CN102888673B - 一种纳米碳纤维的制备方法 - Google Patents

一种纳米碳纤维的制备方法 Download PDF

Info

Publication number
CN102888673B
CN102888673B CN201110202103.2A CN201110202103A CN102888673B CN 102888673 B CN102888673 B CN 102888673B CN 201110202103 A CN201110202103 A CN 201110202103A CN 102888673 B CN102888673 B CN 102888673B
Authority
CN
China
Prior art keywords
carbon nano
fiber
salt
preparation
carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201110202103.2A
Other languages
English (en)
Other versions
CN102888673A (zh
Inventor
吕旺燕
曾潮流
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN201110202103.2A priority Critical patent/CN102888673B/zh
Publication of CN102888673A publication Critical patent/CN102888673A/zh
Application granted granted Critical
Publication of CN102888673B publication Critical patent/CN102888673B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Fibers (AREA)

Abstract

本发明的目的在于提供一种纳米碳纤维的制备方法,其特征在于:以碳酸根离子为碳源,在熔融盐中,通过恒电流或恒电位直接还原碳酸根离子获得纳米碳纤维。该方法具有操作工艺简单、效率高和成本低等特点。

Description

一种纳米碳纤维的制备方法
技术领域
 本发明涉及纳米碳纤维制备技术,特别提供了一种在不锈钢等金属基体表面直接制备纳米碳纤维的新方法,使得纳米碳纤维的制备更加简单、易行。
背景技术
自1991年日本NEC公司的饭岛(S.Iijima)博士发现纳米碳管以来,纳米碳管和纳米碳纤维受到广泛关注。纳米碳管是由碳原子形成的石墨烯片层卷成的无缝、中空的管体。一般可分为单壁纳米碳管(single-walled carbon nanotube)和多壁纳米碳管(Multi-walled carbon nanotube)。由于纳米碳管的直径很小、长径比大,故可视为准一维纳米材料。理论预测和实验研究发现纳米碳管具有奇特的电学性能,超高的力学性能和纳米尺度形成的细微结构。此外,纳米碳管还具有很好的吸附特性,如高效储存氢气。这些特异性能预示着纳米碳管在众多领域具有广阔的应用前景,如纳米尺度器件,制造纳米材料的模板,电子材料和器件,复合材料的增强剂,贮能、贮气材料和催化剂材料等。全球最大的计算机制造商IBM公司宣布他们已用纳米碳管研制出一种性能优于目前最好的硅半导体芯片的晶体管,该晶体管是制造更小巧、速度更快的计算机的关键。纳米碳纤维在结构、性能和应用等方面与纳米碳管相似,但其直径明显大于纳米碳管。
自发现纳米碳管以来,已形成了多种制备纳米碳管、纳米碳纤维的方法。根据碳源来源的不同大致可分为碳蒸发法,含碳气体及烃类或有机金属化合物的催化热解,固相热解法,电化学法,含碳无机物转化法,环芳构化形成简状齐聚物,扩散火焰法和低压烃火焰法等。
发展简单、安全、低成本的纳米碳管、纳米碳纤维的制备方法对于其工业化应用具有积极意义。
发明内容
本发明的目的在于提供一种纳米碳纤维的制备方法,该方法具有操作工艺简单、效率高和成本低等特点。
本发明具体提供了一种纳米碳纤维的制备方法,其特征在于:采用熔盐电化学方法在金属表面直接沉积纳米碳纤维。
本发明提供的纳米碳纤维制备方法, 其特征在于:以碳酸根离子为碳源,在熔融盐中,通过恒电流或恒电位直接还原碳酸根离子获得纳米碳纤维。
本发明提供的纳米碳纤维制备方法, 其特征在于:制备纳米碳纤维所需的熔盐体系必须为含碳酸盐的纯碳酸盐或碳酸盐与氯化物盐的混合盐。其中碳酸盐最好为碳酸钠、碳酸钾、碳酸锂中的一种或多种,氯化物盐最好为氯化锂、氯化钠、氯化钾、氯化钙中的一种或多种。混合盐体系可以是二元或多元的,但混合盐中必须含有至少一种碳酸盐,且各种盐的配比必须保证混合盐的熔点低于电沉积温度。
本发明提供的纳米碳纤维制备方法, 其特征在于:纳米碳纤维沉积温度为650-800℃。为避免在合成过程中发生氧化等副反应,需要在氩气等保护气氛中进行。
本发明提供的纳米碳纤维制备方法, 其特征在于:该方法制备纳米碳纤维所需盐的组份及组份含量必须使混合盐的熔点低于电沉积温度。
本发明提供的纳米碳纤维制备方法,其特征在于:恒电流沉积纳米碳纤维的电流密度为35~50mA/cm2。 恒电位沉积纳米碳纤维的电压为1.8~3V。
本发明提供的纳米碳纤维制备方法, 其特征在于:制备纳米碳纤维可以采用二电极体系,也可以采用三电极体系。阴极可以是不锈钢、镍、铁等金属(沉积纳米碳纤维),阳极可以是石墨,也可以是铂、金等其它金属。
本发明提供的纳米碳纤维制备方法,其特征在于:纳米碳纤维可以是直的,也可以是螺旋状的,其直径和形态通过沉积电流和电压进行调节。
附图说明
图1  电沉积纳米碳纤维实验装置结构图,其中1热电偶;2氩气出气口; 3阴极;4阳极;5氩气进气口;6水冷套;7耐热钢反应室;8高温电阻炉;9氧化铝坩埚;10熔融盐;
图2  在750℃熔融(0.62Li,0.38K)2CO3(摩尔比)中,恒电流电流密度为38mA/cm2条件下获得的纳米碳纤维的形貌图。
具体实施方式
实施例1
采用双电极体系(实验装置如图1所示),即以石墨为阳极,304不锈钢为阴极。纳米碳纤维制备在由碳酸锂和碳酸钾组成的混合熔盐中进行,其中碳酸锂:碳酸钾=62:38(摩尔比)。沉积温度为750℃,沉积电流密度为38mA/cm2,沉积时间为2小时。最终在不锈钢表面获得了大量纳米碳纤维。图2是在共晶碳酸锂-碳酸钾熔盐中获得的纳米碳纤维形貌图。其中碳纤维可以是直的,也可以是螺旋结构的。
实施例2
采用双电极体系,即以石墨为阳极,304不锈钢为阴极。纳米碳纤维制备在碳酸锂-碳酸钾混合熔盐中进行,其中碳酸锂:碳酸钾=62:38(摩尔比)。沉积温度为650℃,沉积电流密度为45mA/cm2,沉积时间为2小时。最终在不锈钢表面获得了大量纳米碳纤维。
实施例3
采用双电极体系,即以石墨为阳极,304不锈钢为阴极。纳米碳纤维制备在碳酸锂-碳酸钾-氯化钾混合熔盐(碳酸锂:碳酸钾:氯化钾=37:23:40(摩尔比))中进行。沉积温度为800℃,沉积电流密度为35mA/cm2,沉积时间为2小时。最终在不锈钢表面获得了大量纳米碳纤维。
实施例4
采用双电极体系,即以石墨为阳极,镍为阴极。纳米碳纤维制备在碳酸锂和碳酸钾的混合熔盐(碳酸锂:碳酸钾=43:57(摩尔比))中进行。沉积温度为750℃,沉积电流密度为35mA/cm2。最终在镍表面获得了大量纳米碳纤维。
实施例5
采用双电极体系,即以石墨为辅助电极,铁为工作电极。纳米碳纤维制备在碳酸锂和碳酸钾的混合熔盐(碳酸锂:碳酸钾=62:38(摩尔比))中进行。沉积温度为700℃,沉积电流密度为38mA/cm2。最终在铁表面获得了大量纳米碳纤维。
实施例6
采用双电极体系,即以石墨为阳极,304不锈钢阴极。纳米碳纤维制备在碳酸锂和碳酸钾的混合熔盐(碳酸锂:碳酸钾=70:30(摩尔比))中进行。沉积温度为750℃,沉积电流密度为42mA/cm2,沉积时间为1.5小时,最终在不锈钢表面获得了大量纳米碳纤维。
实施例7
采用三电极体系,即以石墨为辅助电极,304不锈钢为工作电极,金电极为参比电极。纳米碳纤维制备在碳酸锂和碳酸钾的混合熔盐(碳酸锂:碳酸钾=62:38(摩尔比))中进行。沉积温度为750℃,沉积电压为1.8V,沉积时间为两小时,最终在不锈钢表面获得了纳米碳纤维。
实施例8
采用三电极体系,即以石墨为辅助电极,镍为工作电极,金电极为参比电极。纳米碳纤维制备在碳酸锂和碳酸钾的混合熔盐(碳酸锂:碳酸钾=43:57(摩尔比))中进行。沉积温度为700℃,沉积电压为2.3V,沉积时间为30分钟,最终在镍表面获得了纳米碳管纤维。
实施例9
采用双电极体系,即以铂为阳极,304不锈钢为阴极。纳米碳纤维制备在碳酸锂和碳酸钾的混合熔盐(碳酸锂:碳酸钾=43:57(摩尔比))中进行。沉积温度为700℃,沉积电流密度为50mA/cm2。最终在不锈钢表面获得了大量纳米碳纤维。

Claims (5)

1.一种纳米碳纤维的制备方法,其特征在于:采用熔盐电化学方法在金属表面直接沉积纳米碳纤维;
其中,纳米碳纤维沉积温度为650-800℃;恒电流沉积纳米碳纤维的电流密度为35~50mA/cm2,恒电位沉积纳米碳纤维的电压为1.8~3V;以碳酸根离子为碳源,在熔融盐中,通过恒电流或恒电位直接还原碳酸根离子获得纳米碳纤维;
纳米碳纤维沉积在金属上,所述金属为不锈钢或铁。
2.按照权利要求1所述纳米碳纤维的制备方法,其特征在于:用于电沉积的熔盐体系既可以是纯碳酸盐,也可以是碳酸盐与氯化物盐的混合物。
3.按照权利要求2所述纳米碳纤维的制备方法,其特征在于:所述碳酸盐为碳酸钠、碳酸钾、碳酸锂中的一种或多种,氯化物盐为氯化锂、氯化钠、氯化钾、氯化钙中的一种或多种。
4.按照权利要求2所述纳米碳纤维的制备方法,其特征在于:混合盐体系可以是二元或多元的,但混合盐中必须含有至少一种碳酸盐,且各种盐的配比必须保证混合盐的熔点低于电沉积温度。
5.按照权利要求1所述纳米碳纤维的制备方法,其特征在于:纳米碳纤维可以是直的,也可以是螺旋状的,其直径和形态通过沉积电流和电压进行调节。
CN201110202103.2A 2011-07-19 2011-07-19 一种纳米碳纤维的制备方法 Expired - Fee Related CN102888673B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110202103.2A CN102888673B (zh) 2011-07-19 2011-07-19 一种纳米碳纤维的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110202103.2A CN102888673B (zh) 2011-07-19 2011-07-19 一种纳米碳纤维的制备方法

Publications (2)

Publication Number Publication Date
CN102888673A CN102888673A (zh) 2013-01-23
CN102888673B true CN102888673B (zh) 2014-12-10

Family

ID=47532343

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110202103.2A Expired - Fee Related CN102888673B (zh) 2011-07-19 2011-07-19 一种纳米碳纤维的制备方法

Country Status (1)

Country Link
CN (1) CN102888673B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108538427B (zh) * 2018-03-30 2020-02-11 东北大学 一种表面涂覆防冰雪碳层的架空电线及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6030393B2 (ja) * 1977-05-10 1985-07-16 東レ株式会社 金属被覆炭素繊維短繊維の製造方法
JPS61231222A (ja) * 1985-04-05 1986-10-15 Sumitomo Electric Ind Ltd 炭素繊維強化炭素複合材料の製造方法
JP3169702B2 (ja) * 1992-09-04 2001-05-28 大阪瓦斯株式会社 炭素/炭素複合材の製造方法
CN1299980C (zh) * 2004-06-15 2007-02-14 南开大学 单壁碳纳米管的电弧合成方法
WO2006099749A1 (en) * 2005-03-25 2006-09-28 Institut National De La Recherche Scientifique Methods and apparatuses for depositing nanometric filamentary structures
KR20080006814A (ko) * 2006-07-13 2008-01-17 충남대학교산학협력단 전기도금에 의한 탄소나노튜브 전계방출소자의 제조 방법및 그로부터 제조된 탄소나노튜브 전계방출소자
CN1958856B (zh) * 2006-10-13 2010-07-14 华东理工大学 一种用于有机电化学合成过程的纳米碳纤维电催化电极的制备

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Electrochemical formation of carbon nano-powders with various porosities in molten alkali carbonates;Kawamura H,et al;《Electrochimica Acta》;20091231;第54卷(第19期);第4566-4573页 *
Ingram M,et al.The electrolytic deposition of carbon from fused carbonate.《Electrochimica Acta》.1966,第11卷第1629-1639页. *
Kaplan B,et al.Synthesis of nanostructured carbon material by electroreduction in fused alkali carbonates.《Chemistry Letters》.2001,(第7期),第714-715页. *
Kawamura H,et al.Electrochemical formation of carbon nano-powders with various porosities in molten alkali carbonates.《Electrochimica Acta》.2009,第54卷(第19期),第4566-4573页. *
Synthesis of nanostructured carbon material by electroreduction in fused alkali carbonates;Kaplan B,et al;《Chemistry Letters》;20010705(第7期);第714页左栏第1-8、46-49行,右栏1-3、34-35行,第715页右栏第7-9行以及附图2、3 *
The electrolytic deposition of carbon from fused carbonate;Ingram M,et al;《Electrochimica Acta》;19661231;第11卷;第1629-1639页 *

Also Published As

Publication number Publication date
CN102888673A (zh) 2013-01-23

Similar Documents

Publication Publication Date Title
Huang et al. The chemistry and promising applications of graphene and porous graphene materials
Gao et al. Review on recent advances in nanostructured transition-metal-sulfide-based electrode materials for cathode materials of asymmetric supercapacitors
Dang et al. Controlled synthesis of hierarchical Cu nanosheets@ CuO nanorods as high-performance anode material for lithium-ion batteries
Ren et al. One-pot synthesis of carbon nanofibers from CO2
Zou et al. Noble metal-free hydrogen evolution catalysts for water splitting
Zheng et al. Recent advances of two-dimensional transition metal nitrides for energy storage and conversion applications
Khan et al. Molybdenum sulfide/graphene-carbon nanotube nanocomposite material for electrocatalytic applications in hydrogen evolution reactions
Li et al. Chemical vapor deposition-grown carbon nanotubes/graphene hybrids for electrochemical energy storage and conversion
Ding et al. Electrospun nickel-decorated carbon nanofiber membranes as efficient electrocatalysts for hydrogen evolution reaction
Chen et al. Green and sustainable molten salt electrochemistry for the conversion of secondary carbon pollutants to advanced carbon materials
Li et al. MoO2 nanoparticles on reduced graphene oxide/polyimide-carbon nanotube film as efficient hydrogen evolution electrocatalyst
Zhang et al. A novel porous CuO nanorod/rGO composite as a high stability anode material for lithium-ion batteries
Yu et al. Modulation engineering of 2D MXene-based compounds for metal-ion batteries
CN106414323A (zh) 生产石墨烯的方法
Ali et al. The role of graphene in rechargeable lithium batteries: Synthesis, functionalisation, and perspectives
Nai et al. Amorphous carbon-based materials as platform for advanced high-performance anodes in lithium secondary batteries
Sun et al. High-yield microstructure-controlled amorphous carbon anode materials through a pre-oxidation strategy for sodium ion batteries
Chen et al. Electrochemical graphitization conversion of CO2 through soluble NaVO3 homogeneous catalyst in carbonate molten salt
Gao et al. Advanced electrochemical energy storage and conversion on graphdiyne interface
CN113924269A (zh) 从co2简易的电合成石墨烯的方法
Deng et al. One-step synthesis of polycrystalline carbon nanofibers with periodic dome-shaped interiors and their reversible lithium-ion storage properties
Hu et al. Engineering current collectors for advanced alkali metal anodes: A review and perspective
Zhang et al. One-dimensional, space-confined, solid-phase growth of the Cu9S5@ MoS2 core–shell heterostructure for electrocatalytic hydrogen evolution
Wu et al. Graphdiyne based catalysts for energy applications
Dong et al. MnO2 nanowires/CNTs composites as efficient non-precious metal catalyst for oxygen reduction reaction

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141210