与紧接包围感测区域的区域的温度相比的明显差异。例如根据这里描述的某些实施例,与紧接包围感测区域的温度相比可以将感测区域的温度增加20%、60%、100%或者任何其它值。在一些实例中,感测区域的这一温度增加可以转化成感测区域的温度为10℃、在20℃之上或者甚至大于紧接包围感测区域的区域的温度。选择感测区域的如下温度,这在换能器104处提供改进的结果。
图8示出了使用来自Ansys,Inc.的商业可用热仿真软件产生的温度等高线图像。该仿真基于上文参照图2图示和描述的热能源。在该仿真中使用以下参数:
·衬底是具有1微米二氧化硅层的525微米硅裸片;
·热能源108是10微米宽和0.02微米厚、具有100欧姆/方块的薄层电阻的蛇形钽铝线;
·热传导层是0.2微米厚的氮化硅;
·钝化层是聚酰亚胺;
·由聚酰亚胺层中的开口形成的感测区域102占据总裸片面积的8%;
·在暴露区域中不存在化学溶液;
·通过钽铝线驱动5毫安电流。
使用这些参数,该仿真预测在由聚酰亚胺中的开口形成的感测区域102内的平均温度为47.5℃。紧接于在感测区域102与等高线802之间的开口以外,预测温度降至28.845℃。在等高线804与806之间的仿真温度为26.941℃,并且等高线806外部的仿真温度为26.216℃。这一仿真说明这里描述的实施例如何向微传感器的传感器区域提供局部化加热。
在又一实施例中,电极206、208和210适于作为热能源、温度传感器,并且也作为换能器的端口。例如可以使反电极206循环经过各种模式,在这一循环期间,在第一模式中,它参与检测分析物,而在第二模式中,它适于作为热能源。在这一实施例中,反电极206由如下材料形成,该材料允许它参与对感测区域中的分析物进行的感测并且在电流流过它时产生热能。以相似的方式,电极206、208和210之一可以适于作为参与检测分析物的电极并且也适于作为温度传感器。在这一实施例中,这样的电极(比如参考电极210)可以耦合到如下控制单元,该控制单元使参考电极210循环经过感测模式(在该模式期间它参与感测分析物)和温度感测模式(在该模式期间它检测感测区域102的温度)。
可以组合上文描述的各种实施例以提供更多实施例。在本说明书中引用和/或在申请数据表中列举的所有美国专利、美国专利申请出版物、美国专利申请、国外申请、国外专利申请和非专利出版物通过整体引用而结合于此。如果必要则可以修改实施例的方面以运用各种专利、申请和出版物的概念以提供更多实施例。
可以按照上文具体描述对实施例做出这些和其它改变。一般而言,在所附权利要求书中,所用术语不应解释为使权利要求限于在说明书和权利要求书中公开的具体实施例而是应当解释为包括所有可能实施例以及这样的权利要求书被授予的等效含义的完全范围。因而,权利要求书不受公开内容限制。

Claims (20)

