CN102833462A - 一种共聚焦点扫描成像的信号预处理方法 - Google Patents

一种共聚焦点扫描成像的信号预处理方法 Download PDF

Info

Publication number
CN102833462A
CN102833462A CN2012102557472A CN201210255747A CN102833462A CN 102833462 A CN102833462 A CN 102833462A CN 2012102557472 A CN2012102557472 A CN 2012102557472A CN 201210255747 A CN201210255747 A CN 201210255747A CN 102833462 A CN102833462 A CN 102833462A
Authority
CN
China
Prior art keywords
signal
filtering
sample
digital
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012102557472A
Other languages
English (en)
Other versions
CN102833462B (zh
Inventor
薛晓君
张运海
黄维
唐志豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Institute of Biomedical Engineering and Technology of CAS
Original Assignee
Suzhou Institute of Biomedical Engineering and Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Institute of Biomedical Engineering and Technology of CAS filed Critical Suzhou Institute of Biomedical Engineering and Technology of CAS
Priority to CN201210255747.2A priority Critical patent/CN102833462B/zh
Publication of CN102833462A publication Critical patent/CN102833462A/zh
Application granted granted Critical
Publication of CN102833462B publication Critical patent/CN102833462B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Processing (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

本发明公开了一种共聚焦点扫描成像的信号预处理方法,用于处理激光扫描共聚焦显微镜对样本扫描得到的模拟信号,包括:将模拟信号记录为由样本图像各行首尾相接构成的原始一维信号;使用模拟低通滤波器对原始一维信号进行滤波得到第一滤波信号;对第一滤波信号进行数据采集得到第一数字信号;使用数字低通滤波器对第一数字信号进行滤波得到第二滤波信号;根据第二滤波信号重建所述样本的二维图像。根据本发明提出方法,可直接对扫描得到的一维信号处理,有效地滤除光学系统中存在杂散光及电路系统中的噪声,最终获得清晰平滑的样本二维图像。同时,一维信号滤波的速度非常快,基本不影响整个系统的响应时间,满足对二维图像进行实时显示的需要。

Description

一种共聚焦点扫描成像的信号预处理方法
技术领域
本发明涉及激光扫描共聚焦显微镜领域,尤其涉及一种共聚焦点扫描成像的信号预处理方法。
背景技术
光学显微镜是历代生物学家观察研究对象的主要工具之一。激光扫描共聚焦显微镜是在荧光显微镜基础上发展起来的一种高分辨率,非接触式,能够三维成像的光学显微镜,它的光学分辨率突破了传统的衍射极限,使光学显微技术进入了一个新的发展阶段。
激光扫描共聚焦显微镜采用共轭焦点技术,使光源针孔、样本及探测器针孔处于彼此对应的共轭位置,并使用激光作为光源,激光束通过物镜聚焦于样本上,在扫描装置的驱动下,实现对样本的点扫描,最后计算机对扫描后的一维信号进行排列重组得到重建后的样本二维图像。由于光学系统中存在杂散光的干扰,电路系统中存在噪声,最终重建得到的样本二维图像中会含有大量噪声,这些噪声的存在掩盖了真实的图像信息,影响了后续的图像处理和分析的结果,因此需要对扫描得到的一维原始信号进行预处理,才能在样本二维图像重建过程中获得质量较高的样本图像。
发明内容
本发明旨在解决上述现有技术中存在的问题,提出一种共聚焦点扫描成像的信号预处理方法,用于处理激光扫描共聚焦显微镜对样本扫描得到的模拟信号,包括:
将所述模拟信号记录为由样本图像各行首尾相接构成的原始一维信号;
使用模拟低通滤波器对所述原始一维信号进行滤波得到第一滤波信号;
对所述第一滤波信号进行数据采集得到第一数字信号;
使用数字低通滤波器对所述第一数字信号进行滤波得到第二滤波信号;
根据所述第二滤波信号重建所述样本的二维图像。
优选地,所述模拟低通滤波器为巴特沃斯低通滤波器,用于滤除所述原始一维信号中的高频噪声。
优选地,所述第一滤波信号由若干个不同频率的分量信号构成,其中,频率最高的分量信号的频率值为fmax
优选地,对所述第一滤波信号进行数据采集得到第一数字信号包括:
对所述第一滤波信号使用采样频率fs进行采样,得到采样信号,其中,fs≥2fmax
对所述采样信号进行模数转换,得到所述第一数字信号。
优选地,所述数字低通滤波器为有限脉冲响应(FIR)滤波器,用于滤除模拟低通滤波以及数据采集过程中引入的外界噪声,所述数字低通滤波器的截止频率为fmax的20%至30%。
优选地,所述第二滤波信号为一维数字电压信号,根据所述第二滤波信号重建所述样本的二维图像包括:
将所述第二滤波信号对应的电压值映射到图像灰度空间中,得到第二数字信号;
将所述第二数字信号进行排列得到所述样本的二维图像。
根据本发明实施方案中的共聚焦点扫描成像的信号预处理方法,可以直接对扫描得到的一维信号进行处理,有效地滤除光学系统中存在杂散光以及电路系统中的噪声,最终获得清晰平滑的样本二维图像。同时,一维信号滤波的速度非常快,基本不影响整个系统的响应时间,满足对二维图像进行实时显示的需要。
附图说明
下面结合附图对本发明进行详细说明,其中:
图1是本发明一实施方案的共聚焦点扫描成像的信号预处理方法流程图;
图2是本发明一实施方案的一阶巴特沃斯低通滤波器的实施电路图;
图3是本发明一实施方案的二阶巴特沃斯低通滤波器的实施电路图;
图4是本发明一实施方案的对第一滤波信号进行数据采集得到第一数字信号的流程图;
图5是本发明一实施方案的根据第二滤波信号重建样本二维图像的流程图。
具体实施方式
下面通过附图和实施例,对本发明技术方案做进一步的详细描述。
图1为本发明一实施方案的共聚焦点扫描成像的信号预处理方法流程图。
在本实施方案中,执行步骤S101之前,激光扫描共聚焦显微镜首先对样本进行点扫描,所述点扫描过程是对样本逐点逐行地扫描,对前一行扫描完成后,从下一行的起始位置继续进行扫描,直至扫描完整个样本。扫描完成后,执行步骤S101,按照图像各行首尾相接的形式,将扫描得到的信号记录为原始一维信号。所述原始一维信号为模拟信号,横坐标为扫描时刻,纵坐标为相应扫描时刻的样本扫描点的电压值。在一优选实施例中,所述样本图像有M行,所述原始一维信号用函数A(t)表示,扫描时刻t单位为秒,其中,当扫描时刻t处于范围0≤t≤t1,A(t)为样本图像第一行扫描点的电压值,当扫描时刻t处于范围t1<t≤t2,A(t)为样本图像第二行扫描点的电压值,依此类推,当扫描时刻t处于范围tM-1<t≤tM,A(t)为样本图像第M行扫描点的电压值。所述扫描时刻对应于扫描时样本图像的一个特定位置,所述特定位置决定了对应信号值在图像重建时的位置坐标。
在步骤S102中,对所述原始一维信号A(t)进行滤波得到第一滤波信号B(t)。具体地,所述原始一维信号A(t)由若干分量信号构成,所述若干分量信号的频率值分别为f1、f2、f3、...,其中,频率值高于某一阈值fT的分量信号可以视为所述原始一维信号A(t)中存在的高频噪声,这些高频噪声是在激光扫描共聚焦显微镜对样本扫描过程中由显微镜的光学系统引入的,并且是不可避免的。在本实施方案中,选取fT值为1MHz。在本实施例中,所述滤波过程采用了巴特沃斯低通滤波器,截止频率fc为1MHz,其作用为用于滤除频率值高于1MHz的高频噪声,同时频率低于1MHz的分量信号幅值保持不变。具体地,任何高阶的巴特沃斯低通滤波器都可以分解为一阶和二阶巴特沃斯低通滤波器的乘积。其中,一阶巴特沃斯低通滤波器的传递函数为:
H(s)=KCωc/(s+Cωc),
其具体实施电路如图2所示,R1=1/(CC1ωc),R2=KR1/(K-1),R3=KR1。K为通带放大倍数,在本实施例中取1,不进行放大;C为阻尼系统,对于巴特沃斯低通滤波器,取1.414;C1取10/fT,单位为μF;ωc是截止频率,为6.28×106rad/s;IN端为待滤波信号的输入端,OUT端为滤波后信号的输出端。二阶巴特沃斯低通滤波器的传递函数为:
H(s)=Ks2/[s2+(Bωc/C)s+ω2 c/C],
其具体实施电路如图3所示,C1取10/fT,单位为μF;C2=C1/K,R1=1/(2C1+C2c,R2=C(2C1+C2)/C1C2ωc;ωc是截止频率,为6.28×106rad/s;IN端为待滤波信号的输入端,OUT端为滤波后信号的输出端。在本实施例中选用二阶巴特沃斯低通滤波器对所述原始一维信号A(t)进行滤波。本领域的技术人员应能理解,随着阶数的增加,巴特沃斯低通滤波器频率响应曲线的通带边缘更加陡峭,意味着低于截止频率的低频信号经滤波器滤波后保留得更加完整,同时高于截止频率的高频信号经滤波器滤波后被滤除得更加彻底,然而滤波电路随着阶数的增加需要更多的元器件,电路组成更加复杂。因此,在本实施方案中,可以根据上述原理并结合实际情况,选用相应阶数的巴特沃斯低通滤波器对原始一维信号A(t)进行滤波。任何高阶巴特沃斯低通滤波器的传递函数都可以由若干一阶和二阶巴特沃斯低通滤波器传递函数的相乘得到。使用所述二阶巴特沃斯低通滤波器对所述原始一维信号A(t)进行滤波后,所述原始一维信号A(t)中频率高于1MHz的分量信号都被滤除,频率低于1MHz的分量信号都被保留,滤波后得到的所述第一滤波信号B(t)中频率最高的分量信号的频率值fmax即等于截止频率1MHz。
在步骤S103中,对所述第一滤波信号B(t)进行数据采集得到第一数字信号C(k)。如图4所示,所述数据采集过程可以具体分解为:1)步骤S201,对所述第一滤波信号B(t)使用采样频率fs进行采样,其中fs≥2fmax,得到采样后的信号B’(k),其中k=0,1,...,tMfs,0≤k≤t1fs时,B’(k)对应样本图像中第一行的扫描点,t1fs<k≤t2fs时,B’(k)对应样本图像中第二行的扫描点,依此类推,tM-1fs<k≤tMfs时,B’(k)对应样本图像中第M行的扫描点。根据奈奎斯特采样定理,采样频率必须大于等于信号最高频率的两倍,而在本实施例中所述第一滤波信号B(t)中频率最高的分量信号的频率值fmax为1MHz,使用5MHz的采样频率对获取到的所述第一滤波信号B(t)进行采样,采样后的信号B’(k)能被完全恢复而不发生畸变。2)步骤S202,对所述采样信号进行模数转换,得到所述第一数字信号C(k),其中k=0,1,...,tMfs
在步骤S104中,对所述第一数字信号C(k)滤波得到第二滤波信号D(k),其中k=0,1,...,tMfs,0≤k≤t1fs时,D(k)对应样本图像中第一行的扫描点,t1fs<k≤t2fs时,D(k)对应样本图像中第二行的扫描点,依此类推,tM-1fs<k≤tMfs时,D(k)对应样本图像中第M行的扫描点。由于所述原始一维信号A(t)在经过所述模拟低通滤波器时被噪声污染,且在所述数据采集过程中会引入量化噪声,因此需要对所述第一数字信号C(k)进行数字滤波。在本发明一优选实施例中采用有限脉冲响应(FIR)滤波器对所述第一数字信号C(k)进行数字滤波,截止频率为采样频率fs的20%至30%。所述数字滤波器可以通过数字运算器件来实现,也可以通过Matlab、LabVIEW等仿真软件来实现,在本实施例中,采用仿真软件LabVIEW来实现所述FIR滤波器,截止频率为fmax的25%,即为250KHz。
在步骤S105中,根据所述第二滤波信号D(k)重建所述样本的二维图像。如图5所示,所述重建过程可具体分解为:1)步骤S301,采用公式:
E(k)=(2n-1)D(k)/(Vmax-Vmin),
将所述第二滤波信号D(k)对应的电压值线性映射到图像灰度空间中,得到第二数字信号E(k),其中E(k)表示在每个采样点k处映射后的灰度值,n表示图像的位深,在本实施例中取8,Vmax表示D(k)中的最大值,Vmin表示D(k)中的最小值,k=0,1,...,tMfs,0≤k≤t1fs时,E(k)对应样本图像中第一行的扫描点的灰度值,t1fs<k≤t2fs时,E(k)对应样本图像中第二行的扫描点的灰度值,依此类推,tM-1fs<k≤tMfs时,E(k)对应样本图像中第M行的扫描点的灰度值。2)步骤S302,将所述第二数字信号E(k)进行排列得到所述样本的二维图像。具体地,k=0,1,...,tMfs,0≤k≤t1fs时,E(k)对应样本图像中第一行的扫描点的灰度值,t1fs<k≤t2fs时,E(k)对应样本图像中第二行的扫描点的灰度值,依此类推,tM-1fs<k≤tMfs时,E(k)对应样本图像中第M行的扫描点的灰度值,将上述各行扫描点的灰度值信号分别取出,再在二维空间上将所述各行图像信号依次进行纵向排列最终得到所述样本的二维图像。
虽然本发明参照当前的较佳实施方式进行了描述,但本领域的技术人员应能理解,上述较佳实施方式仅用来说明本发明,并非用来限定本发明的保护范围,任何在本发明的精神和原则范围之内,所做的任何修饰、等效替换、改进等,均应包含在本发明的权利保护范围之内。

