CN102879420A - 高电阻率铁磁材料缺陷检测方法 - Google Patents

高电阻率铁磁材料缺陷检测方法 Download PDF

Info

Publication number
CN102879420A
CN102879420A CN2012103579286A CN201210357928A CN102879420A CN 102879420 A CN102879420 A CN 102879420A CN 2012103579286 A CN2012103579286 A CN 2012103579286A CN 201210357928 A CN201210357928 A CN 201210357928A CN 102879420 A CN102879420 A CN 102879420A
Authority
CN
China
Prior art keywords
detected object
ferromagnetic material
high resistivity
magnetic field
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012103579286A
Other languages
English (en)
Other versions
CN102879420B (zh
Inventor
侯德鑫
叶树亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN201210357928.6A priority Critical patent/CN102879420B/zh
Publication of CN102879420A publication Critical patent/CN102879420A/zh
Application granted granted Critical
Publication of CN102879420B publication Critical patent/CN102879420B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

本发明提供一种对高电阻率铁磁材料的裂纹、气泡等缺陷进行无损检测的方法。本发明基本检测流程是将检测对象置于交变磁场中交流磁化使其温度升高,同时采用红外热像仪实时获取热图像,根据缺陷引起的温度场分布异常检测缺陷。相比较已公开的热成像无损检测方法,本发明主要特征是热激励手段不同,通过铁磁材料在交流磁化过程中的磁滞损耗来实现。本发明所述方法可以在非接触的情况下对检测对象从内部进行加热进而检测缺陷,并且不要求检测对象导电,特别适合于铁氧体等高电阻率铁磁材料缺陷检测。

Description

高电阻率铁磁材料缺陷检测方法
技术领域
本发明涉及一种产品缺陷无损检测方法,尤其是用于高电阻率铁磁材料的主动式热成像无损检测方法。
背景技术
铁磁材料零部件在生产及服役过程中可能产生裂纹、气泡、腐蚀等缺陷,这些缺陷的存在会严重影响产品的稳定性、可靠性及使用寿命,因此需要采用无损检测技术发现缺陷并确定其位置。高电阻率铁磁材料具有在交变磁场作用下感应涡流很弱的优点,典型代表是铁氧体材料,该类材料大量应用于高频领域,其缺陷检测具有重要意义。
热成像无损检测技术是一类通过热像仪获取对象表面温度信息并据此分析缺陷情况的技术,具有非接触、检测结果直观、检测速度快等优点。现有热成像无损检测技术的热激励手段有闪光灯、热空气、涡流、超声等,其中闪光灯、热空气等热激励方式仅作用于检测对象表面,对缺陷灵敏度不高;超声激励方法要求探头与检测对象紧密接触,不适合高效率检测场合;涡流热成像方法可在非接触情况下感应产生涡流并利用焦耳效应进行热激励,但该方法仅适用于导电材料,不适合高电阻率铁磁材料。
发明内容
本发明要解决的技术问题是提供一种适用于高电阻率铁磁材料的热成像无损检测方法,相关装置无需与检测对象接触,能够对检测对象内部直接进行加热,且加热效果对缺陷敏感。
为解决上述技术问题,本发明通过以下技术方法实现:
1)将检测对象置于交变磁场中,该交变磁场作为热激励手段,将检测对象进行交流磁化,利用该过程中的磁滞损耗进行加热,使检测对象表面温度升高。
2)在使用交变磁场施加热激励的同时,采用热像仪对检测对象进行热成像,获取检测对象在激励前、激励过程中、激励后的热图像序列。
3)对热图像序列进行分析,根据温度分布异常判断缺陷是否存在,并确定缺陷位置和缺陷大小。
更进一步的,为了提高加热速度,增强热图像中缺陷区域与完好区域的温度差,所用交变磁场应具有较大强度,一般达到或超过待检测铁磁材料饱和磁化所需磁场强度。另外,为了提高检测缺陷的灵敏度,增强缺陷区域与完好区域的温度差,所用交变磁场的磁力线方向应与缺陷区域面积最大截面的法线方向平行。
本发明有益效果:本发明中能量的传递通过电磁场实现,不需要传播媒介,因此可以实现非接触检测。当检测对象为高电阻率材料时,涡流效应很弱,激励磁场可深入检测对象内部进行加热,提高对内部缺陷的检测效果,因此对铁氧体等高电阻率铁磁材料尤其适合。
附图说明
图1. EM型磁芯裂纹检测系统结构示意图;
图2. EM型磁芯实物图;
图3. 施加交变电流激励0.0秒后热像图;
图4. 施加交变电流激励0.5秒后热像图;
图5. 施加交变电流激励1.0秒后热像图;
图6. 施加交变电流激励1.5秒后热像图;
图中,1、EM型磁芯;2、水冷却铜管;3、感应加热装置;4、感应加热装置输出接头;5、磁芯上的表面开口裂纹。
具体实施方式
以下结合附图对本发明作进一步描述。
实施案例:EM型软磁铁氧体磁芯裂纹检测
检测系统基本结构如图1所示,其包括EM型磁芯1、水冷却铜管2、感应加热装置3,其中磁芯1上有表面开口裂纹5,感应加热装置通过输出接口4输出设定频率和幅值的交变电流;水冷却铜管2缠绕在磁芯1上,感应加热装置3的输出接头4与水冷却铜管2连接。检测对象为某磁性材料企业生产的EM型软磁铁氧体磁芯,外形如图2所示。设置感应加热装置输出电流幅值为360A,频率为257kHz,电流持续时间1.2s。采用热灵敏度≥50mK、分辨率为320×240、帧频25Hz的热像仪进行热图像采集。开始施加电流激励的时刻作为零点,在0秒、0.5秒、1.0秒、1.5秒采集的热图像依次如图3、图4、图5、图6所示。
分析热成像结果发现,磁芯结构左右对称,但在1.0秒的热图像(图5)及1.5秒的热图像(图6)中,温度场分布左右不对称。由于磁致损耗随磁感应强度变大而增加,因此温度场分布可反映磁力线分布规律。由1.0秒的热图像(图5)及1.5秒的热图像(图6)可知,磁芯右侧温度弱于左侧,在右侧内拐角位置存在较大温度差,据此可推测该位置存在裂纹缺陷,导致右侧磁路具有较大磁阻,磁场能量主要集中于磁芯左侧,该分析结果与实际裂纹情况一致。
本发明方法所依据的原理:所有铁磁材料在交变磁场中都存在磁滞损耗,因此可以起到加热效果。磁滞损耗与交变磁场的频率之间具有递增关系,与磁通密度幅值之间也具有递增关系,故采用高频、高强度交变磁场可增大磁滞损耗,提高温升速度,改善热图像信噪比。铁磁材料内部存在缺陷时,会改变所在区域的有效磁导率,从而改变邻近区域的磁通密度,进而改变邻近区域的磁滞损耗,最终导致器件表面不同区域之间的温度差,该温度差可通过热像仪采集的热图像分析得到。当沿磁力线方向存在具有截断磁力线效果的缺陷时,缺陷更容易改变原有磁通密度分布,因此进行交流磁化时所用交变磁场的磁力线方向与缺陷区域面积最大截面的法线方向平行时能够具有更好的检测灵敏度。另外,缺陷通常也会改变材料的热传导特性,从而对检测对象表面温度场分布产生影响。一般的,缺陷的存在会导致热图像中特定区域温度升高或降低,温度分布规律与缺陷类型有关,温度变化大小与缺陷大小有关,温度变化的位置与缺陷位置有关,因此通过热图像分析,可以获取缺陷的种类、位置、大小等信息。
本发明应用具体个例对本发明实施方案进行了阐述,以上实施例的说明只是用于帮助理解本发明的工作原理及其核心思想,并不局限于特定的实施对象,凡是根据本发明的核心思想,在具体实施方式和适用范围内有变化之处的相同或相近技术方案均在其保护范围之内。

Claims (3)

1.高电阻率铁磁材料缺陷检测方法,包括对检测对象进行热激励,采用热像仪获取检测对象在检测过程中的热图像序列,然后通过分析热图像序列判断缺陷是否存在,并确定缺陷位置,其特征在于,所述热激励具体为:将检测对象置于交变磁场中进行交流磁化,利用检测对象的磁滞损耗从内部进行加热,并引起表面温度升高。
2.根据权利要求1所述的高电阻率铁磁材料缺陷检测方法,其特征在于:所述对检测对象进行交流磁化的磁场,其强度达到或超过待检测铁磁材料饱和磁化所需磁场强度。
3.根据权利要求1所述的高电阻率铁磁材料缺陷检测方法,其特征在于:所述对检测对象进行交流磁化的磁场,其磁力线方向与缺陷区域面积最大截面的法线方向平行。
CN201210357928.6A 2012-09-24 2012-09-24 高电阻率铁磁材料缺陷检测方法 Expired - Fee Related CN102879420B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210357928.6A CN102879420B (zh) 2012-09-24 2012-09-24 高电阻率铁磁材料缺陷检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210357928.6A CN102879420B (zh) 2012-09-24 2012-09-24 高电阻率铁磁材料缺陷检测方法

Publications (2)

Publication Number Publication Date
CN102879420A true CN102879420A (zh) 2013-01-16
CN102879420B CN102879420B (zh) 2015-11-18

Family

ID=47480825

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210357928.6A Expired - Fee Related CN102879420B (zh) 2012-09-24 2012-09-24 高电阻率铁磁材料缺陷检测方法

Country Status (1)

Country Link
CN (1) CN102879420B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103399037A (zh) * 2013-08-08 2013-11-20 南昌航空大学 基于电磁感应加热的主动式红外管材缺陷检测方法
CN106324036A (zh) * 2016-08-30 2017-01-11 中国特种设备检测研究院 热收缩带的红外热成像检测方法及装置
CN107796853A (zh) * 2016-08-30 2018-03-13 中国特种设备检测研究院 热收缩带的红外热成像检测方法及装置
CN111473955A (zh) * 2020-05-20 2020-07-31 陈国辉 一种红外半导体发光元件散热性能测试方法
CN112198190A (zh) * 2020-09-21 2021-01-08 国网陕西省电力公司西咸新区供电公司 一种铜铝线夹裂缝缺陷检测方法和系统
CN113376204A (zh) * 2020-03-10 2021-09-10 觉芯电子(无锡)有限公司 一种金属环检测方法及装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1191969A (zh) * 1997-02-25 1998-09-02 中国科学院金属研究所 一种压力容器的热图无损检测方法
CN1900704A (zh) * 2005-07-22 2007-01-24 同济大学 一种测定磁热材料的居里温度的方法
US7246939B1 (en) * 2003-10-23 2007-07-24 Gultekin David H Measurement of thermal diffusivity, thermal conductivity, specific heat, specific absorption rate, thermal power, heat transfer coefficient, heat of reaction and membrane permeability by nuclear magnetic resonance
CN101551359A (zh) * 2009-05-05 2009-10-07 重庆大学 封闭铁磁壳体内部三维作用力在线检测方法
CN101581683A (zh) * 2009-06-29 2009-11-18 长沙理工大学 磁场作用下纳米流体真空热管传热特性的实验装置
CN201518010U (zh) * 2008-04-04 2010-06-30 中国人民解放军空军第一航空学院 一种用于飞机复合材料的红外无损检测装置
CN101788512A (zh) * 2010-02-23 2010-07-28 中国电力科学研究院 一种测量磁性材料在交变磁场中热效应的装置及方法
CN201653949U (zh) * 2010-02-23 2010-11-24 中国电力科学研究院 一种测量磁性材料在交变磁场中热效应的装置
CN202442969U (zh) * 2012-02-24 2012-09-19 上海兰宝传感科技股份有限公司 红外无损检测装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1191969A (zh) * 1997-02-25 1998-09-02 中国科学院金属研究所 一种压力容器的热图无损检测方法
US7246939B1 (en) * 2003-10-23 2007-07-24 Gultekin David H Measurement of thermal diffusivity, thermal conductivity, specific heat, specific absorption rate, thermal power, heat transfer coefficient, heat of reaction and membrane permeability by nuclear magnetic resonance
CN1900704A (zh) * 2005-07-22 2007-01-24 同济大学 一种测定磁热材料的居里温度的方法
CN201518010U (zh) * 2008-04-04 2010-06-30 中国人民解放军空军第一航空学院 一种用于飞机复合材料的红外无损检测装置
CN101551359A (zh) * 2009-05-05 2009-10-07 重庆大学 封闭铁磁壳体内部三维作用力在线检测方法
CN101581683A (zh) * 2009-06-29 2009-11-18 长沙理工大学 磁场作用下纳米流体真空热管传热特性的实验装置
CN101788512A (zh) * 2010-02-23 2010-07-28 中国电力科学研究院 一种测量磁性材料在交变磁场中热效应的装置及方法
CN201653949U (zh) * 2010-02-23 2010-11-24 中国电力科学研究院 一种测量磁性材料在交变磁场中热效应的装置
CN202442969U (zh) * 2012-02-24 2012-09-19 上海兰宝传感科技股份有限公司 红外无损检测装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MUSTAFA GOKTEPE: "Non-destructive crack detection by capturing local flux leakage field", 《SENSORS AND ACTUATORS A》, no. 91, 31 December 2001 (2001-12-31), pages 70 - 72 *
左宪章等: "基于脉冲漏磁理论的铁磁性材料斜裂纹检测", 《磁性材料及器件》, vol. 43, no. 4, 31 August 2012 (2012-08-31), pages 58 - 62 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103399037A (zh) * 2013-08-08 2013-11-20 南昌航空大学 基于电磁感应加热的主动式红外管材缺陷检测方法
CN103399037B (zh) * 2013-08-08 2016-05-18 南昌航空大学 基于电磁感应加热的主动式红外管材缺陷检测方法
CN106324036A (zh) * 2016-08-30 2017-01-11 中国特种设备检测研究院 热收缩带的红外热成像检测方法及装置
CN107796853A (zh) * 2016-08-30 2018-03-13 中国特种设备检测研究院 热收缩带的红外热成像检测方法及装置
CN113376204A (zh) * 2020-03-10 2021-09-10 觉芯电子(无锡)有限公司 一种金属环检测方法及装置
CN111473955A (zh) * 2020-05-20 2020-07-31 陈国辉 一种红外半导体发光元件散热性能测试方法
CN111473955B (zh) * 2020-05-20 2022-03-11 星紫(上海)新材料技术开发有限公司 一种红外半导体发光元件散热性能测试方法
CN112198190A (zh) * 2020-09-21 2021-01-08 国网陕西省电力公司西咸新区供电公司 一种铜铝线夹裂缝缺陷检测方法和系统

Also Published As

Publication number Publication date
CN102879420B (zh) 2015-11-18

Similar Documents

Publication Publication Date Title
CN102879420B (zh) 高电阻率铁磁材料缺陷检测方法
Gao et al. Multiple cracks detection and visualization using magnetic flux leakage and eddy current pulsed thermography
Liu et al. Natural crack diagnosis system based on novel L-shaped electromagnetic sensing thermography
CN103868986B (zh) 一种金属管道内表面缺陷的涡流检测探头及其检测方法
CN103163216B (zh) 一种基于巨磁电阻传感器的金属导体缺陷识别及估计方法
CN104764770A (zh) 一种钢轨裂纹的脉冲涡流红外热成像检测系统及其方法
CN103499636B (zh) 基于测静磁力的薄板类铁磁材料中微缺陷的无损检测方法
CN104655718B (zh) 一种基于霍尔传感器阵列的电磁探伤方法及系统
CN105004758B (zh) 一种涡流线扫描热成像检测系统及方法
CN103954684B (zh) 一种利用漏磁变化率进行无损检测的方法
Gao et al. Electromagnetic pulsed thermography for natural cracks inspection
CN105784763B (zh) 一种基于磁芯环绕线圈结构的感应热像无损检测装置
CN105823797B (zh) 一种基于共生式磁轭线圈的感应热像无损检测装置
CN105973938B (zh) 用于钢轨无损探伤的脉冲涡流热成像高速检测装置
CN105241923B (zh) 倒装焊焊点缺陷检测方法
CN103822967B (zh) 双激励线圈导体缺陷自动探伤装置及探伤方法
CN109358110A (zh) 一种用于钢板内部缺陷成像的阵列式电磁多维度检测系统
Mahendran et al. Naked eye visualization of defects in ferromagnetic materials and components
CN104165923A (zh) 金属线材/管材无损探伤装置
CN108627540A (zh) 一种涡流热成像面检测容器腐蚀壁厚系统及检测方法
Li et al. Detection model of invisible weld defects by magneto-optical imaging at rotating magnetic field directions
Wu et al. Weld crack detection based on region electromagnetic sensing thermography
Piao et al. High-speed inspection method fusing pulsed eddy current and magnetic flux leakage
CN102759565B (zh) 一种钢带纵横向缺陷检测并识别的漏磁检测装置及方法
Li et al. Microcracks detection based on shuttle-shaped electromagnetic thermography

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151118

Termination date: 20200924

CF01 Termination of patent right due to non-payment of annual fee