CN102810601A - 探测光子能量低于禁带宽度的近红外光的探测器的制备方法 - Google Patents

探测光子能量低于禁带宽度的近红外光的探测器的制备方法 Download PDF

Info

Publication number
CN102810601A
CN102810601A CN2012102951854A CN201210295185A CN102810601A CN 102810601 A CN102810601 A CN 102810601A CN 2012102951854 A CN2012102951854 A CN 2012102951854A CN 201210295185 A CN201210295185 A CN 201210295185A CN 102810601 A CN102810601 A CN 102810601A
Authority
CN
China
Prior art keywords
infrared light
near infrared
preparation
substrate
ito
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN2012102951854A
Other languages
English (en)
Inventor
晏善成
胡栋
周旻旻
吴建盛
王俊
戴修斌
徐欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Post and Telecommunication University
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing Post and Telecommunication University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Post and Telecommunication University filed Critical Nanjing Post and Telecommunication University
Priority to CN2012102951854A priority Critical patent/CN102810601A/zh
Publication of CN102810601A publication Critical patent/CN102810601A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Light Receiving Elements (AREA)

Abstract

本发明涉及一种可以探测光子能量低于禁带宽度的近红外光的探测器结构的制备方法,首先在ITO衬底表面生长CdS纳米棒阵列;其次在CdS纳米棒阵列蒸镀纳米金;然后在纳米金表面蒸镀一层ITO作为顶电极;最后将金属材料在纳米尺度下独有的表面等离激元非辐射衰变时光生电效应及颗粒之间的近场耦合增强效应应用于近红外光的高效探测。本发明结构简单、操作便利,能够实现对入射光波长的选择性探测,无需制冷,应用前景广阔。