Claims (6)

1.一种共聚焦点扫描成像的信号预处理方法,用于处理激光扫描共聚焦显微镜对样本扫描得到的模拟信号,其特征在于,包括:
将所述模拟信号记录为由样本图像各行首尾相接构成的原始一维信号;
使用模拟低通滤波器对所述原始一维信号进行滤波得到第一滤波信号;
对所述第一滤波信号进行数据采集得到第一数字信号;
使用数字低通滤波器对所述第一数字信号进行滤波得到第二滤波信号;
根据所述第二滤波信号重建所述样本的二维图像。
2.根据权利要求1所述的共聚焦点扫描成像的信号预处理方法,其特征在于,所述模拟低通滤波器为巴特沃斯低通滤波器,用于滤除所述原始一维信号中的高频噪声。
3.根据权利要求1所述的共聚焦点扫描成像的信号预处理方法,其特征在于,所述第一滤波信号由若干个不同频率的分量信号构成,其中,频率最高的分量信号的频率值为fmax
4.根据权利要求3所述的共聚焦点扫描成像的信号预处理方法,其特征在于,对所述第一滤波信号进行数据采集得到第一数字信号包括:
对所述第一滤波信号使用采样频率fs进行采样,得到采样信号,其中,fs≥2fmax
对所述采样信号进行模数转换,得到所述第一数字信号。
5.根据权利要求4所述的共聚焦点扫描成像的信号预处理方法,其特征在于,所述数字低通滤波器为有限脉冲响应(FIR)滤波器,用于滤除高频噪声,所述数字低通滤波器的截止频率为fmax的20%至30%。
6.根据权利要求1所述的共聚焦点扫描成像的信号预处理方法,其特征在于,所述第二滤波信号为一维数字电压信号,根据所述第二滤波信号重建所述样本的二维图像包括:
将所述第二滤波信号对应的电压值映射到图像灰度空间中,得到第二数字信号;
将所述第二数字信号进行排列得到所述样本的二维图像。
CN201210255747.2A 2012-07-23 2012-07-23 一种共聚焦点扫描成像的信号预处理方法 Active CN102833462B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210255747.2A CN102833462B (zh) 2012-07-23 2012-07-23 一种共聚焦点扫描成像的信号预处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210255747.2A CN102833462B (zh) 2012-07-23 2012-07-23 一种共聚焦点扫描成像的信号预处理方法

Publications (2)

Publication Number Publication Date
CN102833462A true CN102833462A (zh) 2012-12-19
CN102833462B CN102833462B (zh) 2015-11-25

