CN102840091A - 利用潮汐能双向驱动的调功式海水淡化及发电装置 - Google Patents
利用潮汐能双向驱动的调功式海水淡化及发电装置 Download PDFInfo
- Publication number
- CN102840091A CN102840091A CN2012102102763A CN201210210276A CN102840091A CN 102840091 A CN102840091 A CN 102840091A CN 2012102102763 A CN2012102102763 A CN 2012102102763A CN 201210210276 A CN201210210276 A CN 201210210276A CN 102840091 A CN102840091 A CN 102840091A
- Authority
- CN
- China
- Prior art keywords
- water
- service pump
- pressure service
- communicated
- seawater
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013535 sea water Substances 0.000 title claims abstract description 183
- 238000010612 desalination reaction Methods 0.000 title claims abstract description 23
- 230000033228 biological regulation Effects 0.000 title claims abstract description 6
- 238000010248 power generation Methods 0.000 title abstract 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 333
- 238000001223 reverse osmosis Methods 0.000 claims abstract description 96
- 239000012528 membrane Substances 0.000 claims abstract description 95
- 230000005540 biological transmission Effects 0.000 claims abstract description 45
- 230000000630 rising effect Effects 0.000 claims description 28
- 230000000712 assembly Effects 0.000 claims description 13
- 238000000429 assembly Methods 0.000 claims description 13
- 230000005611 electricity Effects 0.000 claims description 4
- 238000000034 method Methods 0.000 abstract description 30
- 230000008569 process Effects 0.000 abstract description 15
- 238000006243 chemical reaction Methods 0.000 abstract description 3
- 230000008901 benefit Effects 0.000 abstract description 2
- 230000003116 impacting effect Effects 0.000 abstract 1
- 230000008878 coupling Effects 0.000 description 34
- 238000010168 coupling process Methods 0.000 description 34
- 238000005859 coupling reaction Methods 0.000 description 34
- 239000013505 freshwater Substances 0.000 description 22
- 239000003795 chemical substances by application Substances 0.000 description 11
- 238000001914 filtration Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 5
- 238000011033 desalting Methods 0.000 description 4
- 230000009183 running Effects 0.000 description 4
- CUZMQPZYCDIHQL-VCTVXEGHSA-L calcium;(2s)-1-[(2s)-3-[(2r)-2-(cyclohexanecarbonylamino)propanoyl]sulfanyl-2-methylpropanoyl]pyrrolidine-2-carboxylate Chemical compound [Ca+2].N([C@H](C)C(=O)SC[C@@H](C)C(=O)N1[C@@H](CCC1)C([O-])=O)C(=O)C1CCCCC1.N([C@H](C)C(=O)SC[C@@H](C)C(=O)N1[C@@H](CCC1)C([O-])=O)C(=O)C1CCCCC1 CUZMQPZYCDIHQL-VCTVXEGHSA-L 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 239000003651 drinking water Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 235000012206 bottled water Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/138—Water desalination using renewable energy
- Y02A20/144—Wave energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/30—Energy from the sea, e.g. using wave energy or salinity gradient
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
Abstract
本分案申请公开了一种利用潮汐能双向驱动的调功式海水淡化及发电装置,包括蓄水池、第一水轮机、第二水轮机、传动箱、变速箱、第一高压泵、第二高压泵、两组反渗透膜组件、涡轮机和发电机,第一高压泵的功率大于第二高压泵,第一高压泵、第二高压泵与两组反渗透膜组件选择性工作,通过改变系统的功率实现水压稳定,利用涨潮时和退潮后海水流动的过程中分别冲击第一水轮机和第二水轮机转动为动力产生高压海水,从反渗透膜组件中排出的高压浓海水冲击涡轮机转动,涡轮机带动发电机转动产生电能,实现潮汐能的综合利用和转化,系统不需要另外提供动力,运行成本低,潮汐能是一种可再生能源,具有可持续发展性,具有良好的社会效益和应用价值。
Description
本申请为中国申请日2010年12月4日,申请号2010105815528,名称为“利用潮汐能驱动的海水淡化及发电的方法与装置”的分案申请。
技术领域
本发明涉及一种海水淡化及发电装置,特别是一种利用潮汐能驱动的海水淡化及发电装置。
背景技术
水是人类及一切生物赖以生存的重要物质,地球拥有充足的水资源,水的总量达到14亿立方千米,但是能被人类所利用的淡水资源却很少,储量仅占全球总水量的2.53%,而且其中68.7%的淡水以固体冰川的形式存在,很难进行开采利用,人类可以直接利用的淡水只有地下水、湖泊淡水和河床水,这三者总和约占地球总水量的0.77%,导致目前全世界约有80多个国家和地区严重缺水,占地球陆地面积的6O%,有15亿人缺少饮用水,20亿人得不到安全的用水,淡水资源危机已成为仅次于全球气候变暖的世界第二大环境问题,淡水资源的缺乏与持续减少严重威胁到城市居民的饮水安全和人民群众的健康。解决淡水资源危机,开拓新的安全水源将成为国家发展的重中之重。
海洋蕴藏了全球97%的水量,海水淡化可以解决淡水资源匮乏这一问题。目前,海水淡化的方法有很多种,例如蒸馏法、反渗透法、冷冻法、电渗析法和溶剂萃取法等。在这些方法中,发展最快的是反渗透法,但目前利用反渗透海水淡化方式制取的淡水成本还是偏高,其主要原因之一就是目前极大部分的反渗透海水淡化都是使用高压泵来制造高压海水,而高压泵是高耗能设备,需要消耗大量的电能,利用该设备每生产1立方米的淡水要消耗3—10度的电能,从而提高了反渗透海水淡化的成本。
利用传统能源制造淡水,会增加碳排放,进而降低环境质量,最终又反过来污染人类可利用的淡水水源。
海洋能是一种可再生能源,取之不尽,用之不竭。典型的对海洋能进行聚能的方法有波浪能或潮汐能利用渐缩通道将海水送到一定高度形成势差的方法,但是利用这种方法来提升海水的高度是有限的,因此仅依靠流道结构提升海水势能的方法还远远不够,由于压差并不大,其效率往往比较低,不易利用。分析当前的海洋能开发利用现状不难看出,要想使海洋能的能量密度大幅度提高,设计一种有效的聚能装置得到高压海水对开发利用海洋能至关重要。
发明内容
为了克服现有技术的不足,本发明提供一种利用潮汐能驱动的海水淡化及发电的方法与装置。
本发明解决其技术问题所采用的技术方案是:
一种利用潮汐能驱动的海水淡化及发电的方法,在海边建立蓄水池,利用涨潮时大海中的高位海水在流向所述蓄水池内的过程中冲击水轮机转动和/或退潮后蓄水池中的高位海水在流向大海的过程中冲击水轮机转动,水轮机通过增速装置带动高压泵工作产生高压海水,高压海水流经反渗透膜组件制取淡水,从反渗透膜组件中排出的高压浓海水冲击涡轮机转动,涡轮机带动发电机工作产生电能,实现海洋能的综合利用。
实现本发明方法的装置可以有很多种,本发明给出8种结构不同的装置。
第一种装置包括:
【A1】、蓄水池,该蓄水池的海水进口设置有单向水闸;
【B1】、水轮机,其进水口与所述蓄水池的出水口连通,出水口与大海连通;
【C1】、变速箱,该变速箱的动力输入轴与所述水轮机的动力输出轴连接;
【D1】、高压泵,其动力输入轴与所述变速箱的动力输出轴连接,所述高压泵的进水口与大海中的海水或蓄水池中的海水连通;
【E1】、反渗透膜组件,设置有淡水出口和浓海水出口,该反渗透膜组件的进水口与所述高压泵的出水口连通;
【F1】、涡轮机,其进水口与所述反渗透膜组件的浓海水出口连通,出水口与大海连通;
【G1】、发电机,该发电机的动力输入轴与涡轮机的动力输出轴连接。
第二种装置包括:
【A2】、蓄水池,该蓄水池的海水进口设置有单向水闸;
【B2】、水轮机,其进水口与所述蓄水池的出水口连通,出水口与大海连通;
【C2】、变速箱,该变速箱的动力输入轴与所述水轮机的动力输出轴连接;
【D2】、高压泵,其动力输入轴与所述变速箱的动力输出轴连接,所述高压泵的进水口与大海中的海水或蓄水池中的海水连通;
【E2】、反渗透膜组件,设置有淡水出口和浓海水出口,该反渗透膜组件的进水口通过第一单向阀与所述高压泵的出水口连通;
【F2】、增压泵,其进水口通过第二单向阀与连通所述第一单向阀和高压泵的管路连通,增压泵的出水口与连通所述第一单向阀和反渗透膜组件的连接管路连通;
【G2】、涡轮机,其进水口与所述反渗透膜组件的浓海水出口连通,出水口与大海连通;
【H2】、发电机,该发电机的动力输入轴与涡轮机的动力输出轴连接;
【I2】、蓄电池,该蓄电池的电源由发电机提供;
【J2】、电动机,该电动机的工作电源由蓄电池提供,所述电动机的动力输出轴与所述增压泵的动力输入轴连接。
第三种装置包括:
【A3】、蓄水池,该蓄水池的海水进口设置有单向水闸;
【B3】、水轮机,其进水口与所述蓄水池的出水口连通,出水口与大海连通;
【C3】、变速箱,该变速箱的动力输入轴与所述水轮机的动力输出轴连接;
【D3】、高压泵,其动力输入轴与所述变速箱的动力输出轴连接,所述高压泵的进水口通过第一单向阀与大海中的海水或蓄水池中的海水连通;
【E3】、反渗透膜组件,设置有淡水出口和浓海水出口,该反渗透膜组件的进水口与所述高压泵的出水口连通;
【F3】、增压泵,其进水口通过第二单向阀与大海中的海水或蓄水池中的海水连通,增压泵的出水口与连通所述高压泵和反渗透膜组件的连接管路连通;
【G3】、涡轮机,其进水口与所述反渗透膜组件的浓海水出口连通,出水口与大海连通;
【H3】、发电机,该发电机的动力输入轴与涡轮机的动力输出轴连接;
【I3】、蓄电池,该蓄电池的电源由发电机提供;
【J3】、电动机,该电动机的工作电源由蓄电池提供,所述电动机的动力输出轴与所述增压泵的动力输入轴连接。
第四种结构的装置包括:
【A4】、蓄水池,该蓄水池的海水进口设置有单向水闸;
【B4】、水轮机,其进水口与所述蓄水池的出水口连通,出水口与大海连通;
【C4】、变速箱,其动力输入轴与所述水轮机的动力输出轴连接;所述变速箱的动力输入轴设置有两组主动齿轮,对应的也设置有两组从动齿轮,其中一组从动齿轮可与其中一组主动齿轮啮合或分离,另一组从动齿轮可与另一组主动齿轮啮合或分离,所述两组从动齿轮各设置有一动力输出轴;
【D4】、第一高压泵,其动力输入轴与所述变速箱的其中一动力输出轴连接,所述第一高压泵的进水口通过第一单向阀与大海中的海水或蓄水池中的海水连通;
【E4】、第二高压泵,该第二高压泵的功率小于所述第一高压泵的功率,所述第二高压泵的动力输入轴与所述变速箱的另一动力输出轴连接,所述第二高压泵的进水口通过第二单向阀与大海中的海水或蓄水池中的海水连通;
【F4】、两组反渗透膜组件,均设置有淡水出口和浓海水出口,其中一组反渗透膜组件的进水口与连通所述第一高压泵出水口和第二高压泵出水口的管路连通,另一组反渗透膜组件的进水口通过电磁阀与连通所述第一高压泵出水口和第二高压泵出水口的管路连通;
【G4】、涡轮机,其进水口与所述两组反渗透膜组件的浓海水出口连通,涡轮机的出水口与大海连通;
【H4】、发电机,该发电机的动力输入轴与涡轮机的动力输出轴连接。
第五种装置包括:
【A5】、蓄水池,该蓄水池设置有进水管路和出水管路,所述进水管路和出水管路上分别设置有第一电磁阀和第二电磁阀;
【B5】、第一水轮机,设置在所述蓄水池的进水管路上;
【C5】、第二水轮机,设置在所述蓄水池的出水管路上;
【D5】、传动箱,该传动箱设置有两组输入端主动齿轮和一组输入端从动齿轮,所述输入端从动齿轮可分别与其中一组输入端主动齿轮啮合或分离,所述输入端主动齿轮各设置有一动力输入轴,所述传动箱的其中一动力输入轴与第一水轮机的动力输出轴连接,另一动力输入轴与第二水轮机的动力输出轴连接;
【E5】、变速箱,该变速箱的动力输入轴与所述传动箱的动力输出轴连接;
【F5】、高压泵,其动力输入轴与所述变速箱的动力输出轴连接,所述高压泵的进水口与大海中的海水或蓄水池中的海水连通;
【G5】、反渗透膜组件,设置有淡水出口和浓海水出口,该反渗透膜组件的进水口与所述高压泵的出水口连通;
【H5】、涡轮机,其进水口与所述反渗透膜组件的浓海水出口连通,出水口与大海连通;
【I5】、发电机,该发电机的动力输入轴与涡轮机的动力输出轴连接。
第六种装置包括:
【A6】、蓄水池,该蓄水池设置有进水管路和出水管路,所述进水管路和出水管路上分别设置有第一电磁阀和第二电磁阀;
【B6】、第一水轮机,设置在所述蓄水池的进水管路上;
【C6】、第二水轮机,设置在所述蓄水池的出水管路上;
【D6】、传动箱,该传动箱设置有两组输入端主动齿轮和一组输入端从动齿轮,所述输入端从动齿轮可分别与其中一组输入端主动齿轮啮合或分离,所述输入端主动齿轮各设置有一动力输入轴,所述传动箱的其中一动力输入轴与第一水轮机的动力输出轴连接,另一动力输入轴与第二水轮机的动力输出轴连接;
【E6】、变速箱,该变速箱的动力输入轴与所述传动箱的动力输出轴连接;
【F6】、高压泵,其动力输入轴与所述变速箱的动力输出轴连接,所述高压泵的进水口与大海中的海水或蓄水池中的海水连通;
【G6】、反渗透膜组件,设置有淡水出口和浓海水出口,该反渗透膜组件的进水口通过第一单向阀与所述高压泵的出水口连通;
【H6】、增压泵,其进水口通过第二单向阀与连通所述第一单向阀和高压泵的管路连通,增压泵的出水口与连通所述第一单向阀和反渗透膜组件的连接管路连通;
【I6】、涡轮机,其进水口与所述反渗透膜组件的浓海水出口连通,出水口与大海连通;
【J6】、发电机,该发电机的动力输入轴与涡轮机的动力输出轴连接;
【K6】、蓄电池,该蓄电池的电源由发电机提供;
【L6】、电动机,该电动机的工作电源由蓄电池提供,所述电动机的动力输出轴与所述增压泵的动力输入轴连接。
第七种装置包括:
【A7】、蓄水池,该蓄水池设置有进水管路和出水管路,所述进水管路和出水管路上分别设置有第一电磁阀和第二电磁阀;
【B7】、第一水轮机,设置在所述蓄水池的进水管路上;
【C7】、第二水轮机,设置在所述蓄水池的出水管路上;
【D7】传动箱,该传动箱设置有两组输入端主动齿轮和一组输入端从动齿轮,所述输入端从动齿轮可分别与其中一组输入端主动齿轮啮合或分离,所述输入端主动齿轮各设置有一动力输入轴,所述传动箱的其中一动力输入轴与第一水轮机的动力输出轴连接,另一动力输入轴与第二水轮机的动力输出轴连接;
【E7】、变速箱,该变速箱的动力输入轴与所述传动箱的动力输出轴连接;
【F7】、高压泵,其动力输入轴与所述变速箱的动力输出轴连接,所述高压泵的进水口通过第一单向阀与大海中的海水或蓄水池中的海水连通;
【G7】、反渗透膜组件,设置有淡水出口和浓海水出口,该反渗透膜组件的进水口与所述高压泵的出水口连通;
【H7】、增压泵,其进水口通过第二单向阀与大海中的海水或蓄水池中的海水连通,增压泵的出水口与连通所述高压泵和反渗透膜组件的连接管路连通;
【I7】、涡轮机,其进水口与所述反渗透膜组件的浓海水出口连通,出水口与大海连通;
【J7】、发电机,该发电机的动力输入轴与涡轮机的动力输出轴连接;
【K7】、蓄电池,该蓄电池的电源由发电机提供;
【L7】、电动机,该电动机的工作电源由蓄电池提供,所述电动机的动力输出轴与所述增压泵的动力输入轴连接。
第八种装置包括:
【A8】、蓄水池,该蓄水池设置有进水管路和出水管路,所述进水管路和出水管路上分别设置有第一电磁阀和第二电磁阀;
【B8】、第一水轮机,设置在所述蓄水池的进水管路上;
【C8】、第二水轮机,设置在所述蓄水池的出水管路上;
【D8】、传动箱,该传动箱设置有两组输入端主动齿轮和一组输入端从动齿轮,所述输入端从动齿轮可分别与其中一组输入端主动齿轮啮合或分离,所述输入端主动齿轮各设置有一动力输入轴,所述传动箱的其中一动力输入轴与第一水轮机的动力输出轴连接,另一动力输入轴与第二水轮机的动力输出轴连接;
【E8】、变速箱,其动力输入轴与所述传动箱的动力输出轴连接;所述变速箱的动力输入轴设置有两组主动齿轮,对应的也设置有两组从动齿轮,其中一组从动齿轮可与其中一组主动齿轮啮合或分离,另一组从动齿轮可与另一组主动齿轮啮合或分离,所述两组从动齿轮各设置有一动力输出轴;
【F8】、第一高压泵,其动力输入轴与所述变速箱的其中一动力输出轴连接,所述第一高压泵的进水口通过第一单向阀与大海中的海水或蓄水池中的海水连通;
【G8】、第二高压泵,该第二高压泵的功率小于所述第一高压泵的功率,所述第二高压泵的动力输入轴与所述变速箱的另一动力输出轴连接,所述第二高压泵的进水口通过第二单向阀与大海中的海水或蓄水池中的海水连通;
【H8】、两组反渗透膜组件,均设置有淡水出口和浓海水出口,其中一组反渗透膜组件的进水口与连通所述第一高压泵出水口和第二高压泵出水口的管路连通,另一组反渗透膜组件的进水口通过电磁阀与连通所述第一高压泵出水口和第二高压泵出水口的管路连通;
【I8】、涡轮机,其进水口与所述两组反渗透膜组件的浓海水出口连通,涡轮机的出水口与大海连通;
【J8】、发电机,该发电机的动力输入轴与涡轮机的动力输出轴连接。
本发明的有益效果是:本发明利用涨潮时大海中的高位海水在流向蓄水池内的过程中冲击水轮机转动和/或退潮后蓄水池中的高位海水在流向大海的过程中冲击水轮机转动,水轮机带动高压泵工作产生高压海水,高压海水经过反渗透膜组件淡化,从反渗透膜组件中排出的高压浓海水冲击涡轮机转动,涡轮机带动发电机转动产生电能,实现潮汐能的综合利用和转化,产生的电能还可以储备在蓄电池中,当由于潮差较低造成的高压海水压力不够时,用此电能供给电动机驱动增压泵,补充膜组件的进水压力,使海水淡化过程在稳定的高压海水下进行。能源利用与转化过程中的排放物无污染,清洁环保,系统不需要另外提供动力,运行成本低,潮汐能是一种可再生能源,具有可持续发展性,具有良好的社会效益和应用价值。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是第一种利用潮汐能驱动的海水淡化及发电装置结构示意图;
图2是第二种利用潮汐能驱动的海水淡化及发电装置结构示意图;
图3是第三种利用潮汐能驱动的海水淡化及发电装置结构示意图;
图4是第四种利用潮汐能驱动的海水淡化及发电装置结构示意图;
图5是第五种利用潮汐能驱动的海水淡化及发电装置结构示意图;
图6是第六种利用潮汐能驱动的海水淡化及发电装置结构示意图;
图7是第七种利用潮汐能驱动的海水淡化及发电装置结构示意图;
图8是第八种利用潮汐能驱动的海水淡化及发电装置结构示意图。
具体实施方式
一种利用潮汐能驱动的海水淡化及发电的方法,首先在海边建立蓄水池,利用涨潮时大海中的高位海水在流向所述蓄水池内的过程中冲击水轮机转动和/或退潮后蓄水池中的高位海水在流向大海的过程中冲击水轮机转动,水轮机通过变速箱带动高压泵工作产生高压海水,高压海水首先流经反渗透膜组件制取淡水,未透过渗透膜的剩余浓海水是原海水的60%左右,此时的浓海水依然保持高压,从反渗透膜组件中排出的高压浓海水再流经涡轮机冲击涡轮机转动,涡轮机带动发电机工作产生电能,实现海洋能的综合利用。
实现上述方法的装置可以有很多种结构,本发明给出8种不同结构的装置。
参照图1,第一种装置包括:
【A1】、蓄水池102,该蓄水池102的海水进口100设置有单向水闸101;
【B1】、水轮机106,其进水口105与所述蓄水池102的出水口103连通,出水口107与大海连通;
【C1】、变速箱111,该变速箱111的动力输入轴110通过联轴器109与所述水轮机106的动力输出轴108连接;
【D1】、高压泵115,其动力输入轴113通过联轴器114与所述变速箱111的动力输出轴112连接,所述高压泵115的进水口117通过单向阀121与大海中的海水或蓄水池102中的海水连通;
【E1】、反渗透膜组件123,设置有淡水出口125和浓海水出口126,该反渗透膜组件123的进水口124与所述高压泵115的出水口116连通;
【F1】、涡轮机129,其进水口128与所述反渗透膜组件123的浓海水出口126连通,出水口130与大海连通;
【G1】、发电机134,该发电机134的动力输入轴132通过联轴器133与涡轮机129的动力输出轴131连接。
蓄水池102中水位高低不同,冲击水轮机106的动能也不同,为确保水轮机106能平稳运行,蓄水池102的出水口103和水轮机106的进水口105之间设置有水闸104,所述水闸104连接有流量调节器137,该流量调节器137根据水轮机106的转速,输出信令调整水闸104的开度大小,使系统能够获得稳定的水压。
所述发电机134发出的电能一部分存储在蓄电池135中,满足本系统使用,多余的电能可以输送到电网。
由于海水中有大量的杂物,应该在海水进入设备的管路上添加海水前处理装置,因此,本发明的高压泵115进水口设置有海水粗过滤器120和阻垢剂添加器119,对海水过滤,剔除杂物,防止杂物损坏设备及设备内壁,在高压泵115的出水口116设置精密过滤器118进一步除杂,在反渗透膜组件123的进水口124前设置储能器122,使反渗透膜组件123内的水压稳定。
当涨潮时,大海中的海水水位上涨,海水通过单向水闸101进入到蓄水池102内,由于单向水闸101是单向的,退潮时蓄水池102中的海水不会从单向水闸101返回大海。涨潮过程中,水闸104和单向阀121是关闭着的;只有当大海的水位又降回到一定高度,蓄水池102中的海水水位与大海水面有足够的高度差时,水闸104和单向阀121才打开。
当打开水闸104时,由于水位差作用,蓄水池102中的海水经过水闸104、水轮机106,最后从水轮机106的出水口107流出并排入大海,当海水经过水轮机106时,会驱动水轮机106转动,带动水轮机106的动力输出轴108输出轴功。
变速箱111主要起了传动及变速的作用,变速箱111与高压泵115的匹配方式有2种:一是变速箱111为低传动比的变速箱,高压泵115为多级高压泵或者往复泵;二是变速箱111为高传动比的变速箱,高压泵115为单级高速高压泵。
当系统开始运行时,单向阀121打开,这时,海水从高压泵115的进水口117进入高压泵115内,经过增压后的高压海水从高压泵115的出水口116流出。
从高压泵115的出水口116流出的海水进入到反渗透膜组件123内,产出的淡水从淡水出口125流出,并流到淡水收集罐127内,剩下的高压浓海水从浓海水出口126流出,流出的浓海水从涡轮机129的进水口128流入,推动涡轮机129转动,并带动发电机134发电,做完功的低压浓海水从涡轮机129的出水口130重力作用自然流出,流出的低压浓海水直接排入大海,也可以对从涡轮机129的出水口130流出的低压浓海水进一步加工利用。
参照图2,第二种装置包括:
【A2】、蓄水池202,该蓄水池202的海水进口200设置有单向水闸201;
【B2】、水轮机206,其进水口205与所述蓄水池202的出水口203连通,出水口207与大海连通;在水轮机206的进水口205和蓄水池202的出水口203之间设置有水闸204,水闸连接有流量调节器208;
【C2】、变速箱212,该变速箱212的动力输入轴211通过联轴器210与所述水轮机206的动力输出轴209连接;
【D2】、高压泵216,其动力输入轴215通过联轴器214与所述变速箱212的动力输出轴213连接,所述高压泵216的进水口217通过第三单向阀241与大海中的海水或蓄水池202中的海水连通;
【E2】、反渗透膜组件222,设置有淡水出口229和浓海水出口230,该反渗透膜组件222的进水口228通过第一单向阀220与所述高压泵216的出水口218连通,淡水出口229连接有淡水收集罐232;
【F2】、增压泵225,其进水口224通过第二单向阀223与连通所述第一单向阀220和高压泵216的管路连通,增压泵225的出水口227与连通所述第一单向阀220和反渗透膜组件222的连接管路连通;
【G2】、涡轮机234,其进水口231与所述反渗透膜组件222的浓海水出口230连通,出水口233与大海连通;
【H2】、发电机238,该发电机238的动力输入轴237通过联轴器236与涡轮机234的动力输出轴235连接;
【I2】、蓄电池239,该蓄电池239的电源由发电机238提供;
【J2】、电动机226,该电动机226的工作电源由蓄电池239提供,所述电动机226的动力输出轴245与所述增压泵225的动力输入轴244连接。
本装置水轮机206、高压泵216、反渗透膜组件222、涡轮机234、发电机238、水闸204、流量调节器208的工作原理与第一种装置的工作原理相同,海水粗过滤器242、阻垢剂添加器243、精密过滤器219和储能器221的连接方式和作用也与第一种装置相同。
增压泵225形成分支水流,如果高压泵216的出水口218水压较高,则第一单向阀220开启,第二单向阀223关闭,高压水直接经第一单向阀220流入反渗透膜组件222的进水口228,在高压泵216的出水口218水压不足时,则第一单向阀220关闭,第二单向阀223打开,同时增压泵225在电动机226的带动下工作,高压泵216出水口的高压水经过第二单向阀223流入增压泵225的进水口224,增压泵225对高压水增压,增压后的高压水流入反渗透膜组件222的进水口228。
参照图3,第三种装置包括:
【A3】、蓄水池302,该蓄水池302的海水进口300设置有单向水闸301;
【B3】、水轮机306,其进水口305与所述蓄水池302的出水口303连通,出水口307与大海连通,水轮机306的进水口305与蓄水池302的出水口303之间设置有水闸304,水闸304连接有流量调节器335;
【C3】、变速箱311,该变速箱311的动力输入轴310通过联轴器309与所述水轮机306的动力输出轴308连接;
【D3】、高压泵336,其动力输入轴314通过联轴器313与所述变速箱311的动力输出轴312连接,所述高压泵336的进水口339通过第一单向阀338与大海中的海水或蓄水池302中的海水连通;
【E3】、反渗透膜组件317,设置有淡水出口319和浓海水出口320,该反渗透膜组件317的进水口318与所述高压泵336的出水口337连通;
【F3】、增压泵331,其进水口341通过第二单向阀340与大海中的海水或蓄水池302中的海水连通,增压泵331的出水口342与连通所述高压泵336和反渗透膜组件317的连接管路连通;
【G3】、涡轮机323,其进水口321与所述反渗透膜组件317的浓海水出口320连通,出水口322与大海连通;
【H3】、发电机327,该发电机327的动力输入轴326通过联轴器325与涡轮机323的动力输出轴324连接,发电机327的电能输出端可以接蓄电池328和电网;
【I3】、蓄电池328,该蓄电池328的电源由发电机327提供;
【J3】、电动机330,该电动机330的工作电源由蓄电池328提供,所述电动机330的动力输出轴344与所述增压泵331的动力输入轴343连接。
本系统的工作模式与第二种装置相同,区别是增压泵331旁路补充水压,高压泵336和增压泵331共用海水粗过滤器334、阻垢剂添加器332,并在阻垢剂添加器332的进水端设置单向阀333。精密过滤器315和储能器316的连接方式和作用也与第一种装置相同。
如果高压泵336出口的水压较高,则第二单向阀340关闭,增压泵331不工作,系统完全靠高压泵336提供高压水;如果高压泵336出口337的水压不足,则第二单向阀340打开,增压泵331工作,从旁路补充高压水,系统完全靠高压泵336和增压泵331提供高压水,
确保反渗透膜组件317内的水压稳定。
同样,本系统中的增压泵331也可以单独通过电动机330带动工作,在高压泵336不工作的情况下,单独提供系统工作所需要的高压水,确保系统在需要时工作。
参照图4,第四种装置包括:
【A4】、蓄水池402,该蓄水池402的海水进口400设置有单向水闸401;
【B4】、水轮机406,其进水口405与所述蓄水池402的出水口403连通,出水口407与大海连通;
【C4】、变速箱413,其动力输入轴410通过联轴器409与所述水轮机406的动力输出轴408连接;所述变速箱413的动力输入轴410设置有两组主动齿轮412、414,对应的也设置有两组从动齿轮452、453,其中一组从动齿轮453可与其中一组主动齿轮414啮合或分离,另一组从动齿轮452可与另一组主动齿轮412啮合或分离,所述两组从动齿轮453、452各设置有一动力输出轴415、446;从动齿轮452、453与主动齿轮412、414实现啮合或分离的方式有很多种,如在主动齿轮412、414和从动齿轮452、453之间设置离合器,或者从动齿轮453、452保持不动,主动齿轮412、414轴向运动,或者主动齿轮412、414保持不动,从动齿轮453、452轴向运动均能实现离合。
【D4】、第一高压泵451,其动力输入轴417通过联轴器416与所述变速箱413的其中一动力输出轴415连接,所述第一高压泵451的进水口450通过第一单向阀455与大海中的海水或蓄水池402中的海水连通;
【E4】、第二高压泵443,该第二高压泵443的功率小于所述第一高压泵451的功率,所述第二高压泵443的动力输入轴444通过联轴器445与所述变速箱413的另一动力输出轴446连接,所述第二高压泵443的进水口448通过第二单向阀442与大海中的海水或蓄水池402中的海水连通;
【F4】、两组反渗透膜组件420、436,分别设置有淡水出口423、424和浓海水出口422、437,其中一组反渗透膜组件420的进水口421与连通所述第一高压泵451出水口454和第二高压泵443出水口449的管路连通,另一组反渗透膜组件436的进水口438通过电磁阀435与连通所述第一高压泵451出水口454和第二高压泵443出水口449的管路连通,两组反渗透膜组件420、436的淡水出口423、424连接有淡水收集罐425;
【G4】、涡轮机428,其进水口427与所述两组反渗透膜组件420、436的浓海水出口422、437连通,涡轮机428的出水口426与大海连通;
【H4】、发电机432,该发电机432的动力输入轴431通过联轴器430与涡轮机428的动力输出轴429连接,该发电机可连接蓄电池433或电网;
第一高压泵451、第二高压泵443的进水端设置有海水粗过滤器440、阻垢剂添加器439,并在粗过滤器440的进水端设置有单向阀441,精密过滤器418和储能器419的连接方式和作用也与前几种装置相同。
这种结构的变速箱有三种工作状态:一、主动齿轮414与从动齿轮453不啮合,主动齿轮412与从动齿轮452也不啮合;二、主动齿轮414与从动齿轮453啮合,主动齿轮412与从动齿轮452不啮合;三、主动齿轮414与从动齿轮453不啮合,主动齿轮412与从动齿轮452啮合。
水轮机406开动之前,变速箱413处于工作状态一,第一高压泵451和第二高压泵443都不工作。
使系统的第一种工作模式是:当蓄水池402内的水面与海平面的水面之差较大时,水轮机406输出功大的情况下,变速箱413处于工作状态二,第二单向阀442关闭,第一单向阀455开启,电磁阀435开启,海水从高压泵451的进水口450进入并被增压,高压海水从高压泵451的出水口454流出,同时进入反渗透膜组件420的进水口421和反渗透膜组件436的进水口438,两组反渗透膜组件420、436都参与工作,两组反渗透膜组件420、436的浓海水从浓海水出口422、437流入涡轮机428内,冲击涡轮机428转动并带动发电机432发电。
使系统的第二种工作模式是:当蓄水池402内的水面与海平面的水面之差较小时,水轮机406输出功小的情况下,变速箱413处于工作状态三,这时第一单向阀455关闭,第二单向阀442开启,电磁阀435关闭,海水从第二高压泵443的进水口448进入并被增压,高压海水从第二高压泵443的出水口449流出,进入反渗透膜组件420的进水口421,反渗透膜组件420工作,另一组反渗透膜组件436不工作,反渗透膜组件420的浓海水从浓海水出口422流入涡轮机428内,冲击涡轮机428转动并带动发电机432发电。
以上的四种装置是利用了退潮后蓄水池中的高位海水在流向大海的过程中冲击水轮机转动,由于涨潮时,大海中的高位海水在流向所述蓄水池内的过程中也能冲击水轮机转动,因此退潮和涨潮两种状态的潮汐能都应当被利用,下面的四种装置就是这种功能。
参照图5,第五种装置包括:
【A5】、蓄水池500,该蓄水池500设置有进水管路505和出水管路506,所述进水管路505和出水管路506上分别设置有第一电磁阀501和第二电磁阀543;
【B5】、第一水轮机503,设置在所述蓄水池500的进水管路505上;
【C5】、第二水轮机504,设置在所述蓄水池500的出水管路506上;
【D5】、传动箱509,该传动箱509设置有两组输入端主动齿轮508、544和一组输入端从动齿轮540,所述输入端从动齿轮540可分别与其中一组输入端主动齿轮508、544啮合或分离,所述输入端主动齿轮508、544各设置有一动力输入轴546、548,这两个动力输入轴546、548即为传动箱509的两个动力输入轴,所述传动箱509的其中一动力输入轴548通过联轴器541与第一水轮机503的动力输出轴547连接,另一动力输入轴546通过联轴器507与第二水轮机504的动力输出轴545连接;
【E5】、变速箱514,该变速箱514的动力输入轴513通过联轴器512与所述传动箱509的动力输出轴510连接;
【F5】、高压泵518,其动力输入轴516通过联轴器517与所述变速箱514的动力输出轴515连接,所述高压泵518的进水口525与大海中的海水或蓄水池500中的海水连通;
【G5】、反渗透膜组件529,设置有淡水出口527和浓海水出口528,淡水出口527连接有淡水收集罐531,该反渗透膜组件529的进水口526与所述高压泵518的出水口524连通;
【H5】、涡轮机532,其进水口530与所述反渗透膜组件529的浓海水出口528连通,出水口535与大海连通;
【I5】、发电机537,该发电机537的动力输入轴534通过联轴器536与涡轮机532的动力输出轴533连接,发电机连接有蓄电池538,多余的电能也可以直接送入电网。
这种装置变速箱514、高压泵518、反渗透膜组件529、涡轮机532和发电机537的工作原理与方式与第一种装置相同,高压泵518的进水端设置有海水粗过滤器520、阻垢剂添加器519,单向阀521、精密过滤器523和储能器522的连接方式和作用也与第一种装置相同。
本装置设有两台水轮机503、504,第一电磁阀501和第二电磁阀543也分别连接有一流量调节器502、542,流量调节器502、542分别控制第一电磁阀501和第二电磁阀543的开度,控制原理与第一种装置的原理相同。
当系统不工作时,第一电磁阀501和第二电磁阀543关闭。
涨潮时,大海中海水的水位高于蓄水池500中海水的水位,第一电磁阀501打开,第二电磁阀543关闭,大海中的海水通过第一水轮机503流入蓄水池500的过程中,冲击第一水轮机503转动,此时输入端主动齿轮544与输入端从动齿轮540啮合,输入端主动齿轮508与输入端从动齿轮540分离,第一水轮机503通过传动箱509、变速箱514带动高压泵518工作,工作方式与第一种装置相同。
退潮后,蓄水池500中海水的水位高于大海中海水的水位,第一电磁阀501关闭,第二电磁阀543打开,蓄水池500中的海水通过第二水轮机504流入大海的过程中,冲击第二水轮机504转动,此时输入端主动齿轮544与输入端从动齿轮540分离,输入端主动齿轮508与输入端从动齿轮540啮合,第二水轮机504通过传动箱509、变速箱514带动高压泵518工作,工作方式与涨潮时相同。
输入端主动齿轮544、输入端主动齿轮508和输入端从动齿轮540分离与啮合可以通过离合器实现,也可以采用第四种装置的变速箱413结构实现。
参照图6,第六种装置包括:
【A6】、蓄水池600,该蓄水池600设置有进水管路605和出水管路606,所述进水管路605和出水管路606上分别设置有第一电磁阀601和第二电磁阀643,第一电磁阀601和第二电磁阀643也分别连接有流量调节器602、644;
【B6】、第一水轮机603,设置在所述蓄水池600的进水管路605上;
【C6】、第二水轮机604,设置在所述蓄水池600的出水管路606上;
【D6】传动箱648,该传动箱648设置有两组输入端主动齿轮607、646和一组输入端从动齿轮647,所述输入端从动齿轮647可分别与其中一组输入端主动齿轮607、646啮合或分离,所述输入端主动齿轮607、646各设置有一动力输入轴650、649,所述传动箱648的其中一动力输入轴649通过联轴器645与第一水轮机603的动力输出轴652连接,另一动力输入轴650通过联轴器642与第二水轮机604的动力输出轴651连接;
【E6】、变速箱611,该变速箱611的动力输入轴610通过联轴器609与所述传动箱648的动力输出轴608连接;
【F6】、高压泵619,其动力输入轴614通过联轴器613与所述变速箱611的动力输出轴612连接,所述高压泵619的进水口620依次通过阻垢剂添加器623、海水粗过滤器622和单向阀624与大海中的海水或蓄水池600中的海水连通;
【G6】、反渗透膜组件618,设置有淡水出口631和浓海水出口632,淡水出口631连接有淡水收集灌634,该反渗透膜组件618的进水口630通过第一单向阀616与所述高压泵619的出水口621连通,在反渗透膜组件618和高压泵619的连接管路上设置有精密过滤器615和储能器617;
【H6】、增压泵625,其进水口627通过第二单向阀628与连通所述第一单向阀616和高压泵619的管路连通,增压泵625的出水口629与连通所述第一单向阀616和反渗透膜组件618的连接管路连通;
【I6】、涡轮机636,其进水口633与所述反渗透膜组件618的浓海水出口632连通,出水口635与大海连通;
【J6】、发电机640,该发电机640的动力输入轴639通过联轴器638与涡轮机636的动力输出轴637连接,发电机640的电能输出端连接有蓄电池641和电网;
【K6】、蓄电池641,该蓄电池641的电源由发电机640提供;
【L6】、电动机626,该电动机626的工作电源由蓄电池641提供,所述电动机626的动力输出轴654与所述增压泵625的动力输入轴653连接。
这种装置的水轮机、传动箱部分工作原理与第五种装置相同,其他部分的工作原理与第二种装置相同。
参见图7,第七种装置包括:
【A7】、蓄水池700,该蓄水池700设置有进水管路705和出水管路706,所述进水管路705和出水管路706上分别设置有第一电磁阀701和第二电磁阀732,第一电磁阀701和第二电磁阀732分别连接有流量调节器702、733;
【B7】、第一水轮机703,设置在所述蓄水池700的进水管路705上;
【C7】、第二水轮机704,设置在所述蓄水池700的出水管路706上;
【D7】、传动箱736,该传动箱736设置有两组输入端主动齿轮708、735和一组输入端从动齿轮749,所述输入端从动齿轮749可分别与其中一组输入端主动齿轮708、735啮合或分离,所述输入端主动齿轮708、735各设置有一动力输入轴750、752,所述传动箱749的其中一动力输入轴752通过联轴器734与第一水轮机703的动力输出轴753连接,另一动力输入轴750通过联轴器707与第二水轮机704的动力输出轴751连接;
【E7】、变速箱712,该变速箱712的动力输入轴711通过联轴器710与所述传动箱736的动力输出轴709连接;
【F7】、高压泵737,其动力输入轴715通过联轴器714与所述变速箱712的动力输出轴713连接,所述高压泵737的进水口740依次通过第一单向阀741、阻垢剂添加器738、海水粗过滤器748和单向阀747与大海中的海水或蓄水池700中的海水连通;
【G7】、反渗透膜组件718,设置有淡水出口720和浓海水出口721,淡水出口720连接有淡水收集灌723,该反渗透膜组件718的进水口719与所述高压泵739的出水口737连通;反渗透膜组件718的进水端设置有精密过滤器716和储能器717;
【H7】、增压泵744,其进水口743通过第二单向阀742与大海中的海水或蓄水池700中的海水连通,增压泵744的出水口754与连通所述高压泵737和反渗透膜组件718的连接管路连通,增压泵744和高压泵737共用一阻垢剂添加器738、海水粗过滤器748和单向阀747;
【I7】、涡轮机724,其进水口722与所述反渗透膜组件718的浓海水出口721连通,出水口725与大海连通;
【J7】、发电机729,该发电机729的动力输入轴728通过联轴器727与涡轮机724的动力输出轴726连接,发电机729的电能输出端连接有蓄电池730,多余的电能也可以送入电网;
【K7】、蓄电池730,该蓄电池730的电源由发电机729提供;
【L7】、电动机745,该电动机745的工作电源由蓄电池730提供,所述电动机745的动力输出轴756与所述增压泵744的动力输入轴755连接。
这种装置的水轮机、传动箱部分工作原理与第五种装置相同,其他部分的工作原理与第三种装置相同。
参照图8,第八种装置包括:
【A8】、蓄水池800,该蓄水池800设置有进水管路805和出水管路806,所述进水管路805和出水管路806上分别设置有第一电磁阀801和第二电磁阀858,第一电磁阀801和第二电磁阀858分别连接有流量调节器802、857;
【B8】、第一水轮机803,设置在所述蓄水池800的进水管路805上;
【C8】、第二水轮机804,设置在蓄水池800的出水管路806上;
【D8】、传动箱854,该传动箱854设置有两组输入端主动齿轮808、855和一组输入端从动齿轮859,所述输入端从动齿轮859可分别与其中一组输入端主动齿轮808、855啮合或分离,所述输入端主动齿轮808、855各设置有一动力输入轴860、863,所述传动箱854的其中一动力输入轴863通过联轴器856与第一水轮机803的动力输出轴862连接,另一动力输入轴860通过联轴器807与第二水轮机804的动力输出轴861连接;
【E8】、变速箱813,其动力输入轴811通过联轴器810与所述传动箱854的动力输出轴809连接;所述变速箱813的动力输入轴811设置有两组主动齿轮812、814,对应的也设置有两组从动齿轮819、818,其中一组从动齿轮818可与其中一组主动齿轮814啮合或分离,另一组从动齿轮819可与另一组主动齿轮812啮合或分离,所述两组从动齿轮819、818各设置有一动力输出轴853、815;
【F8】、第一高压泵820,其动力输入轴817通过联轴器816与所述变速箱813的其中一动力输出轴815连接,所述第一高压泵820的进水口843依次通过第一单向阀842、阻垢剂添加器847、海水粗过滤器848和单向阀862与大海中的海水或蓄水池800中的海水连通;
【G8】、第二高压泵850,该第二高压泵850的功率小于所述第一高压泵820的功率,所述第二高压泵850的动力输入轴851通过联轴器852与所述变速箱813的另一动力输出轴853连接,所述第二高压泵850的进水口849也依次通过第二单向阀846、阻垢剂添加器847、海水粗过滤器848和单向阀862与大海中的海水或蓄水池800中的海水连通;
【H8】、两组反渗透膜组件822、837,分别设置有淡水出口825、826和浓海水出口824、838,淡水出口825、826连接有淡水收集灌827,其中一组反渗透膜组件822的进水口823与连通所述第一高压泵820出水口844和第二高压泵850出水口845的管路连通,另一组反渗透膜组件837的进水口839通过电磁阀840与连通所述第一高压泵820出水口844和第二高压泵850出水口845的管路连通;在反渗透膜组件822、837与第一高压泵820、第二高压泵850的连接主管道上设置有精密过滤器821和储能器841;
【I8】、涡轮机828,其进水口830与所述两组反渗透膜组件822、837的浓海水出口824、838连通,涡轮机828的出水口829与大海连通;
【J8】、发电机834,该发电机834的动力输入轴833通过联轴器832与涡轮机828的动力输出轴831连接,发电机834的电能输出端连接有蓄电池835,多余的电能也可以送入电网。
这种装置的水轮机、传动箱部分工作原理与第五种装置相同,其他部分的工作原理与第四种装置相同。
基于本发明的原理,也可以有很多种其他结构的装置也能实现,以上的八种实施装置的具体结构不能限定本发明的保护范围,只要是依照本发明的保护范围所做的均等修饰与变化,仍然属于本发明创造涵盖的范围之内。
Claims (1)
1.一种利用潮汐能双向驱动的调功式海水淡化及发电装置,其特征在于它包括:
【A8】、蓄水池,该蓄水池设置有进水管路和出水管路,所述进水管路和出水管路上分别设置有第一电磁阀和第二电磁阀;
【B8】、第一水轮机,设置在所述蓄水池的进水管路上;
【C8】、第二水轮机,设置在所述蓄水池的出水管路上;
【D8】、传动箱,该传动箱设置有两组输入端主动齿轮和一组输入端从动齿轮,所述输入端从动齿轮可分别与其中一组输入端主动齿轮啮合或分离,所述输入端主动齿轮各设置有一动力输入轴,所述传动箱的其中一动力输入轴与第一水轮机的动力输出轴连接,另一动力输入轴与第二水轮机的动力输出轴连接;
【E8】、变速箱,其动力输入轴与所述传动箱的动力输出轴连接;所述变速箱的动力输入轴设置有两组主动齿轮,对应的也设置有两组从动齿轮,其中一组从动齿轮可与其中一组主动齿轮啮合或分离,另一组从动齿轮可与另一组主动齿轮啮合或分离,所述两组从动齿轮各设置有一动力输出轴;
【F8】、第一高压泵,其动力输入轴与所述变速箱的其中一动力输出轴连接,所述第一高压泵的进水口通过第一单向阀与大海中的海水或蓄水池中的海水连通;
【G8】、第二高压泵,该第二高压泵的功率小于所述第一高压泵的功率,所述第二高压泵的动力输入轴与所述变速箱的另一动力输出轴连接,所述第二高压泵的进水口通过第二单向阀与大海中的海水或蓄水池中的海水连通;
【H8】、两组反渗透膜组件,均设置有淡水出口、和浓海水出口,其中一组反渗透膜组件的进水口与连通所述第一高压泵出水口和第二高压泵出水口的管路连通,另一组反渗透膜组件的进水口通过电磁阀与连通所述第一高压泵出水口和第二高压泵出水口的管路连通;
【I8】、涡轮机,其进水口与所述两组反渗透膜组件的浓海水出口连通,涡轮机的出水口与大海连通;
【J8】、发电机,该发电机的动力输入轴与涡轮机的动力输出轴连接。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210210276.3A CN102840091B (zh) | 2010-12-04 | 2010-12-04 | 利用潮汐能双向驱动的调功式海水淡化及发电装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210210276.3A CN102840091B (zh) | 2010-12-04 | 2010-12-04 | 利用潮汐能双向驱动的调功式海水淡化及发电装置 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010105815528A Division CN102022251B (zh) | 2010-12-04 | 2010-12-04 | 利用潮汐能驱动的海水淡化及发电的方法与装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102840091A true CN102840091A (zh) | 2012-12-26 |
CN102840091B CN102840091B (zh) | 2014-05-07 |
Family
ID=47367754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210210276.3A Expired - Fee Related CN102840091B (zh) | 2010-12-04 | 2010-12-04 | 利用潮汐能双向驱动的调功式海水淡化及发电装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102840091B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103603765A (zh) * | 2013-11-28 | 2014-02-26 | 集美大学 | 离岸式波浪能海水淡化结合发电装置 |
US11502322B1 (en) | 2022-05-09 | 2022-11-15 | Rahul S Nana | Reverse electrodialysis cell with heat pump |
US11502323B1 (en) | 2022-05-09 | 2022-11-15 | Rahul S Nana | Reverse electrodialysis cell and methods of use thereof |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12040517B2 (en) | 2022-11-15 | 2024-07-16 | Rahul S. Nana | Reverse electrodialysis or pressure-retarded osmosis cell and methods of use thereof |
US11855324B1 (en) | 2022-11-15 | 2023-12-26 | Rahul S. Nana | Reverse electrodialysis or pressure-retarded osmosis cell with heat pump |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1327955A (zh) * | 2001-06-18 | 2001-12-26 | 吴桐 | 海水淡化处理方法及发电综合系统 |
WO2002020412A1 (de) * | 2000-09-08 | 2002-03-14 | Herhof Umwelttechnik Gmbh | Verfahren und vorrichtung zur meerwasserentsalzung durch einsatz biogener stoffe |
EP1199098A1 (en) * | 2000-10-19 | 2002-04-24 | Gerardine Bowler | A water purifying apparatus |
CN101024531A (zh) * | 2006-02-23 | 2007-08-29 | 王俊川 | 微波及反渗透海水淡化工艺及设备 |
CN101251080A (zh) * | 2008-03-12 | 2008-08-27 | 何煌清 | 一种潮汐发电设施及其发电方法 |
CN201433114Y (zh) * | 2009-04-16 | 2010-03-31 | 刘威廉 | 利用海洋能源进行海水淡化和发电的装置 |
-
2010
- 2010-12-04 CN CN201210210276.3A patent/CN102840091B/zh not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002020412A1 (de) * | 2000-09-08 | 2002-03-14 | Herhof Umwelttechnik Gmbh | Verfahren und vorrichtung zur meerwasserentsalzung durch einsatz biogener stoffe |
EP1199098A1 (en) * | 2000-10-19 | 2002-04-24 | Gerardine Bowler | A water purifying apparatus |
CN1327955A (zh) * | 2001-06-18 | 2001-12-26 | 吴桐 | 海水淡化处理方法及发电综合系统 |
CN101024531A (zh) * | 2006-02-23 | 2007-08-29 | 王俊川 | 微波及反渗透海水淡化工艺及设备 |
CN101251080A (zh) * | 2008-03-12 | 2008-08-27 | 何煌清 | 一种潮汐发电设施及其发电方法 |
CN201433114Y (zh) * | 2009-04-16 | 2010-03-31 | 刘威廉 | 利用海洋能源进行海水淡化和发电的装置 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103603765A (zh) * | 2013-11-28 | 2014-02-26 | 集美大学 | 离岸式波浪能海水淡化结合发电装置 |
CN103603765B (zh) * | 2013-11-28 | 2015-08-19 | 集美大学 | 离岸式波浪能海水淡化结合发电装置 |
US11502322B1 (en) | 2022-05-09 | 2022-11-15 | Rahul S Nana | Reverse electrodialysis cell with heat pump |
US11502323B1 (en) | 2022-05-09 | 2022-11-15 | Rahul S Nana | Reverse electrodialysis cell and methods of use thereof |
US11563229B1 (en) | 2022-05-09 | 2023-01-24 | Rahul S Nana | Reverse electrodialysis cell with heat pump |
US11611099B1 (en) | 2022-05-09 | 2023-03-21 | Rahul S Nana | Reverse electrodialysis cell and methods of use thereof |
US11699803B1 (en) | 2022-05-09 | 2023-07-11 | Rahul S Nana | Reverse electrodialysis cell with heat pump |
US12107308B2 (en) | 2022-05-09 | 2024-10-01 | Rahul S Nana | Reverse electrodialysis cell and methods of use thereof |
Also Published As
Publication number | Publication date |
---|---|
CN102840091B (zh) | 2014-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102022251B (zh) | 利用潮汐能驱动的海水淡化及发电的方法与装置 | |
CN102852702B (zh) | 利用潮汐能双向驱动的旁路增压式海水淡化及发电装置 | |
CN103089533B (zh) | 潮流能增压海水淡化及发电装置 | |
CN102852704B (zh) | 利用潮汐能单向驱动的旁路稳压式海水淡化及发电装置 | |
CN102840093B (zh) | 利用潮汐能双向驱动的海水淡化及发电装置 | |
CN102852703B (zh) | 利用潮汐能双向驱动的补压式海水淡化及发电装置 | |
CN102840091B (zh) | 利用潮汐能双向驱动的调功式海水淡化及发电装置 | |
CN102840092B (zh) | 利用潮汐能单向驱动的调功式海水淡化及发电的装置 | |
CN102173479B (zh) | 一种风电互补的气动海水淡化装置 | |
CN205820944U (zh) | 一种利用波浪能的新型海水淡化系统 | |
CN200995974Y (zh) | 风光互补发电驱动反渗透海水淡化装置 | |
CN202465346U (zh) | 潮流能非稳态增压海水淡化及发电装置 | |
CN108046447A (zh) | 一种基于潮汐能的海水淡化装置 | |
CN102276016A (zh) | 一种风电互补的液压驱动海水淡化装置 | |
CN102322385A (zh) | 一种抽水畜能梯级水力发电设备及其发电方法 | |
CN202300812U (zh) | 潮流势能发电装置 | |
CN105800734B (zh) | 新能源高效柱塞泵海水淡化装置系统 | |
CN102126548A (zh) | 一种风电互补驱动海水淡化高压泵的装置 | |
CN202187855U (zh) | 一种水力发电系统 | |
CN203362382U (zh) | 一种水力发电系统 | |
CN202991328U (zh) | 一种水动力发电站 | |
CN203978702U (zh) | 转子液压波力发电及电解氢组合装置 | |
CN103591004B (zh) | 一种微水头流体能抽水系统 | |
CN104632517A (zh) | 一种潮流能过滤供水装置 | |
CN202055234U (zh) | 水下,螺杆排水旋转式水力发电站 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140507 |