Description

探测光子能量低于禁带宽度的近红外光的探测器的制备方法
技术领域
本发明涉及的是一种可以探测光子能量低于禁带宽度的近红外光的器件结构,属于纳米光探测材料与器件领域。
背景技术
自Ebbesen等人发现了关于金属薄膜微孔阵列远场透射增强的(Ebbesen现象)著名现象以来,国际上对表面等离激元的研究产生了极大的兴趣,相关研究一直是国际上的前沿研究方向,表面等离激元学已经形成一个新的学科热点。其中,利用表面等离激元独特的光学性质设计与制作光探测器件是一个关注的研究方向。目前在红外光电探测领域,应用较多的器件结构是半导体-半导体结,所探测的红外光子能量要求大于半导体的禁带宽度,这对光电探测器材料的能带调控提出了极高的要求。
发明内容
技术问题:本发明的目的是提供一种探测光子能量低于禁带宽度的近红外光的探测器结构,结构简单、操作便利,能够实现对入射光波长的选择性探测,无需制冷,应用前景广阔。
技术方案:一种探测光子能量低于禁带宽度的近红外光的探测器结构,制备过程如下:
(1) 在衬底表面合成CdS纳米棒阵列;衬底采用导电衬底ITO(纳米铟锡金属氧化物,Indium Tin Oxides,简称ITO)玻璃衬底或金衬底,以便于作为底电极;或者以硅基材料作为衬底,则可以很好的与现有的硅工艺实现光电集成而无需引入新的材料体系;
(2)在生长好的CdS纳米棒阵列上面先甩一层PMMA膜作为绝缘层,然后再用氧等离子刻蚀使其CdS纳米棒的顶部露出;PMMA层的厚度要与CdS纳米棒的高度一致,大约为200nm
(3)在露出的CdS纳米棒阵列表面蒸镀纳米金;纳米金尺寸为20-100 nm;
(4)在纳米金表面蒸镀一层透明导电的ITO作为顶电极,便于电信号的收集;
(5)把探针分别置于顶层ITO和基底ITO即可以对近红外光进行电信号的测量。
本发明的原理说明如下:本发明的探测器结构是一个金属与半导体形成的肖特基二极管的二维垂直阵列,工作时,光子能量低于禁带宽度的入射光在金属表面(纳米金2)激发表面等离激元,随后等离激元非辐射衰变激发金属束缚态的电子,产生高能的电子-空穴对,激发电子就有一定几率跃过金属-半导体界面处的肖特基势垒到达半导体另一侧,从而产生了可探测的电流信号,并可进行探测波长的选择。几率由入射光子能量和金属-半导体界面处的肖特基势垒高度及偏置电势所调控。
本发明具有以下优点:(1)结构简单、操作便利;(2)对衬底的选择宽泛,几乎可以在任何衬底上制作;(3)无需制冷,应用前景广阔。
附图说明
图1是本发明器件结构示意图;
其中:待检测的近红外光-1,纳米金-2,顶层ITO-3,基底ITO-4,CdS纳米棒阵列-5。
具体实施方式
实施例1
如图1所示,一种探测光子能量低于禁带宽度的近红外光的探测器结构;
(1) 在ITO衬底合成CdS纳米棒阵列(参考文献为J. Phys. Chem. C 2008, 112, 13457–13462);具体合成过程是:用于制备硫化镉纳米棒阵列的溶液包含1mmol硝酸镉、3mmol硫脲、0.6mmol谷胱甘肽,40ml的超纯水作为溶剂,所有的化学试剂都是分析级的,不需要进一步处理。典型的实验过程如下:将清洗过的ITO玻璃(大小约为3.5cm×3.5cm)或者ITO金衬底垂直放入容积为50ml的高压反应釜,拧紧反应釜使其密封并将其放入200℃的烘箱,3.5小时后取出反应釜,自然冷却到室温,打开反应釜取出导电玻璃,用超纯水漂洗后自然晾干;
(2) 在CdS纳米棒阵列表面滴加4%的PMMA溶液;然后4000转/分钟甩膜60秒,随后用氧等离子体刻蚀,条件为10sccm氧气流量,20w的功率,处理60秒;
(3) 热蒸镀纳米金(蒸镀仪由沈阳慧宇真空技术有限公司与南京大学联合研制的,真空度可达1×10-4Pa),纳米金尺寸为20-100 nm,市售获得;
(4)蒸镀顶层ITO 3(台湾AST公司 PEVA-450I电子束蒸发蒸镀仪,本地真空 4×10-6 Torr),衬底区温度220℃,蒸发速率 1Å/S,蒸发时间为50分钟;
(5)用安捷伦4156C I-V测试仪即可收集器件的电流信号。
实施例2
(1) 在硅基衬底合成CdS纳米棒阵列;具体合成过程是:用于制备硫化镉纳米棒阵列的溶液包含1mmol硝酸镉、3mmol硫脲、0.6mmol谷胱甘肽,40ml的超纯水作为溶剂,所有的化学试剂都是分析级的,不需要进一步处理。典型的实验过程如下:将清洗过的n型硅片(市售获得,大小约为3.5cm×3cm)垂直放入容积为50ml的高压反应釜,拧紧反应釜使其密封并将其放入200℃的烘箱,3.5小时后取出反应釜,自然冷却到室温,打开反应釜取出硅片,用超纯水漂洗后自然晾干;
(2) 在CdS纳米棒阵列表面滴加4%的PMMA溶液;然后4000转/分钟甩膜60秒,随后用氧等离子体刻蚀,条件为10sccm氧气流量,30w的功率,处理40秒;
(3) 热蒸镀纳米金(蒸镀仪由沈阳慧宇真空技术有限公司与南京大学联合研制的,真空度可达1×10-4Pa),纳米金尺寸为20-100 nm,市售获得;
(4)蒸镀顶层ITO 3(台湾AST公司 PEVA-450I电子束蒸发蒸镀仪,本地真空 4×10-6 Torr),衬底区温度220℃,蒸发速率 1Å/S,蒸发时间为60分钟;
(5)用安捷伦4156C I-V测试仪即可收集器件的电流信号。

Claims (4)