Family

ID=47336416

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210255747.2A Active CN102833462B (zh) 2012-07-23 2012-07-23 一种共聚焦点扫描成像的信号预处理方法

Country Status (1)

Country Link
CN (1) CN102833462B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103440679A (zh) * 2013-08-09 2013-12-11 中国科学院苏州生物医学工程技术研究所 激光扫描共聚焦显微图像的三维重建方法
CN114494028A (zh) * 2020-11-12 2022-05-13 生物岛实验室 粒子束成像降噪方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101493398A (zh) * 2009-03-04 2009-07-29 大庆油田有限责任公司 乳化原油乳状液激光共聚焦分析方法
CN102081309A (zh) * 2009-11-27 2011-06-01 上海微电子装备有限公司 一种提高对准扫描成功率的方法
US8189204B2 (en) * 2006-05-02 2012-05-29 California Institute Of Technology Surface wave enabled darkfield aperture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8189204B2 (en) * 2006-05-02 2012-05-29 California Institute Of Technology Surface wave enabled darkfield aperture
CN101493398A (zh) * 2009-03-04 2009-07-29 大庆油田有限责任公司 乳化原油乳状液激光共聚焦分析方法
CN102081309A (zh) * 2009-11-27 2011-06-01 上海微电子装备有限公司 一种提高对准扫描成功率的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王鲁宾等: "基于视频共焦显微镜光刻对准系统设计研究", 《中国集成电路》, 29 February 2008 (2008-02-29) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103440679A (zh) * 2013-08-09 2013-12-11 中国科学院苏州生物医学工程技术研究所 激光扫描共聚焦显微图像的三维重建方法
CN114494028A (zh) * 2020-11-12 2022-05-13 生物岛实验室 粒子束成像降噪方法及装置
CN114494028B (zh) * 2020-11-12 2022-12-09 生物岛实验室 粒子束成像降噪方法及装置

Also Published As

Publication number Publication date
CN102833462B (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
RU2716843C1 (ru) Цифровая коррекция аберраций оптической системы
WO2013100025A9 (ja) 画像処理装置、画像処理システム、画像処理方法および画像処理プログラム
JP5153846B2 (ja) 画像処理装置、撮像装置、画像処理方法、及び、プログラム
JP6305175B2 (ja) 画像処理装置、画像処理方法、画像処理システム
El Helou et al. Stochastic frequency masking to improve super-resolution and denoising networks
US20120050583A1 (en) Image processing method, image processing apparatus and image processing program
JP2015192238A (ja) 画像データ生成装置および画像データ生成方法
CN107764779B (zh) 一种共聚焦系统的超分辨成像方法及系统
AU2010224187C1 (en) Pattern noise correction for pseudo projections
CN102833462B (zh) 一种共聚焦点扫描成像的信号预处理方法
JP3895357B2 (ja) 信号処理装置
CN102735347B (zh) 目标跟踪红外凝视层析成像方法及装置
US6229928B1 (en) Image processing system for removing blur using a spatial filter which performs a convolution of image data with a matrix of no-neighbor algorithm based coefficients
Agarwal et al. Deblurring of MRI image using blind and non-blind deconvolution methods
JP2013033496A (ja) 画像処理装置、撮像装置、画像処理方法、及び、プログラム
JP5980081B2 (ja) 撮像装置および画像処理方法
Wang et al. Enhanced image reconstruction of Fourier ptychographic microscopy with double-height illumination
JP2015191362A (ja) 画像データ生成装置および画像データ生成方法
Huang et al. Resolution improvement in real-time and video mosaicing for fiber bundle imaging
Zhang et al. Computational Super-Resolution Imaging With a Sparse Rotational Camera Array
JP2008204441A (ja) 画像フィルタリング装置及び画像フィルタリングプログラムならびに画像フィルタリング方法
Hua et al. Spatial and axial resolution limits for mask-based lensless cameras
CN114155340B (zh) 扫描光场数据的重建方法、装置、电子设备及存储介质
KR20210066240A (ko) 밀집 레이어를 이용한 영상 처리 장치 및 방법
CN1678028A (zh) 进行高精度信号处理的信号处理电路及摄像装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant