CN102838259B - 工业园区废水的深度处理方法及系统 - Google Patents

工业园区废水的深度处理方法及系统 Download PDF

Info

Publication number
CN102838259B
CN102838259B CN201210348237.XA CN201210348237A CN102838259B CN 102838259 B CN102838259 B CN 102838259B CN 201210348237 A CN201210348237 A CN 201210348237A CN 102838259 B CN102838259 B CN 102838259B
Authority
CN
China
Prior art keywords
ozone
ultraviolet
treatment
waste water
industrial park
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210348237.XA
Other languages
English (en)
Other versions
CN102838259A (zh
Inventor
宁桂兴
姜安平
肖国仕
张忻
刘晓静
白利云
张建博
李宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Sound Environmental Engineering Co Ltd
Original Assignee
Beijing Sound Environmental Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Sound Environmental Engineering Co Ltd filed Critical Beijing Sound Environmental Engineering Co Ltd
Priority to CN201210348237.XA priority Critical patent/CN102838259B/zh
Publication of CN102838259A publication Critical patent/CN102838259A/zh
Application granted granted Critical
Publication of CN102838259B publication Critical patent/CN102838259B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Physical Water Treatments (AREA)

Abstract

本发明公开一种工业园区废水的深度处理方法及系统,属污水处理领域。该方法包括:对沉淀后的所处理工业园区废水进行臭氧-紫外催化氧化处理,通过臭氧和紫外线光氧化所述出水中含有的环状有机物、部分毒性物质和难降解物质;向臭氧-紫外催化氧化处理后的出水中投加亚硫酸氢钠,通过亚硫酸氢钠还原氧化后废水中的活性氧;还原后的出水进入曝气生物滤池进行曝气、生物过滤处理,去除有机物和氨氮;对所述曝气生物滤池的出水进行过滤,过滤后去除悬浮物的出水作为达标水回用。该方法具有耐冲击负荷高、处理能力强、工艺流程短、所用系统占地面积小及处理效果好的特点。