1.一种用于检测样本中的分析物的半导体器件,所述半导体器件包括传感器,所述传感器包括:
感测区域,形成于半导体衬底之上,所述感测区域包括配置成检测在所述感测区域与所述分析物之间的相互作用的换能器;
在所述感测区域下面的集成热能源,所述热能源被配置成产生热能;以及
与所述感测区域相邻的集成温度传感器,所述集成温度传感器被配置成感测所述感测区域的温度。
2.根据权利要求1所述的半导体器件,其中所述换能器选自于电化学换能器、光学换能器、量热换能器、声学换能器和重量换能器。
3.根据权利要求1所述的半导体器件,其中所述换能器为电化学换能器。
4.根据权利要求1所述的半导体器件,其中所述温度传感器在所述热能源之上。
5.根据权利要求1所述的半导体器件,其中所述温度传感器在所述换能器之下。
6.根据权利要求1所述的半导体器件,还包括在所述热能源与所述感测区域之间的热传导层。
7.根据权利要求1所述的半导体器件,其中所述换能器包括工作电极和反电极,并且所述相互作用出现于所述分析物、所述工作电极和所述反电极之间。
8.一种用于检测样本中的分析物的系统,所述系统包括:
半导体器件部件,包括用于检测所述样本中的所述分析物的传感器,所述传感器包括:
感测区域,形成于半导体衬底之上,所述感测区域包括配置成检测在所述分析物与所述感测区域之间的相互作用的换能器;
在所述感测区域下面的集成热能源,所述热能源被配置成产生热能;以及
与所述感测区域相邻的集成温度传感器,所述集成温度传感器被配置成感测所述感测区域的温度;以及
控制部件,配置成从所述集成温度传感器接收信号并且响应于从所述集成温度传感器接收的所述信号向所述热能源提供信号。
9.一种用于形成半导体器件的方法,所述半导体器件用于检测样本中的分析物,所述方法包括:
在硅衬底之上形成热绝缘层;
在所述热绝缘层之上形成热能源层,所述热能源层为难熔材料;
图案化所述热能源层以形成热能源;
在所述热能源之上形成热传导层;
在所述热传导层之上形成温度传感器;
在所述热传导层之上形成工作电极和反电极;
在所述温度传感器之上形成钝化层;以及
图案化所述钝化层以暴露所述工作电极和反电极的至少一部分。
10.根据权利要求9所述的方法,其中所述难熔材料为钽铝或者氮化钽。
11.根据权利要求9所述的方法,其中所述温度传感器、所述工作电极和所述反电极由相同材料形成。
12.根据权利要求11所述的方法,其中所述金属选自于硅化铂和硅化铬。
13.一种用于检测样本中的分析物的半导体器件,所述半导体器件包括传感器,所述传感器包括:
感测区域,形成于半导体衬底之上,所述感测区域包括配置成检测在所述感测区域与所述分析物之间的相互作用的换能器;
与所述感测区域相邻的集成热能源,所述集成热能源被配置成产生热能并且向所述感测区域提供局部化加热;以及
与所述感测区域相邻的集成温度传感器,所述集成温度传感器被配置成感测所述感测区域的温度。
14.根据权利要求13所述的半导体器件,其中所述温度传感器在所述热能源之下。
15.根据权利要求13所述的半导体器件,其中所述热能源在所述温度传感器之下。
16.根据权利要求13所述的半导体器件,其中所述换能器选自于电化学换能器、光学换能器、量热换能器、声学换能器和重量换能器。
17.根据权利要求16所述的半导体器件,其中所述换能器为电化学换能器。
18.根据权利要求17所述的半导体器件,其中所述换能器包括工作电极、反电极,并且所述相互作用出现于所述分析物、所述工作电极和所述反电极之间。
19.根据权利要求18所述的半导体器件,其中所述工作电极、所述反电极和所述温度传感器由相同材料形成。
20.根据权利要求13所述的半导体器件,其中所述热能源和所述温度传感器在所述换能器之下。
CN2012102379831A 2011-07-05 2012-07-04 具有集成温度控制的微传感器 Pending CN102890107A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/176,599 2011-07-05
US13/176,599 US9448198B2 (en) 2011-07-05 2011-07-05 Microsensor with integrated temperature control

Publications (1)

Publication Number Publication Date
CN102890107A true CN102890107A (zh) 2013-01-23

Family

ID=47438646

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2012102379831A Pending CN102890107A (zh) 2011-07-05 2012-07-04 具有集成温度控制的微传感器
CN2012203314401U Expired - Lifetime CN202928981U (zh) 2011-07-05 2012-07-04 用于检测样本中的分析物的半导体器件和系统

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN2012203314401U Expired - Lifetime CN202928981U (zh) 2011-07-05 2012-07-04 用于检测样本中的分析物的半导体器件和系统

Country Status (2)

Country Link
US (1) US9448198B2 (zh)
CN (2) CN102890107A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109959682A (zh) * 2017-12-26 2019-07-02 意法半导体有限公司 用于低功率mox传感器的适应性测试方法和设计
CN110998820A (zh) * 2017-08-17 2020-04-10 东京毅力科创株式会社 用于实时感测工业制造设备中的属性的装置和方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8292495B2 (en) 2010-04-07 2012-10-23 Arizant Healthcare Inc. Zero-heat-flux, deep tissue temperature measurement devices with thermal sensor calibration
US8927909B2 (en) * 2010-10-11 2015-01-06 Stmicroelectronics, Inc. Closed loop temperature controlled circuit to improve device stability
US9354122B2 (en) 2011-05-10 2016-05-31 3M Innovative Properties Company Zero-heat-flux, deep tissue temperature measurement system
US9448198B2 (en) * 2011-07-05 2016-09-20 Stmicroelectronics Pte Ltd. Microsensor with integrated temperature control
US9476779B2 (en) * 2012-12-13 2016-10-25 Robert Bosch Gmbh Sensor with an embedded thermistor for precise local temperature measurement
US9618653B2 (en) 2013-03-29 2017-04-11 Stmicroelectronics Pte Ltd. Microelectronic environmental sensing module
US9082681B2 (en) 2013-03-29 2015-07-14 Stmicroelectronics Pte Ltd. Adhesive bonding technique for use with capacitive micro-sensors
US9176089B2 (en) 2013-03-29 2015-11-03 Stmicroelectronics Pte Ltd. Integrated multi-sensor module
US9000542B2 (en) 2013-05-31 2015-04-07 Stmicroelectronics Pte Ltd. Suspended membrane device
US9435763B2 (en) 2013-06-27 2016-09-06 Stmicroelectronics Pte Ltd. Absolute temperature method for disposable glucose strip
US9437798B2 (en) 2013-06-27 2016-09-06 Stmicroelectronics Pte Ltd. Combo bio and temperature disposable sensor on flexible foil
US9819436B2 (en) * 2013-08-26 2017-11-14 Coriant Operations, Inc. Intranodal ROADM fiber management apparatuses, systems, and methods
WO2015036982A1 (en) * 2013-09-13 2015-03-19 Ecole Polytechnique Federale De Lausanne (Epfl) Close and selective integration of carbon nanomaterials by cvd onto working microelectrodes of multi sensing electrochemical biosensors
FR3040575B1 (fr) * 2015-09-02 2017-08-18 Bull Sas Procede de determination automatisee de topologies d'interconnexion optimales de systemes comprenant des nœuds de service, et dispositif de traitement associe
US11382185B2 (en) * 2016-01-08 2022-07-05 Siemens Healthcare Diagnostics Inc. Heating element for sensor array
US10429330B2 (en) 2016-07-18 2019-10-01 Stmicroelectronics Pte Ltd Gas analyzer that detects gases, humidity, and temperature
US10254261B2 (en) 2016-07-18 2019-04-09 Stmicroelectronics Pte Ltd Integrated air quality sensor that detects multiple gas species
US10557812B2 (en) 2016-12-01 2020-02-11 Stmicroelectronics Pte Ltd Gas sensors
CN108020588A (zh) * 2017-11-13 2018-05-11 中北大学 一种低功耗微热板型高温气体传感器及制作方法
WO2019104027A1 (en) * 2017-11-22 2019-05-31 Jim Connolly Multi-zoned, fixed potential test sensor heating system

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1112239A (zh) * 1993-12-04 1995-11-22 株式会社金星社 低功率消耗型薄膜气体传感器及其制造方法
US6331074B1 (en) * 1997-01-17 2001-12-18 Ricoh Company, Ltd. Thermal analyzer and a method of measuring with the same
US20020142478A1 (en) * 2001-03-28 2002-10-03 Hiroyuki Wado Gas sensor and method of fabricating a gas sensor
CN1485618A (zh) * 2002-09-29 2004-03-31 宝安康电子(北京)有限公司 一种试片
CN1767898A (zh) * 2003-01-31 2006-05-03 惠普开发有限公司 具有薄膜电子装置的微流体装置
US20060090541A1 (en) * 2004-11-03 2006-05-04 Theil Jeremy A Integration of thermal regulation and electronic fluid sensing
US20060154401A1 (en) * 2005-01-10 2006-07-13 University Of Warwick Gas-sensing semiconductor devices
CN1325658C (zh) * 2001-04-23 2007-07-11 三星电子株式会社 包含mosfet分子检测芯片和采用该芯片的分子检测装置以及使用该装置的分子检测方法
US20080081769A1 (en) * 2006-08-24 2008-04-03 Arjang Hassibi Integrated Semiconductor Bioarray
CN101171508A (zh) * 2005-03-07 2008-04-30 传感电子公司 固态气体传感器的温度反馈控制
US20080221806A1 (en) * 2005-05-19 2008-09-11 Nanomix, Inc. Sensor having a thin-film inhibition layer, nitric oxide converter and monitor
CN101445216A (zh) * 2008-12-04 2009-06-03 北京大学 分体式微机电系统及其制备方法
WO2010023610A1 (en) * 2008-08-25 2010-03-04 Nxp B.V. Electrochemical potentiometric sensing
CN202928981U (zh) * 2011-07-05 2013-05-08 意法半导体有限公司 用于检测样本中的分析物的半导体器件和系统

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5140393A (en) * 1985-10-08 1992-08-18 Sharp Kabushiki Kaisha Sensor device
US5788833A (en) * 1995-03-27 1998-08-04 California Institute Of Technology Sensors for detecting analytes in fluids
US5700360A (en) * 1995-10-31 1997-12-23 Chiron Diagnostics Corporation Fluoroelastomer gasket for blood sensors
US5683569A (en) * 1996-02-28 1997-11-04 Motorola, Inc. Method of sensing a chemical and sensor therefor
DE69731604D1 (de) * 1997-01-31 2004-12-23 St Microelectronics Srl Herstellungsverfahren für integrierte Halbleitervorrichtung mit einem chemoresistiven Gasmikrosensor
JP4183789B2 (ja) * 1998-01-14 2008-11-19 株式会社堀場製作所 物理現象および/または化学現象の検出装置
US8480580B2 (en) * 1998-04-30 2013-07-09 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8346337B2 (en) * 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
EP2096427A3 (en) * 1998-11-16 2009-11-18 California Institute of Technology Simultaneous determination of equilibrium and kinetic properties
US6238085B1 (en) * 1998-12-31 2001-05-29 Honeywell International Inc. Differential thermal analysis sensor
US6436346B1 (en) * 1999-09-14 2002-08-20 U T Battelle, Llc Micro-machined calorimetric biosensors
US7033840B1 (en) * 1999-11-09 2006-04-25 Sri International Reaction calorimeter and differential scanning calorimeter for the high-throughput synthesis, screening and characterization of combinatorial libraries
CA2399842C (en) * 2000-03-02 2006-11-14 Microchips, Inc. Microfabricated devices for the storage and selective exposure of chemicals and devices
JP4325133B2 (ja) * 2001-08-27 2009-09-02 株式会社デンソー ガスセンサおよびその製造方法
US6902701B1 (en) * 2001-10-09 2005-06-07 Sandia Corporation Apparatus for sensing volatile organic chemicals in fluids
GB0129288D0 (en) * 2001-12-07 2002-01-23 Univ Glasgow Thermoelectric sensor
US20070045756A1 (en) * 2002-09-04 2007-03-01 Ying-Lan Chang Nanoelectronic sensor with integral suspended micro-heater
US20060263255A1 (en) * 2002-09-04 2006-11-23 Tzong-Ru Han Nanoelectronic sensor system and hydrogen-sensitive functionalization
US8449824B2 (en) * 2002-09-09 2013-05-28 Yizhong Sun Sensor instrument system including method for detecting analytes in fluids
US8722417B2 (en) * 2003-04-28 2014-05-13 Invoy Technologies, L.L.C. Thermoelectric sensor for analytes in a fluid and related method
WO2005006968A1 (en) 2003-07-16 2005-01-27 Koninklijke Philips Electronics N.V. A portable electronic device and a health management system arranged for monitoring a physiological condition of an individual
US6915576B2 (en) 2003-08-12 2005-07-12 Lisa M. Brzezinski Illuminated safety razor
KR100561908B1 (ko) * 2003-12-26 2006-03-20 한국전자통신연구원 센서 구조체 및 그 제조방법
US7768650B2 (en) 2004-04-21 2010-08-03 Michael Bazylenko Optoelectronic biochip
US20050241959A1 (en) * 2004-04-30 2005-11-03 Kenneth Ward Chemical-sensing devices
US8536661B1 (en) * 2004-06-25 2013-09-17 University Of Hawaii Biosensor chip sensor protection methods
GB2437753B8 (en) * 2004-10-01 2009-05-20 Nevada System Of Higher Education Cantilevered probe detector with piezoelectric element
US7100283B1 (en) 2004-10-18 2006-09-05 Greg Grdodian Shaving system
US7914735B2 (en) * 2005-01-18 2011-03-29 Palo Alto Research Center Incorporated Use of physical barriers to minimize evaporative heat losses
US7823272B2 (en) 2006-11-14 2010-11-02 The Gillette Company Systems for producing assemblies
US8323982B2 (en) * 2007-01-11 2012-12-04 Valencell, Inc. Photoelectrocatalytic fluid analyte sensors and methods of fabricating and using same
US8562806B2 (en) * 2007-07-31 2013-10-22 Georgia Tech Research Corporation Electrochemical biosensor arrays and instruments and methods of making and using same
WO2009052222A1 (en) * 2007-10-15 2009-04-23 Bayer Healthcare Llc Method and assembly for determining the temperature of a test sensor
US8102424B2 (en) 2007-10-17 2012-01-24 Fluke Corporation Ergonomic configurations for thermal imaging cameras
US8739604B2 (en) * 2007-12-20 2014-06-03 Amphenol Thermometrics, Inc. Gas sensor and method of making
US20100186234A1 (en) 2009-01-28 2010-07-29 Yehuda Binder Electric shaver with imaging capability
IT1392576B1 (it) 2008-12-30 2012-03-09 St Microelectronics Rousset Dispositivo di rilevamento elettronico di materiali biologici e relativo processo di fabbricazione
US8617381B2 (en) * 2009-06-23 2013-12-31 Bayer Healthcare Llc System and apparatus for determining temperatures in a fluid analyte system
US8499613B2 (en) 2010-01-29 2013-08-06 Stmicroelectronics S.R.L. Integrated chemical sensor for detecting odorous matters
US9121771B2 (en) * 2010-03-16 2015-09-01 The Penn State Research Foundation Methods and apparatus for ultra-sensitive temperature detection using resonant devices
CN102869974B (zh) * 2010-04-28 2014-10-15 松下电器产业株式会社 化学传感器
US9180451B2 (en) 2010-06-28 2015-11-10 Stmicroelectronics S.R.L. Fluidic cartridge for detecting chemicals in samples, in particular for performing biochemical analyses
CN103221810B (zh) * 2010-08-18 2016-08-03 生命科技股份有限公司 用于电化学检测装置的微孔的化学涂层
WO2012040050A1 (en) * 2010-09-23 2012-03-29 Bayer Healthcare Llc System and method for determining ambient temperatures for a fluid analyte system
WO2013019714A1 (en) * 2011-07-29 2013-02-07 The Trustees Of Columbia University In The City Of New York Mems affinity sensor for continuous monitoring of analytes
EP2809769B1 (en) * 2012-01-31 2018-09-05 The University of Toledo Methods and devices for detection and measurement of analytes
EP2861996B1 (en) * 2013-03-11 2019-03-06 Cue Health Inc. Sample analysis cartridge
US20150079583A1 (en) * 2013-08-22 2015-03-19 Vanderbilt University Device and method for detecting a target analyte
EP2995937A1 (en) * 2014-09-15 2016-03-16 Sensirion AG Integrated chemical sensor chip

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1112239A (zh) * 1993-12-04 1995-11-22 株式会社金星社 低功率消耗型薄膜气体传感器及其制造方法
US6331074B1 (en) * 1997-01-17 2001-12-18 Ricoh Company, Ltd. Thermal analyzer and a method of measuring with the same
US20020142478A1 (en) * 2001-03-28 2002-10-03 Hiroyuki Wado Gas sensor and method of fabricating a gas sensor
CN1325658C (zh) * 2001-04-23 2007-07-11 三星电子株式会社 包含mosfet分子检测芯片和采用该芯片的分子检测装置以及使用该装置的分子检测方法
CN1485618A (zh) * 2002-09-29 2004-03-31 宝安康电子(北京)有限公司 一种试片
CN1767898A (zh) * 2003-01-31 2006-05-03 惠普开发有限公司 具有薄膜电子装置的微流体装置
US20060090541A1 (en) * 2004-11-03 2006-05-04 Theil Jeremy A Integration of thermal regulation and electronic fluid sensing
US20060154401A1 (en) * 2005-01-10 2006-07-13 University Of Warwick Gas-sensing semiconductor devices
CN101171508A (zh) * 2005-03-07 2008-04-30 传感电子公司 固态气体传感器的温度反馈控制
US20080221806A1 (en) * 2005-05-19 2008-09-11 Nanomix, Inc. Sensor having a thin-film inhibition layer, nitric oxide converter and monitor
US20080081769A1 (en) * 2006-08-24 2008-04-03 Arjang Hassibi Integrated Semiconductor Bioarray
WO2010023610A1 (en) * 2008-08-25 2010-03-04 Nxp B.V. Electrochemical potentiometric sensing
WO2010023569A1 (en) * 2008-08-25 2010-03-04 Nxp B.V. Reducing capacitive charging in electronic devices
CN101445216A (zh) * 2008-12-04 2009-06-03 北京大学 分体式微机电系统及其制备方法
CN202928981U (zh) * 2011-07-05 2013-05-08 意法半导体有限公司 用于检测样本中的分析物的半导体器件和系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110998820A (zh) * 2017-08-17 2020-04-10 东京毅力科创株式会社 用于实时感测工业制造设备中的属性的装置和方法
CN110998820B (zh) * 2017-08-17 2023-10-20 东京毅力科创株式会社 用于实时感测工业制造设备中的属性的装置和方法
CN109959682A (zh) * 2017-12-26 2019-07-02 意法半导体有限公司 用于低功率mox传感器的适应性测试方法和设计
US11009474B2 (en) 2017-12-26 2021-05-18 Stmicroelectronics Pte Ltd Adaptive test method and designs for low power mox sensor
CN109959682B (zh) * 2017-12-26 2022-12-09 意法半导体有限公司 用于低功率mox传感器的适应性测试方法和设计
US11808723B2 (en) 2017-12-26 2023-11-07 Stmicroelectronics Pte Ltd Adaptive test method and designs for low power mox sensor

Also Published As

Publication number Publication date
US20130010826A1 (en) 2013-01-10
US9448198B2 (en) 2016-09-20
CN202928981U (zh) 2013-05-08

Similar Documents

Publication Publication Date Title
CN202928981U (zh) 用于检测样本中的分析物的半导体器件和系统
JP6310962B2 (ja) 感度改良ナノワイヤ電界効果トランジスタバイオセンサ
He et al. Flexible microfluidic nanoplasmonic sensors for refreshable and portable recognition of sweat biochemical fingerprint
JP5027296B2 (ja) バイオセンサチップ
JP5137836B2 (ja) ガス検知半導体素子
US20110210016A1 (en) Electrochemical potentometric sensing
JP5129011B2 (ja) ナノ構造体を用いたセンサ素子、分析チップ、分析装置
US20190017103A1 (en) Nano-sensor array
Valera et al. Conductimetric immunosensor for atrazine detection based on antibodies labelled with gold nanoparticles
US20190204321A1 (en) Field effect sensor for colon cancer
JP2019039734A (ja) イオン・バイオセンサチップとイオン・バイオセンサモジュールおよびこれらを用いたイオン・バイオセンサ
JP6883839B2 (ja) 成分比較バイオセンサチップと、これを用いた成分比較バイオセンサ
Adami et al. A WO3-based gas sensor array with linear temperature gradient for wine quality monitoring
US11275050B2 (en) Semiconductor-based biosensor and detection methods
KR101583574B1 (ko) 당뇨측정장치 및 그 제조방법
EP3774641A1 (en) Devices and methods for detecting/discriminating complementary and mismatched nucleic acids using ultrathin film field-effect transistors
JP2019128261A (ja) 使い捨て型バイオセンサチップおよびこれを装着するバイオセンサ
JPH08233757A (ja) 化学センサ
Piedimonte Electronic Bio-Reconfigurable Impedance Platform for High Sensitivity Detection of Target Analytes
KR20110139485A (ko) 바이오칩 및 이를 이용한 생화학적 분석시스템
KR20090123720A (ko) 실리콘 나노와이어를 이용한 바이오 바코딩 감지 장치 및방법
Elibol Nanoscale thickness silicon-on-insulator field effect devices for bio-chemical sensing and heat mediated chemical reactions
Swart Microelectronics Technology and Devices-SBMicro 2008
JP2009250631A (ja) センサ製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130123