1.探测光子能量低于禁带宽度的近红外光的探测器的制备方法,其特征在于包括以下步骤:
(1)在衬底表面合成CdS纳米棒阵列;
(2)在生长好的CdS纳米棒阵列上面先甩一层PMMA膜作为绝缘层,然后再用氧等离子刻蚀使其CdS纳米棒的顶部露出;
(3)在露出的CdS纳米棒阵列表面蒸镀纳米金;
(4)在纳米金表面蒸镀一层透明导电的ITO作为顶电极,便于电信号的收集;
(5)把探针分别置于顶层ITO和基底ITO即可以对近红外光进行电信号的测量。
2.根据权利要求1所述的探测光子能量低于禁带宽度的近红外光的探测器的制备方法,其特征在于步骤(1)的衬底采用导电衬底ITO玻璃衬底或金衬底或者以硅基材料
3.根据权利要求1所述的探测光子能量低于禁带宽度的近红外光的探测器的制备方法,其特征在于步骤(2)的PMMA层的厚度要与CdS纳米棒的高度一致。
4.根据权利要求1所述的探测光子能量低于禁带宽度的近红外光的探测器的制备方法,其特征在于步骤(4)的纳米金尺寸为20-100 nm。
CN2012102951854A 2012-08-17 2012-08-17 探测光子能量低于禁带宽度的近红外光的探测器的制备方法 Withdrawn CN102810601A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012102951854A CN102810601A (zh) 2012-08-17 2012-08-17 探测光子能量低于禁带宽度的近红外光的探测器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012102951854A CN102810601A (zh) 2012-08-17 2012-08-17 探测光子能量低于禁带宽度的近红外光的探测器的制备方法

Publications (1)

Publication Number Publication Date
CN102810601A true CN102810601A (zh) 2012-12-05

Family

ID=47234258

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012102951854A Withdrawn CN102810601A (zh) 2012-08-17 2012-08-17 探测光子能量低于禁带宽度的近红外光的探测器的制备方法

Country Status (1)

Country Link
CN (1) CN102810601A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103904163A (zh) * 2014-04-10 2014-07-02 刘应开 一种掺杂Er3+的CdS纳米带多波段红外探测器的制备方法
WO2019169747A1 (zh) * 2018-03-07 2019-09-12 东南大学 表面等离激元-光-电混合传导纳米异质结构及制备方法
CN115084296A (zh) * 2022-05-23 2022-09-20 南京航空航天大学 复合型自驱动氧化锌同质结基紫外探测器及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1666355A (zh) * 2002-07-01 2005-09-07 赫尔大学 光电电池
CN1813357A (zh) * 2003-06-26 2006-08-02 学校法人浦项工科大学校 氧化锌基纳米棒和半导体薄膜的p-n异质结结构、其制备和包括其的纳米器件
CN101544351A (zh) * 2009-05-08 2009-09-30 东南大学 低维纳米材料高柔性组装芯片及应用方法
US20100044209A1 (en) * 2007-02-20 2010-02-25 Yissum Research Development Company Of The Hebrew Univeristy Of Jerusalem Hybrid metal-semiconductor nanoparticles and methods for photo-inducing charge separation and applications thereof
CN102036909A (zh) * 2008-03-24 2011-04-27 加利福尼亚大学董事会 具有差异性区域的复合纳米棒
CN102142482A (zh) * 2011-01-10 2011-08-03 北京科技大学 肖特基接触型ZnO纳米阵列紫外光探测器件的制备方法
CN102477291A (zh) * 2010-11-23 2012-05-30 海洋王照明科技股份有限公司 一种ZnO纳米棒阵列的制备方法
CN102522438A (zh) * 2011-12-15 2012-06-27 东南大学 一种利用氧化铟锡纳米颗粒增效的近红外光电探测器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1666355A (zh) * 2002-07-01 2005-09-07 赫尔大学 光电电池
CN1813357A (zh) * 2003-06-26 2006-08-02 学校法人浦项工科大学校 氧化锌基纳米棒和半导体薄膜的p-n异质结结构、其制备和包括其的纳米器件
US20100044209A1 (en) * 2007-02-20 2010-02-25 Yissum Research Development Company Of The Hebrew Univeristy Of Jerusalem Hybrid metal-semiconductor nanoparticles and methods for photo-inducing charge separation and applications thereof
CN102036909A (zh) * 2008-03-24 2011-04-27 加利福尼亚大学董事会 具有差异性区域的复合纳米棒
CN101544351A (zh) * 2009-05-08 2009-09-30 东南大学 低维纳米材料高柔性组装芯片及应用方法
CN102477291A (zh) * 2010-11-23 2012-05-30 海洋王照明科技股份有限公司 一种ZnO纳米棒阵列的制备方法
CN102142482A (zh) * 2011-01-10 2011-08-03 北京科技大学 肖特基接触型ZnO纳米阵列紫外光探测器件的制备方法
CN102522438A (zh) * 2011-12-15 2012-06-27 东南大学 一种利用氧化铟锡纳米颗粒增效的近红外光电探测器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103904163A (zh) * 2014-04-10 2014-07-02 刘应开 一种掺杂Er3+的CdS纳米带多波段红外探测器的制备方法
WO2019169747A1 (zh) * 2018-03-07 2019-09-12 东南大学 表面等离激元-光-电混合传导纳米异质结构及制备方法
US11099323B2 (en) 2018-03-07 2021-08-24 Southeast University Surface plasmon-optical-electrical hybrid conduction nano heterostructure and preparation method therefor
CN115084296A (zh) * 2022-05-23 2022-09-20 南京航空航天大学 复合型自驱动氧化锌同质结基紫外探测器及其制备方法
CN115084296B (zh) * 2022-05-23 2023-09-29 南京航空航天大学 复合型自驱动氧化锌同质结基紫外探测器及其制备方法

Similar Documents

Publication Publication Date Title
Dai et al. Ultrafast and sensitive self-powered photodetector featuring self-limited depletion region and fully depleted channel with van der Waals contacts
Geng et al. Ultrafast photodetector by integrating perovskite directly on silicon wafer
Xu et al. Inverted Si: PbS colloidal quantum dot heterojunction-based infrared photodetector
Manna et al. High efficiency Si/CdS radial nanowire heterojunction photodetectors using etched Si nanowire templates
Lee et al. An ultraviolet photo-detector based on TiO2/water solid-liquid heterojunction
Ranjith et al. Facile construction of vertically aligned ZnO nanorod/PEDOT: PSS hybrid heterojunction-based ultraviolet light sensors: Efficient performance and mechanism
Wang et al. Self-powered, superior high gain silicon-based near-infrared photosensing for low-power light communication
Ma et al. High-photoresponsivity self-powered a-, ε-, and β-Ga2O3/p-GaN heterojunction UV photodetectors with an in situ GaON layer by MOCVD
CN104300027B (zh) 基于石墨烯/二氧化硅/硅的雪崩光电探测器及制备方法
CN109461789B (zh) 基于二维二硒化钯纳米薄膜与锗的自驱动异质结型红外光电探测器及其制备方法
Lu et al. Construction of PtSe 2/Ge heterostructure-based short-wavelength infrared photodetector array for image sensing and optical communication applications
Yuan et al. Significantly enhanced detectivity of CIGS broadband high-speed photodetectors by grain size control and ALD-Al2O3 interfacial-layer modification
Mallorquí et al. Characterization and analysis of InAs/p–Si heterojunction nanowire-based solar cell
Hu et al. Solvent-induced crystallization for hybrid perovskite thin-film photodetector with high-performance and low working voltage
Zhang et al. One-dimensional ZnO nanostructure-based optoelectronics
Sharma et al. Trap assisted charge multiplication enhanced photoresponse of Li–P codoped p-ZnO/n-Si heterojunction ultraviolet photodetectors
Somvanshi et al. Pd/ZnO nanoparticles based Schottky ultraviolet photodiodes grown on Sn-coated n-Si substrates by thermal evaporation method
Hwang et al. All transparent high-performance solar-blind n-ITO/p-NiO/n-ZnO ultraviolet heterojunction bipolar phototransistor
Xu et al. Heterogeneous integration of colloidal quantum dot inks on silicon enables highly efficient and stable infrared photodetectors
El-Amir et al. Silicon-compatible Mg2Si/Si np photodiodes with high room temperature infrared responsivity
Wang et al. High-sensitivity silicon: PbS quantum dot heterojunction near-infrared photodetector
CN102810601A (zh) 探测光子能量低于禁带宽度的近红外光的探测器的制备方法
Ishteyaq et al. Performance characterization of (Pt, Au, Pd)/ZnO/n-Si/Al Schottky structures for varied temperature and UV illumination conditions
Huang et al. Broadband-spectral-responsivity of black silicon photodetector with high gain and sub-bandgap sensitivity by titanium hyperdoping
Labed et al. Ultrahigh Photoresponsivity of W/Graphene/β-Ga2O3 Schottky Barrier Deep Ultraviolet Photodiodes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C04 Withdrawal of patent application after publication (patent law 2001)
WW01 Invention patent application withdrawn after publication

Application publication date: 20121205