Description

工业园区废水的深度处理方法及系统
技术领域
本发明涉及废水处理领域,特别涉及一种适用于对工业园区污水进行深度处理的处理方法及系统。
背景技术
随着城市化进程的加快,城市建设职能区域相对明显,每座城市工业园区出现相对集中工矿企业,如印染、制革、化纤、纺织等企业,这些企业排放的污水具有高污染、难治理等特点。随着环保督查制度的健全,工业园区厂矿企业大多有污水处理设施,但往往处理这些难降解的废水,难以达到行业标准或者综合排放标注,有的工业企业甚至偷排到附近河流,引起河流极大污染,严重影响了当地水源和居民生活。
随着经济的快速发展,节能减排得到了全社会的高度重视,工业废水排放标准有了很大提高。比如,工业废水的综合排放标准在很多地区由二级提高到一级,而在河流周边地区的城镇污水厂排放标准由一级B提高到一级A,很多城市的入管网标准也随之大幅度提高。在节能减排的压力下,大部分工业废水都得到了一定的治理,容易处理的工业废水都已经处理达标。但是,还有很多工业行业废水处理项目,由于受到采用的技术限制和废水的可生化性比较差而始终无法达到排放标准。
工业园区排放的废水大多是经过厂区污水处理厂处理后排放到城镇污水处理厂的,这些废水往往具有难降解的物质多、污水生化性极差、污水变化系数大、pH值变化大、色度高等特点,而工业园区的城市污水处理厂大多数接收工矿企业排放的废水,而周围居住人群数量少,生活污水占的比例较小,一般小于20%,大多数工业园区的工业废水占80%以上,有的占90%,这样废水进入城市污水处理厂,仅靠简单的水解酸化+A2/O(或氧化沟)工艺难以使难降解、基本没有生化性的污水达到《城镇污水处理厂污染物排放标准》一级B标准或者一级A标准,因此必须增加污水处理厂的深度工艺。
近年来,对于工业园区深度处理工艺大多只停留在实验阶段,没有大规模的应用,主要的有以下几种工艺:
(1)混凝沉淀技术;
(2)芬顿、臭氧氧化技术;
(3)MBR处理技术;
上述工艺(1)中,采用混凝沉淀技术对城市污水处理厂进行深度处理,特别是工业园区的污水处理厂,往往不能达到理想效果,混凝沉淀技术主要去除分子量>5K有机物,而经过水解酸化、好氧处理的污水,难降解分子量小于5k的有机物占有很大比例,往往经单纯混凝沉淀难以达到《城镇污水处理厂污染物排放标准》一级B标准或者一级A标准。
上述工艺(2)中,采用芬顿、臭氧氧化技术,虽然能够去除部分有机物,去除率一般在20~50%左右,往往采用单纯氧化技术,投加氧化剂量非常大,而且有时把难降解的物质或者难以断裂的苯环等物质氧化后,出水CODcr反而增大。
上述工艺(3)中,采用MBR处理技术,并不能提高生化系统的生化性,而是相应延长难降解大分子量物质停留时间,而这些难降解大分子量物质往往不是生化作用能够降解的,因此一部分难降解大分子的物质大多停留在生化系统,另一部分难降解小分子物质透过膜孔径,随着生化系统难降解物质增多,往往会使污泥中毒,系统生化处理能力下降,导致系统崩溃,MBR处理技术难以使工业园区的污水达标。
发明内容
本发明实施方式提供一种工业园区废水的深度处理方法及系统,可以解决目前对工业园区废水处理的方法存在处理效果不好,出水无法达到相应标准的问题。可以提高出水水质,使出水符合《城镇污水处理厂污染物排放标准》一级B标准或者一级A标准。
本发明的目的是通过以下技术方案实现的:
本发明实施方式提供一种工业园区废水的深度处理方法,包括:
对沉淀后的所处理工业园区废水进行臭氧-紫外催化氧化处理,通过臭氧和紫外线光氧化所述出水中含有的环状有机物、部分毒性物质和难降解物质;
向臭氧-紫外催化氧化处理后的出水中投加亚硫酸氢钠,通过亚硫酸氢钠还原氧化后废水中的活性氧;
还原后的出水进入曝气生物滤池进行处理,主要去除有机物和氨氮;
对所述曝气生物滤池的出水进行过滤,过滤后去除悬浮物的出水作为达标水回用。
本发明实施方式还提供一种工业园区废水的深度处理系统,包括:
臭氧-紫外催化氧化子系统、还原水池、曝气生物滤池和活性炭吸附器;其中,
所述臭氧-紫外催化氧化子系统设有引入沉淀后的所处理工业园区废水的进水口;
所述臭氧-紫外催化氧化子系统的出水口依次与还原水池、曝气生物滤池和活性炭吸附器连接;
所述活性炭吸附器设有达标水回用出水口。
由上述提供的技术方案可以看出,本发明实施方式的处理方法,通过臭氧-紫外催化氧化处理、还原处理、曝气生物滤池处理以及过滤处理相配合,实现对工业园区废水进行深度处理,有效去除水中的有机物、氨氮、悬浮物等,有效提高出水水质,使出水达到出水符合《城镇污水处理厂污染物排放标准》一级B标准或者一级A标准。该方法工艺简单、成本低,处理效果好。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
图1为本发明实施例提供的处理方法流程图;
图2为本发明实施例提供的处理系统示意图。
具体实施方式
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
下面将结合附图对本发明实施例作进一步地详细描述。
本发明实施例提供一种工业园区废水的深度处理方法,如图1所示,包括以下步骤:
臭氧-紫外催化氧化处理步骤:对沉淀后的所处理工业园区废水进行臭氧-紫外催化氧化处理,通过臭氧和紫外线光氧化所述出水中含有的环状有机物、部分毒性物质和难降解物质;
上述步骤中,臭氧-紫外催化氧化采用臭氧、紫外线光联合技术,将废水中含有环状有机物、部分毒性物质、难降解物质氧化,并将难降解、大分子的有机物质转化为易降解、小分子的有机质,提高废水的生化性。
还原步骤:向臭氧-紫外催化氧化处理后的出水中投加亚硫酸氢钠,通过亚硫酸氢钠还原氧化后废水中的活性氧;
由于催化氧化出水含大量具有氧化能力的活性氧,若直接进入生物系统将抑制微生物的生长,故在上述步骤中,还原反应步骤中投加亚硫酸氢钠还原剂,还原水中的氧化性活性氧,以便于后续生化系统微生物的培养。
曝气生物滤池处理步骤:还原后的出水进入曝气生物滤池进行处理,主要去除有机物和氨氮;
还原水池的出水可经提升泵至曝气生物滤池,进行有效生化降解,降低出水有机物和氨氮,其中生物降解所需要的氧气由鼓风机提供。
过滤步骤:对所述曝气生物滤池的出水进行过滤,过滤后去除悬浮物的出水作为达标水回用。
曝气生物滤池出水经活性炭吸附,进一步吸附有机物和降低色度,出水达标排放或者作为回用水至回用水池。
该方法具有耐冲击负荷高、处理能力强、工艺流程短、所用的系统占地面积小及处理效果好的特点。
上述方法中,对沉淀后的出水进行臭氧-紫外催化氧化处理包括:
进行臭氧-紫外催化氧化处理时,臭氧投加量为10~100mg/l、紫外光强度为0.5~80mW/cm2
臭氧-紫外催化氧化处理的时间为:10~60分钟。
上述方法中,对沉淀后的所处理工业园区废水进行臭氧-紫外催化氧化处理步骤中,还包括:
投加催化剂纳米级二氧化钛的步骤,所述催化剂纳米级二氧化钛与废水的质量比为0~0.004:1。
上述方法中,向臭氧-紫外催化氧化处理后的出水中投加亚硫酸氢钠的投加量为:投加的亚硫酸氢钠与废水中剩余臭氧的质量比为3.5~5.5:1。
上述方法中,曝气生物滤池的设计负荷为1.0~2.0kgCODcr/m3·d,其内设有均质陶粒滤料填料层,其底部设有曝气装置。其中,均质陶粒滤料填料层是由粒径为3~5mm和4~6mm按1:1的数量混合的均质陶粒滤料形成的填料层,滤料的比表面积/40000cm2/g,粒内孔隙率为
Figure GDA0000447612130000041
30;曝气生物滤池内在均质陶粒滤料填料层底部的设有承托层均质陶粒滤料填料层的由0.3m厚的卵石形成的承托层。
上述方法中,对所述曝气生物滤池的出水进行过滤为:采用活性炭吸附器对所述曝气生物滤池的出水进行过滤。
本发明实施例还提供一种工业园区废水的深度处理系统,如图2所示,该系统包括:臭氧-紫外催化氧化子系统、还原水池、曝气生物滤池和活性炭吸附器;
其中,臭氧-紫外催化氧化子系统设有引入沉淀后的所处理工业园区废水的进水口;
臭氧-紫外催化氧化子系统的出水口依次与还原水池、曝气生物滤池和活性炭吸附器连接;
活性炭吸附器设有达标水回用出水口。
上述系统中,臭氧-紫外催化氧化子系统中的臭氧投加量为10~100mg/l、紫外光强度为0.5~80mW/cm2
上述系统中,臭氧-紫外催化氧化子系统中还投加催化剂纳米级二氧化钛,所述催化剂纳米级二氧化钛与废水的质量比为0~0.004:1;
所述曝气生物滤池的设计负荷为1.0~2.0kgCODcr/m3·d,其内设有均质陶粒滤料填料层,其底部设有曝气装置。
上述系统中,均质陶粒滤料填料层是由粒径为3~5mm和4~6mm按1:1混合的均质陶粒滤料形成的填料层,滤料的比表面积/40000cm2/g,粒内孔隙率为
Figure GDA0000447612130000052
30;
上述系统中,曝气生物滤池内,在均质陶粒滤料填料层底部设有承托均质陶粒滤料填料层的由0.3m厚的卵石形成的承托层。
下面结合具体的实施例对本发明作进一步说明。
采用本发明处理方法处理城市工业园区污水的深度处理,污水水质特征见下表:
Figure GDA0000447612130000051
(1)首先工业园区污水经二级处理后,二沉池出水进入臭氧-紫外催化氧化子系统,臭氧-紫外催化氧化子系统内设有紫外灯管,钛合金曝气头;臭氧投加量按照20~30mg/l,紫外光强度60mW/cm2进行催化氧化,充分接触30min后,出水流入还原水池;
(2)还原水池设有曝气装置,起搅拌混合作用,投加还原剂亚硫酸氢钠量,按照与剩余活性氧质量比5:1投加,出水经提升泵提升至曝气生物滤池;
(3)经过臭氧-紫外催化氧化、还原活性氧的污水,提高了其生化性,经曝气生物滤池曝气进行生物降解,溶解氧浓度控制在3~4mg/l,反冲洗周期为24h,采用气水联合冲洗,反冲洗空气强度12L/m2.s,反冲洗水强度6L/m2.s;
(4)曝气生物滤池出水经活性炭吸附过滤,进一步降低有机污染物和色度,出水水质可达《城镇污水处理厂污染物排放标准》一级A标准,即BOD5≤10mg/l,CODcr≤50mg/l,SS≤10mg/l,NH3-N≤5mg/l,T-P≤0.5mg/l,T-N≤15mg/l。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (9)

1.一种工业园区废水的深度处理方法,其特征在于,包括: 
对沉淀后的所处理工业园区废水进行臭氧-紫外催化氧化处理,通过臭氧和紫外线光氧化工业园区废水中含有的环状有机物、部分毒性物质和难降解物质;所述对沉淀后的所处理工业园区废水进行臭氧-紫外催化氧化处理步骤中,还包括:投加催化剂纳米级二氧化钛的步骤,所述催化剂纳米级二氧化钛与废水的质量比为0~0.004:1; 
向臭氧-紫外催化氧化处理后的出水中投加亚硫酸氢钠,通过亚硫酸氢钠还原氧化后废水中的活性氧; 
还原后的出水进入曝气生物滤池进行处理,去除有机物和氨氮; 
对所述曝气生物滤池的出水进行过滤,过滤后去除悬浮物的出水作为达标水回用。 
2.如权利要求1所述的方法,其特征在于,所述对沉淀后的工业园区废水进行臭氧-紫外催化氧化处理包括: 
进行臭氧-紫外催化氧化处理时,臭氧投加量为10~100mg/L、紫外光强度为0.5~80mW/cm2; 
臭氧-紫外催化氧化处理的时间为:10~60分钟。 
3.如权利要求1所述的方法,其特征在于,所述向臭氧-紫外催化氧化处理后的出水中投加亚硫酸氢钠的投加量为:投加的亚硫酸氢钠与废水中剩余臭氧的质量比为3.5~5.5:1。 
4.如权利要求1所述的方法,其特征在于,所述曝气生物滤池的设计负荷为1.0~2.0kgCODcr/m3·d,其内设有均质陶粒滤料填料层,其底部设有曝气装置。 
5.如权利要求1所述的方法,其特征在于,所述对所述曝气生物滤池的出水进行过滤为:采用活性炭吸附器对所述曝气生物滤池的出水进行过滤。 
6.一种工业园区废水的深度处理系统,其特征在于,包括: 
臭氧-紫外臭氧-紫外催化氧化子系统、还原水池、曝气生物滤池和活性炭吸附器;其中, 
所述臭氧-紫外臭氧-紫外催化氧化子系统设有引入沉淀后的所处理工业园区废水的进水口; 
所述臭氧-紫外臭氧-紫外催化氧化子系统的出水口依次与还原水池、曝气生物滤池和活性炭吸附器连接; 
所述臭氧-紫外臭氧-紫外催化氧化子系统中还投加催化剂纳米级二氧化钛,所述催 化剂纳米级二氧化钛与废水的质量比为0~0.004:1; 
所述活性炭吸附器设有达标水回用出水口。 
7.如权利要求6所述的系统,其特征在于,所述臭氧-紫外臭氧-紫外催化氧化子系统中的臭氧投加量为10~100mg/L、紫外光强度为0.5~80mW/cm2。 
8.如权利要求6所述的系统,其特征在于,所述曝气生物滤池的设计负荷为1.0~2.0kgCODcr/m3·d,其内设有均质陶粒滤料填料层,其底部设有曝气装置。 
9.如权利要求8所述的系统,其特征在于,所述均质陶粒滤料填料层是由粒径为3~5mm和4~6mm按1:1的数量混合的均质陶粒滤料形成的填料层,滤料的比表面积/40000cm2/g; 
所述曝气生物滤池内,在均质陶粒滤料填料层底部还设有由0.3m厚的卵石形成的承托均质陶粒滤料填料层的承托层。 
CN201210348237.XA 2012-09-18 2012-09-18 工业园区废水的深度处理方法及系统 Active CN102838259B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210348237.XA CN102838259B (zh) 2012-09-18 2012-09-18 工业园区废水的深度处理方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210348237.XA CN102838259B (zh) 2012-09-18 2012-09-18 工业园区废水的深度处理方法及系统

Publications (2)

Publication Number Publication Date
CN102838259A CN102838259A (zh) 2012-12-26
CN102838259B true CN102838259B (zh) 2014-04-09

Family

ID=47366027

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210348237.XA Active CN102838259B (zh) 2012-09-18 2012-09-18 工业园区废水的深度处理方法及系统

Country Status (1)

Country Link
CN (1) CN102838259B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103936142A (zh) * 2014-04-21 2014-07-23 北京恩菲环保股份有限公司 污水处理装置
CN104045206A (zh) * 2014-06-06 2014-09-17 南昌大学 Uv/o3+baf组合式高级氧化污水处理设备
CN104529083B (zh) * 2014-12-30 2016-08-24 桑德集团有限公司 压力式臭氧反应和微气泡曝气生物滤池污水深度处理装置
CN105439378A (zh) * 2015-12-07 2016-03-30 江苏博大环保股份有限公司 一种新型高级氧化耦合深度生化处理废水系统
CN105540728B (zh) * 2015-12-17 2018-04-20 浙江科技学院 一种污水复合催化氧化处理方法
CN105541005A (zh) * 2015-12-17 2016-05-04 桑德集团有限公司 一种难降解盐化工废水深度处理方法
CN105936535B (zh) * 2016-05-23 2018-11-09 河海大学 一种催化臭氧氧化的水处理方法及装置
CN106045198B (zh) * 2016-06-21 2019-03-26 中国海洋石油集团有限公司 一种电催化氧化耦合生物体系处理含聚废水的系统及方法
CN106746189A (zh) * 2016-12-06 2017-05-31 德坤(浙江)环保技术有限公司 一种碱减量废水处理达标技术与装备
CN108706679A (zh) * 2018-06-15 2018-10-26 蚌埠学院 一种利用光催化协同技术使染料快速降解的方法
CN110723861A (zh) * 2018-07-16 2020-01-24 中国石油化工股份有限公司 丙烯腈污水处理方法
CN113003818B (zh) * 2021-03-26 2023-04-21 沈阳大学 一种基于镁法烟气脱硫渣的高级氧化体系处理有机废水的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101597125A (zh) * 2009-07-09 2009-12-09 北京科技大学 一种生物膜法处理焦化废水的工艺
CN102010103A (zh) * 2010-11-29 2011-04-13 河海大学 回用印染废水的方法及其装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101597125A (zh) * 2009-07-09 2009-12-09 北京科技大学 一种生物膜法处理焦化废水的工艺
CN102010103A (zh) * 2010-11-29 2011-04-13 河海大学 回用印染废水的方法及其装置

Also Published As

Publication number Publication date
CN102838259A (zh) 2012-12-26

Similar Documents

Publication Publication Date Title
CN102838259B (zh) 工业园区废水的深度处理方法及系统
Ighalo et al. A review of methods for the removal of penicillins from water
KR101246847B1 (ko) 일종의 쓰레기 삼출액 폐수 처리시스템 및 그 프로세스
CN101863589B (zh) 一种应用臭氧催化氧化与内循环生物滤池组合进行污水深度处理的方法
CN108483806B (zh) 一种利用活性炭催化臭氧预氧化的废水深度处理系统及工艺
CN105417894A (zh) 一种高浓度、难降解废水处理方法
WO2019130053A1 (en) Wastewater treatment system and method for combined ozone and biological filters
CN106830536A (zh) 一种发酵类抗生素废水的深度处理工艺
CN107814458A (zh) 一种城市生活垃圾渗透液的处理方法
CN104609658A (zh) 一种催化内电解-改良曝气生物滤池处理反渗透浓水的方法
CN104003578A (zh) 一种双段臭氧-曝气生物滤池组合处理工业废水的方法
CN104891733A (zh) 一种垃圾渗滤液的处理方法
Tatoulis et al. A hybrid system comprising an aerobic biological process and electrochemical oxidation for the treatment of black table olive processing wastewaters
CN104529070A (zh) 一种可提高垃圾渗滤液生化性的深度处理方法及系统
CN102363549A (zh) 一种无膜工业有机废水的深度处理系统
Fazal et al. Membrane separation technology on pharmaceutical wastewater by using MBR (Membrane Bioreactor)
Huang et al. Biological technologies for cHRPs and risk control
CN203959998U (zh) 一种工业难降解废水的深度处理系统
CN111233270B (zh) 一种污水的一体化处理方法
CN108911355A (zh) 一种垃圾渗滤液mbr出水处理方法及系统
CN108675545A (zh) 一种土建生活污水的处理工艺
JP2012213764A (ja) 有機着色排水の脱色浄化方法及び脱色浄化装置
CN1931750B (zh) 石油化工污水回用处理工艺
CN109626494B (zh) 一种紫外强氧深度水处理方法及装置
CN105130131A (zh) 一种填埋场垃圾渗滤液的处理系统及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant