CN102803908B - 不停止流体流过测量仪器的换能器频率调节 - Google Patents

不停止流体流过测量仪器的换能器频率调节 Download PDF

Info

Publication number
CN102803908B
CN102803908B CN201080034858.XA CN201080034858A CN102803908B CN 102803908 B CN102803908 B CN 102803908B CN 201080034858 A CN201080034858 A CN 201080034858A CN 102803908 B CN102803908 B CN 102803908B
Authority
CN
China
Prior art keywords
signal
piezoelectric element
frequency
matching layer
flowmeter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201080034858.XA
Other languages
English (en)
Other versions
CN102803908A (zh
Inventor
亨利·C·斯特劳布
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Emerson Saab Cviii
Micro Motion Inc
Emerson Automation Solutions Measurement Systems and Services LLC
Original Assignee
Daniel Measurement and Control Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daniel Measurement and Control Inc filed Critical Daniel Measurement and Control Inc
Publication of CN102803908A publication Critical patent/CN102803908A/zh
Application granted granted Critical
Publication of CN102803908B publication Critical patent/CN102803908B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

一种方法包括:在不停止通过流动性测定仪的流体流动的情况下,发射第一频率的超声信号通过所述流体;调节所述第一频率至第二频率;和发射所述第二频率的另一超声信号通过所述流体。

Description

不停止流体流过测量仪器的换能器频率调节
关于联邦资助研究或开发的声明
不适用。
背景
在从地下取出烃类之后,利用管道将流体流(如原油或天然气)从一处运输至另一处。与这些管道结合的超声流动性测定仪可被用于评估流体流的各种特性(例如,流中流动的流体的量和速度)。在超声流动性测定仪中,超声信号在待测量的流体流中来回传送,根据超声信号的不同特性,可确定流体流动。
提高施加至流体的超声信号的品质的机制可以提高测量精度。此外,超声流动性测定仪可以安装在恶劣的环境中,因此任何减少维护时间和提高性能(如果可能的话)的机制是可取的。
附图说明
为了更详细地说明本文所公开的实施方案,现将参照附图,其中:
图1A为超声流动性测定仪的正视截面图;
图1B为管段的正面端视图,其示出弦路径M、N、O和P;
图1C为管段外壳换能器对的上视图;
图2示出根据实施方案的组合件;
图3示出根据实施方案的换能器外壳的透视截面图;
图4示出根据实施方案的换能器外壳的正视截面图;
图5示出根据实施方案的整合换能器组合件;
图6示出根据实施方案的整合换能器组合件的透视截面图;
图7A示出根据实施方案的压电元件的正面透视图;
图7B示出根据实施方案的压电元件的背面透视图;
图8为示出根据实施方案的换能器组合件的更换方法的流程图;
图9A-9C包含根据实施方案的一系列配置,其示出在流体流过仪表时换能器组合件的更换;
图9D示出根据实施方案的结合电子逻辑的换能器组合件的块图;和
图10示出描述根据实施方案的在流体流过仪表时换能器组合件的更换方法的流程图。
符号和术语
在以下全部说明书和权利要求书中使用的特定术语是指特定的系统组件。本文不打算区分不同名但功能相同的组件。
在下面的讨论和权利要求书中,术语“包括”和“包含”作为开放式使用,因此应被解释为是指“包括,但不限于......”。此外,术语“连接(耦接)”意图是指间接或直接的关联。因此,如果第一装置与第二装置连接,则该连接可以是通过直接连接的连接或通过经由其它装置和连接的间接连接的连接。
“流体”应指液体(如原油或汽油)或气体(如甲烷)。
具体说明
图1A为图示超声测定仪101的正视截面图。适合安置在管道段之间的管段100是用于测定仪101的外壳。该管段100的内部体积是用于所测量流体的流动路径并且具有限定流动性测定仪内测量截面的预定尺寸。流体可沿方向150以速度曲线152流动。速度矢量153-158示出通过管段100的流体速度朝向中心增加。
一对换能器120和130设置在管段100的外周上。换能器120和130分别被换能器端口125和135所容纳。换能器120和130的位置可由角度θ、在换能器120和130之间测量的第一长度L、对应于点140和145之间的轴向距离的第二长度X以及对应于管直径的第三长度D所限定。在大多数情况下,距离D、X和L都在仪表制造过程中被精密测定。此外,换能器如120和130可分别放置在与点140和145相距特定距离处,无论测定仪尺寸如何(即,管段尺寸)。虽然换能器图示为略微凹陷,但是在替代实施方案中,换能器突出进入管段中。
在换能器120和130之间存在与中心线105成θ角的路径110(有时称为“弦”)。“弦”110的长度是换能器120的表面与换能器130的表面之间的距离。点140和145限定换能器120和130产生的声波信号进入和离开流过管段100的流体的位置(即,管段孔的入口)。
换能器120和130优选为超声收发器,即它们均产生和接收超声信号。本文中,“超声”是指超过约20千赫的频率。为了产生超声信号,对压电元件进行电刺激并且压电元件通过振动进行响应。压电元件的振动产生的超声信号通过流体行进穿过管段到达换能器对的对应换能器。同样地,在被超声信号击中时,接收的压电元件发生振动并产生被流动性测定仪相关的电子装置所检测、数字化和分析的电信号。最初,下游换能器120产生超声信号,随后其被上游换能器130所接收。一段时间后,上游换能器130产生返回的超声信号,随后其被下游换能器120所接收。因此,换能器120和130沿弦路径110对超声信号115进行“发与收”。在操作过程中,该序列可每分钟发生数千次。
换能器120和130之间的超声信号115的转换时间部分取决于超声信号115是否相对于流体流动是向上游或向下游行进。向下游行进的超声信号的传输时间(即与流动方向相同)低于其向上游行进(即与流动相反)时的传输时间。上游和下游的转换时间可以用来计算沿信号路径的平均流速,并且也可以用来计算流体中的声速。如果已知运送流体的流动性测定仪的截面积并且假设速度分布的形状,则在流动性测定仪孔面积上的平均流速可以用来得到流经流动性测定仪101的流体体积。
超声流动性测定仪可以有对应于一个或多个路径的一个或多个换能器对。图1B为具有直径D的管段的正面端视图。在这些实施方案中,管段100在通过流体流动的不同水平上包括四个弦路径M、N、O和P。弦路径M-P中的每一个对应于其行为交替为发射器和接收器的两个换能器。也示出控制电子装置160,其获取并处理来自四个弦路径M-P的数据。在图1B中不可见的是对应于弦路径M-P的四对换能器。
四对换能器的精确安排可进一步通过参照图1C来理解。在一些实施方案中,四对换能器的端口安装在管段100上。每对换能器端口对应于图1B的单个弦路径。第一对换能器端口125和135容纳换能器120和130(图1A)。该换能器安装为与管段100中心线105成非垂直角度θ。另一对换能器端口165和175(只有部分可见)容纳相关的换能器,使得弦路径相对于换能器端口125和135的弦路径松散地形成“X”。同样,换能器端口185和195可放置为与换能器端口165和175平行,但处于不同的“水平”(即在管段中的不同高程)。在图1C中没有明确示出的是第四对换能器和换能器端口。将图1B和1C合并在一起,换能器对设置为上两对换能器对应于弦M和N,而下两对换能器对应于弦O和P。在每个弦M-P处可确定流体的流速以获得弦流速,并且弦流速合并以确定对于整个管的平均流速。虽然四对换能器显示形成X形状,但是可以存在多于或少于4对。此外,换能器可以在同一平面上或处于一些其它配置。
图2示出连接和/或在换能器端口内的组合件200(例如,图1C的165、175)。特别地,组合件200包括在其远端205具有连接器204的线束202。该线束202,特别是连接器204通过固定螺母206和换能器外壳208连接至换能器端口(在图2未显示)。换能器组合件210通过固定螺母206的孔电连接线束202的连接器204,因此电连接测定仪的电子装置。换能器组合件210套进换能器外壳208中并且至少部分通过固定螺母206保持在合适位置。当换能器组合件210和换能器外壳208接合时,换能器组合件210的压电元件214声连接至匹配层212。换能器外壳208和换能器组合件210分别依次讨论。
图3示出根据一些公开的实施方案的换能器外壳208的透视截面图。外壳208包括近端318、远端302和内部容积310。远端318至少部分地被声匹配层212所堵塞。声匹配层212密封远端302,并且匹配层212的外侧314暴露于流体流经管段/测定仪(图1A-C)。在换能器外壳208的外径上的螺纹306允许将外壳208连接到管段(图1A-C)并且O形环308将外壳208密封至换能器端口(图1A-C)。在替代实施方案中,换能器外壳208焊接到管段的换能器端口(图1A-C)。
在一些实施方案中,换能器外壳208是金属,例如低碳不锈钢。在替代实施方案中,可以等同使用任何能够承受测定仪内的流体压力的材料,如高密度塑料或复合材料。在一些实施方案中,换能器外壳208的壁厚选择为响应在测定仪中和内部容积310中的流体之间的压差而略微压缩。在这些实施方案中,换能器外壳208的壁的压缩有助于将声匹配层212保持在合适位置。例如,声匹配层后的壁略向内偏转,并且较小的内径提供对于声匹配层的支撑以抵抗测定仪内流体压力所导致的侧向运动。此外,在将声匹配层212与换能器外壳208结合的过程中,外壳208被拉伸(在壁材料的弹性极限内)以容纳声匹配层212。
为了有助于声匹配层212与换能器外壳208的结合,在一些实施方案中,声匹配层212具有围绕内侧312的边缘的弯月面304。图4示出换能器外壳208的正面截面图,其进一步示出根据这些实施方案的弯月面304。特别地,声匹配层212的弯月面304增加换能器外壳壁和声匹配层212之间的接触面积,但优选在声学匹配层212的内侧312上保留足够的表面积,以允许换能器组合件的压电元件(图4中未示出)之间的声耦合。因此,换能器组合件210为弯月面304提供空间以确保弯月面304不受压电元件与匹配层212的耦合的干扰。
声匹配层212的材料是选自以下组别中的一种或多种:玻璃;陶瓷;塑料;玻璃填充塑料;或碳纤维填充塑料。虽然一些实施方案使用100%玻璃作为声匹配层,但是使用塑料的替代实施方案可具有30%以下的玻璃含量。无论声匹配层的材料如何,声匹配层212提供在压电元件214与流动性测定仪中流体之间的声耦合。根据本文公开的某些实施方案,声匹配层具有在压电元件214与测定仪中流体之间的声阻抗。利用在压电元件214与测定仪中流体之间的匹配层声阻抗,改善超声信号的质量(例如,更大的振幅和更快的上升时间)。玻璃是声匹配层的优选材料,因为它具有所需的声阻抗以提供良好的声耦合,同时强度足以抵抗流动性测定仪内的流体压力,使得压电元件可以与流动性测定仪内的流体隔离。相对地,实质包含不锈钢的匹配层的声阻抗大于压电元件的声阻抗,并因此提供差的声耦合。在一些实施方案中,声匹配层212的声阻抗为约1~约30Mega-rayl(MRayl);或者为约10~约15Mayl。
当将换能器组合件210插入换能器外壳208时,换能器组合件210的压电元件214(图2)紧邻声匹配层212的内侧312。为了提供良好的声耦合,声匹配层212的内表面312和外表面314基本平坦并且基本相互平行。在一些实施方案中,表面的平坦度在0.001英寸内或更好,并且平行度在0.003英寸内或更好。此外,换能器组合件210定位为使得压电元件214处于声匹配层212的中心。如本文所讨论的具有声匹配层的换能器外壳208可由DashConnectorTechnologyofSpokaneWashington制造和从其购买。
声匹配层212的厚度(沿与换能器外壳208的其余部分共享的轴线)在一些实施方案中基本等于压电元件214产生的声波的1/4波长的奇数倍(1/4、3/4、5/4、7/4等)。例如,考虑在1兆赫频率下工作的压电元件214和声速为5000米/秒的声匹配层212,匹配层中的声波波长为约0.197英寸。在这些实施方案中,声匹配层可以是0.049、0.148、0.246、0.344等英寸厚。声匹配层越薄则提供的声学性能就越好,但声匹配层越厚则换能器外壳208能够承受的压力就越高。选择最佳匹配层厚度涉及选择能够承受流动性测定仪内预期的最高压力的最薄匹配层。
为了减少电噪声和使驱动电压翻倍,经常期望电连接不同的压电元件(下文讨论),这意味着压电元件紧邻声匹配层的部分可具有导电涂层。如果声匹配层是金属的,则在金属和压电元件214之间使用薄的电绝缘体进行电隔离。为解决这一问题,在一些实施方案中,声匹配层212是电绝缘体,从而减少或消除对于附加的电绝缘的需要。
现在将注意力转向整合的换能器组合件210。图5示出换能器组合件210的透视图。换能器组合件210包括细长的外壳501,其具有沿其伸长方向的轴505(在图6中显示为轴“X”)。在一些实施方案中,细长外壳501包括第一部分500和第二部分502,均具有共同的轴505。在这些实施方案中,第二部分502与第一部分500套入结合,使得第一部分500和第二部分502可以相对于彼此在轴向上移动。此外,细长外壳501可以是圆柱形状,但可以等同使用其它形状。
在细长外壳501包括第一部分500和第二部分502的实施方案中,第二部分502的在晶体或远端518处的外径与第一部分500基本相同。然而,第二部分502还包括直径减少的部分520,其套入第一部分500的内径中,因此具有略小于第一部分500内径的外径。在一些实施方案中,第一和第二部分500和502的接合长度约等于外径,但可以等同使用较长和较短的接合。细长外壳501的外径略小于换能器外壳208的内径,这有助于确保压电元件的位置是准确已知的。
根据一些实施方案,第二部分502由塑料(例如,Ultem1000)制成。在这些实施方案中,第二部分502的轴向长度减少(相对于第一部分500的轴向长度,其优选为金属的),这是因为较短的长度降低了生产成本,而且当由塑料材料制成时,第二部分502趋于吸收水分和溶胀。第二部分502的溶胀是可以容忍的,并且第二部分502的轴向长度的减少使得即使在溶胀的情况下仍能从换能器外壳208上移除换能器组合件210。
第一和第二部分500和502的相对旋转运动和轴向位移被从第二部分502穿过第一部分500中的孔504径向延伸的销506所限制。在一些实施方案中,使用三个这样的销和孔的组合,但也可以等同地使用少至一个或多于三个的销和孔的组合。或者,第二部分502可以设计为具有与作为第二部分502的整体部分的孔504相互作用的突起。
虽然压电元件214连接至并至少部分闭塞细长外壳501的第一端503,电引脚固定器508连接至并至少部分闭塞细长外壳501的第二端509。拉长外壳501的第一部分500可以包括连接键514,这有助于确保整合换能器组合件被正确定向以与连接器204的键槽连接。电引脚固定器508可包括与连接键514配合的插槽515用以防止电引脚固定器508在细长外壳501内旋转。此外,电引脚固定器508还可包括防旋转插槽516,其与换能器外壳208上的拉片组合以防止整合换能器组合件210在换能器外壳208中旋转。细长外壳501的第二端509的内径与引脚固定器508的小外径滑动配合。引脚固定器508可期望地由Ultem1000制成,但可以使用任何刚性的不导电材料。
图6示出换能器组合件210的透视截面图。在至少一些实施方案中,压电元件214与换能器外壳208电隔离,因此至少第二部分502由上述的刚性不导电材料制成。细长外壳501的内径和、压电元件214的外径选择为使得换能器组合件210与换能器组合件210插入其中的换能器外壳208之间存在空间。该空间为清除声匹配层的弯月面304(图3和4)提供场所。该空间也为可在插入换能器外壳208之前涂覆至压电元件214外表面的过量的油或脂提供场所,以改善压电元件214与声匹配层212的声耦合。
细长外壳501中的肩部600与压电元件214邻接以抵抗压电元件的轴向移动,如由在换能器组合件210安装在换能器外壳208中时施加的力所导致的轴向移动。压电元件214后方的容积包括背匹配层602(例如,环氧树脂、粉末填充环氧树脂、橡胶、粉末填充橡胶)并且用于多个用途。例如,背匹配层与压电元件214耦合并且一个或多个引线连接到压电元件214、连接到细长外壳501。特别地,匹配层的重量通过减少声信号的鸣震和增加声信号的带宽来改善压电元件214的声输出。在一些实施方案中,背匹配层的长度(沿细长外壳的轴测量)选择为使得背匹配层602中的超声信号的往返行程的行进时间发生在大于接收信号的测量时间的时刻。例如,如果接收信号中第四个零交叉点被用作测量点,则往返行程的行进时间将优选大于压电元件工作中心频率的2个周期。另外,背匹配层602的长度为压电元件工作中心频率时约1~约9个背匹配层中的声波波长。适当的长度确保任何反射声信号在超声测定仪的信号转换时间过程中不能到达压电元件。
还考虑包括第一部分500和第二部分502的拉长外壳501,第二部分502的直径减少的部分520包括肩部608。肩部足够小以允许引线穿过其中的孔,并允许注入背匹配层602的开孔。背匹配层可用具有小的塑料尖端的注射器注入。在该肩部608的端部提供倒角以确保不产生可能损伤引线的锋利边缘。肩部608是在偏置第二部分502时可推动偏置机构(下文讨论)的位置。
在实施方案中,细长外壳501包括第一部分500和第二部分502,二者被允许相对于彼此轴向移动,换能器组合件210包括偏置机构,如弹簧610。偏置机构使第一部分500和第二部分502沿共同轴X彼此偏离。在一些实施方案中,偏置机构使第一部分500和第二部分502彼此偏离所利用的力为约4~约12磅。在替代实施方案中,偏置机构可以是提供偏置力的任何机构,如垫圈、橡胶件或弹簧、垫圈和/或橡胶件的组合。
弹簧610在组装时略微压靠肩部618,至少一个引脚(部分显示为506)和孔组合(图5)限制第二部分502在第一部分500内的轴向和旋转移动。一旦换能器组合件210被安装在换能器外壳208中,则固定螺母206(图2)进一步压缩弹簧610。该压缩补偿了组装部件的公差以确保压电元件214的外侧与声匹配层212的内侧312良好接触(图4)。一旦连接器204(图2)被组装,则弹簧610可被进一步压缩。在连接器204处于合适位置时,弹簧力可在约4.9磅的水平上。在替代实施方案中,连接器204不需要对弹簧施加进一步的压缩力。在细长外壳501为单结构的实施方案中,确保压电元件214与声匹配层212之间的良好接触(图4)的力可通过固定螺母206(图2)和/或连接器204(图2)提供。
引脚固定器508使两个连接引脚615和617保持具有期望的间距和暴露长度。该引脚与连接器204匹配,提供换能器组合件与流动性测定仪的电子装置的电连接。电引脚615通过贯穿细长外壳501的内部的第一引线611连接至压电元件214。同样地,第二引脚617通过同样贯穿拉长外壳501的内部的第二引线613连接至压电元件214。在一些实施方案中,多股具有PTFE绝缘层的铜线用作引线611、613,但其它类型的引线也可等同使用。为了使引线611和613以及可能的电阻器614(下文讨论)和电引脚固定器508保持在合适的位置,通过环氧树脂填充端口612引入粘合剂609如环氧树脂。在一些实施方案中,连接引脚615和617是具有焊料连接袋的坚固镀金黄铜引脚,但其它引脚可等效采用。使用两种不同颜色的引线绝缘以确保正确的晶面极性,并且在制造过程中保持利用盒上连接键的连接引脚定向。组装时将引线扭曲以确保引线中任何诱导电信号是平衡的以避免该信号被测量循环期间的晶体脉冲所干扰。
在引脚615和617之间连接1兆欧姆的电阻器614,从而使得压电晶体的两个电极镀面(下文讨论)耦合。该电阻器614提供低频短路以释放在运输或安装过程中机械振动或温度变化所产生的任何电能。在换能器工作的高频(~1兆赫)下,电阻器614对发送至压电晶体或由压电晶体产生的电信号几乎没有影响。电阻器的一个引线通过绝缘管进行绝缘以避免在制造期间该引线与盒的短路。替代的换能器设计可包括在整合换能器组合件中的附加电器件(例如,电感器、放大器、开关、齐纳二极管或电容器)。这些器件可以单独或组合使用。
图7A和7B示出对压电元件214的电耦合。在一些实施方案中,压电元件214是压电晶体,如PTZ-5A或其它类似材料。晶体的厚度、直径和材料特性控制发出的超声信号的频率。外侧700是压电元件214连接声匹配层(图3和4)的侧面。压电元件的外侧700和内侧702至少部分地镀有银或其它金属以产生电极表面。在外侧700上的镀层部分704围绕晶体周边延伸至内侧702。外侧700的镀层(包括部分704)和内侧702的镀层通过无镀层区706进行电隔离。这种方式的镀层能够使两个引线611和613连接至压电元件214的内侧702。如图所示的镀层安排允许外侧700平坦以与声匹配层良好接触。或者,一个引线可围绕压电元件延伸并连接至外侧700。在这些实施方案中,外壳501的一部分(图5和图6)形成缺口以允许引线穿过。此外,在引线之一直接连接至外表面700的这些实施方案中,声匹配层214具有缺口以容纳引线。在其它实施方案中,第一引线连接至压电元件的内侧702并且第二引线连接至压电元件的周边或边缘。在另一实施方案中,第一引线连接至内侧702,而第二引线连接至来自外侧700的镀层,其延伸进入穿过晶体中心的孔。
现参照图8,公开了一种替换换能器组合件210的方法800,同时流体仍然流过流动性测定仪101(即,同时流动性测定仪101包含加压流体)。例如,原换能器组合件210可被替换成不同的换能器组合件210,其包含在与原换能器组合件210不同的一个或多个频率下共振的压电元件214。或者,原换能器组合件210可被替换成不同的换能器组合件210,因为原换能器组合件210存在缺陷或失效。该方法800包括断开使超声流动性测定仪(图1A-1C)的电子装置连接至换能器组合件210的线束(框802),同时所有流体通过流动性测定仪101。如果使用,则将偏置机构脱接合(框803),同时流体通过流动性测定仪101,例如通过松动和拆卸螺母206(图2)。此后,从换能器外壳208上移除作为单个单元的换能器组合件210,同时流体通过流动性测定仪101(框804)。将更换的换能器组合件210插入换能器外壳(再次作为单个单元),同时流体通过流动性测定仪101(框806)。在一些实施方案中,偏置机构接合(例如通过安装固定螺母206),同样地同时流体通过流动性测定仪101(框807)。最后,该线束重新连接,同时流体通过流动性测定仪101(框808)。
图9A-C示出上述方法800的步骤。特别地,图9A示出具有连接至换能器外壳208的换能器组合件210的流动性测定仪101。为了简单、清晰和易于说明,利用虚线标记绘出换能器组合件210和换能器外壳208。换能器组合件210包括压电元件(例如晶体)214。箭头900指向连续流经流动性测定仪101的流体绘图,同时正在进行图9A-C的换能器组合件更换过程。
换能器组合件210可能失效。或者,在某些情况下,换能器组合件210可包含在与所需频率不同的一个或多个频率下共振的压电元件214。因此,如图9B所示,可在流体不断流经流动性测定仪101的同时从换能器外壳208中移除换能器组合件210。换能器组合件移除技术相对于图8进行描述。本发明人的以下认识至少部分地有助于仅移除换能器组合件210:与使用不同材料制造的其它匹配层不同,换能器外壳208的匹配层212(图2-7B)可使用在不同频率下共振的压电元件进行工作。因此,移除换能器外壳208对于更换换能器组合件210而言是不必要的,并且在更换换能器组合件101的同时,流体可继续不间断地流过流动性测定仪101。最后,如图9C所示,原换能器组合件210被替换为不同的换能器组合件210(利用与图9A中用于描绘原换能器组合件的虚线不同的虚线进行描绘)。新安装的换能器组合件210可具有例如在与原换能器组合件210不同的频率下共振的压电元件214。
在一些实施方案中,压电元件214可以选择具有一定频率,使得声匹配层212仍然用作1/4波长的匹配层。例如,考虑在1兆赫工作的换能器,同时声匹配层的厚度为1兆赫下5/4波长。表1描述其中声匹配层212用为1/4波长匹配层的其它频率:
表1
具有0.225英寸的厚度和15000英尺/秒声速的声匹配层
用作1/4波长匹配层的不同频率
频率 匹配层厚度 匹配层厚度
(MHz) (英寸) (波长)
0.20 0.225 1/4
0.60 0.225 3/4
1.00 0.225 5/4
1.40 0.225 7/4
例如,如果高粘度液体开始流经流动性测定仪101并且得到在换能器组合件之间的信号损失,则1兆赫换能器组合件210可以移除并更换为0.60兆赫或0.20兆赫的换能器组合件以增加信号振幅,这是因为由于粘度导致的声吸收与频率的平方成正比。或者,如果较高的频率是理想的(例如,用以提高计时精度并因此提高流量测量精度),则1兆赫换能器组合件210可被移除并替换成1.40兆赫换能器组合件。
换能器组合件210的频率是通过调节压电元件214的形状以改变元件的共振频率来改变的。压电元件(例如晶体)通常有不同的共振模式。一种这样的模式是厚度模式,其中共振频率随压电元件214的厚度的减少而增加。另一种模式是径向模式,其中共振频率随电元件214的半径的减少而增加。当在压电元件214中增加孔或压电元件214的厚度和半径具有类似的大小时,出现更复杂模式。通常,共振模式的大变化可通过改变压电元件214的几何形状来实现。共振频率也可以通过改变压电元件214的压电材料来变化。此外,给定的压电元件214可以具有多于一种的共振模式。
一种在加压液体流过流动性测定仪101的同时调节换能器频率的替代方法采用具有多种共振模式的压电元件。通常,压电元件的特性可以操纵以实现多频共振。例如,压电元件的厚度可以调节为获得特定的共振频率,而压电元件的半径可以调整为获得不同的共振频率,其受到压电元件214仍然适合容纳在换能器外壳208中的限制。假设压电元件在0.2兆赫和1兆赫下均产生共振,例如,上表1中所描述的声匹配层用作这两个共振频率下的1/4波长匹配层。
该压电元件的不同频率可通过调节在引脚615、617处施加的换能器驱动电压以激发所需的共振频率来激活。例如,0.2赫兹共振可通过施加一个周期的0.2兆赫方波来激发,而1兆赫共振可通过施加一个周期的1兆赫方波来激发。通过对在多个频率下共振的压电元件施加不同频率的换能器驱动电压,可以调节元件共振频率,而无需从换能器外壳208中手动移除换能器组合件210。
多频压电元件的共振频率可手动或自动调节。在手动频率选择时,可调节换能器驱动电压信号以获得所需的元件共振频率。如果需要不同的共振频率用以改善信号振幅和/或计时精度,则元件共振频率可再次通过改变换能器驱动电压信号而手动调节。
在自动频率选择时,流动性测定仪101内的电子电路可以有规律地或间断性地测量压电元件输出进入流动性测定仪101所容纳的流体内的信号振幅。在一些实施方案中,压电元件可在第一共振频率共振,直到流动性测定仪101内的电子装置确定正被元件输出的信号的振幅超过预定阈值为止。就此而言,压电元件可制造为在第二不同频率下共振。如果使用第二频率产生的信号的振幅低于阈值或至少如果振幅低于使用第一频率所产生的信号的振幅,则压电元件可以恢复使用第一频率。在替代实施方案中,可以使用一系列的频率并且测量每个所得信号的振幅。实施产生具有最大振幅信号的频率(或者作为替代方案,产生具有最接近所需振幅的振幅的信号的频率)。
在一些实施方案中,可同时激发多个压电元件的频率。可以记录由此产生的信号波形,然后使用任何合适的技术进行数字滤波以将信号分离为不同的频率。每个信号可以随后进行分析以确定其中提供最大的信号振幅和最优的计时精度的信号。提供更大的信号振幅和计时精度的信号选择为用于流动性测定仪101的信号以确定流动特性。为了如在这些实施方案中那样适当地激发多个共振频率,压电元件和声匹配层的选择应妥善协调。例如,考虑所示的作为0.5兆赫频率下1/4波长厚度的声匹配层。因此,该匹配层将作为用于0.5兆赫、1.5兆赫、2.5兆赫等共振频率下的合适匹配层。如果使用具有0.5兆赫的厚度共振的压电元件时,该元件将在奇次谐波频率1.5兆赫、2.5兆赫等表现出额外的共振。因此,由于匹配层匹配0.5兆赫、1.5兆赫、2.5兆赫...的共振频率,并且由于压电元件的主谐波频率和奇次谐波频率包括0.5兆赫、1.5兆赫、2.5兆赫...,因此匹配层将用作用于压电元件的主谐波频率和奇次谐波频率的适当的1/4波长匹配层。压电元件的多重共振可以同时使用2个周期的0.5兆赫方波来激发,该方波在其频谱上在0.5兆赫、1.5兆赫、2.5兆赫...表现出峰值。本公开内容的范围不限于特定的匹配层和本文所公开的压电元件。
如上所述,换能器信号的质量分析是通过连接至或容纳在流动性测定仪101中的电子电路进行的。图9D示出流动性测定仪101的一部分的框图。如图所示,流动性测定仪101包括与电子逻辑902连接的换能器组合件210(及其内容物)。电子逻辑902包括电路(例如处理器、内存等),其控制对于容纳在换能器组合件210中的压电元件施加的驱动器电压。因此,例如在流动性测定仪101中接收来自流体的信号的换能器组合件可将信号传递至其电子逻辑。电子逻辑可将信号(例如有线或无线地)或涉及信号的数据提供至发射信号的换能器组合件的电子逻辑。换能器组合件的电子逻辑随后可分析信号/信号数据,以确定应如何调节施加至压电元件的驱动电压(如果有的话)。这样,产生反馈回路,其中负责发射信号的换能器组合件的电子逻辑可调节提供给压电元件的驱动电压信号(例如,电压、频率、信号类型、计时等)。这种反馈回路可根据需要操作以实施本文所公开的实施方案或其变化方案。
图10示出根据实施方案实施的方法1000的流程图。该方法1000包括发射穿过流动性测定仪中的流体的第一信号(框1002)。该方法1000还包括确定第一信号的质量(框1004)。信号质量可基于例如在信号穿过流动性测定仪中的流体时的信号幅度和计时精度来确定。至少在一些实施方案中,信号质量可利用上述反馈回路来确定。如果信号质量不满意(框1006),则方法1000包括调节信号频率和发射不同频率的第二信号(框1008)。信号频率可以使用任何合适的技术来调节。在一些实施方案中,信号频率通过将压电元件更换为不同的压电元件来物理调节,同时继续使流体流过流动性测定仪。另外,可以通过改变施加至元件的驱动电压来调节频率。电压本身可被改变,如所施加的信号频率、所施加的信号类型(例如方波信号或其它类型的波形)等一样。
驱动电压可以手动或自动调节。如果手动调节,则特定的发射信号的质量被确定,如果质量低于预定阈值,则可以调节驱动电压,以产生不同频率的不同信号。如果自动进行,则电子逻辑902可以循环通过多个频率和信号以发现最好的信号质量。逻辑902随后可实现该信号。此外,在一些实施方案中,压电元件可能够同时在多个频率下共振。在这样的实施方案中,该元件可以同时发射多个信号进入流体。容纳在流动性测定仪101内的互补换能器组合件可以捕获来自流体的信号。与互补换能器组合件相关联的电子逻辑(或作为替代方案,与发射换能器组合件相关联的电子逻辑)可利用任何合适的技术分离信号并且可以随后分析信号的质量。可实现具有最高质量的信号。该方法1000的步骤可采取任何适当的顺序进行。可从方法1000中增加或删除步骤。
虽然已经示出和描述了不同的实施方案,但是本领域技术人员能够在不偏离本文的实质或教导的情况下提出其修改方案。本文所描述的实施方案只是示例性的而非限制性的。因此,保护范围不限于本文所述的实施方案,而是仅限于所附的权利要求,其范围应包括权利要求的主题的所有等同替代。

Claims (16)

1.一种调节换能器频率的方法,包括:
在流动性测定仪中,在不停止通过所述流动性测定仪的流体流动的情况下:
发射第一频率的超声信号通过所述流体;
调节所述第一频率至第二频率;和
发射所述第二频率的另一超声信号通过所述流体,
所述方法的特征在于,
所述流动性测定仪包括压电元件、声匹配层,所述声匹配层与所述压电元件相邻并且暴露于通过所述流动性测定仪的所述流体,其中所述声匹配层在所述压电元件与所述流体之间提供声耦合;和
所述方法还包括在所述流动性测定仪中,在不停止通过所述流动性测定仪的流体流动的情况下:对所述超声信号和所述另一超声信号二者使用所述声匹配层,其中选择所述第一频率和所述第二频率,以使得对于所述第一频率和所述第二频率二者,所述声匹配层用作四分之一波长匹配层。
2.根据权利要求1所述的方法,其中调节所述第一频率至第二频率包括将用于产生所述第一频率的压电元件更换为用于产生所述第二频率的不同的压电元件。
3.根据权利要求2所述的方法,其中将所述压电元件更换为所述不同的压电元件是在不从所述流动性测定仪中移除换能器外壳的情况下进行,所述换能器外壳能够交替地容纳所述压电元件和所述不同的压电元件。
4.根据权利要求1所述的方法,其中调节所述第一频率至第二频率包括调节施加至用于产生所述第一和第二频率二者的压电元件的驱动电压。
5.根据权利要求4所述的方法,还包括确定所述超声信号的质量,并且作为所述质量不满足阈值的结果,调节所述第一频率至所述第二频率。
6.根据权利要求4所述的方法,还包括:
确定所述超声信号的质量并确定所述另一超声信号的质量;
比较所述质量以确定所述超声信号和所述另一超声信号中何者具有更高的质量;和
基于所述比较,发射所述超声信号或所述另一超声信号。
7.根据权利要求1所述的方法,其中所述声匹配层包含选自玻璃、陶瓷和塑料中的材料。
8.根据权利要求1所述的方法,其中所述声匹配层包含选自玻璃填充塑料和碳纤维填充塑料中的材料。
9.一种流动性测定仪,其特征在于,所述流动性测定仪包括:
能够在不同频率下共振的压电元件;
与所述压电元件相邻并能够声阻抗匹配所述不同频率的声匹配层,其中所述声匹配层暴露于通过所述流动性测定仪的流体,并且在所述压电元件与所述流体之间提供声耦合;
其中所述压电元件发射第一信号通过流经所述流动性测定仪的流体;
其中,基于所述第一信号的质量的评估,所述压电元件发射替代所述第一信号的不同信号,所述第一信号和所述不同信号具有不同的频率;
其中在所述压电元件发射所述第一信号时和在所述压电元件发射所述不同信号时均使用所述声匹配层,并且选择所述第一信号和所述不同信号的不同频率,以使得对于所述第一信号和所述不同信号二者,所述声匹配层用作四分之一波长匹配层。
10.根据权利要求9所述的流动性测定仪,其中所述压电元件通过改变施加至所述压电元件的驱动电压来发射所述不同信号。
11.根据权利要求9所述的流动性测定仪,其中所述评估包括在所述第一信号穿过所述流体时,确定第一信号振幅和第一信号计时精度。
12.根据权利要求9所述的流动性测定仪,其中所述声匹配层包含选自玻璃、陶瓷和塑料中的材料。
13.根据权利要求9所述的流动性测定仪,其中所述声匹配层包含选自玻璃填充塑料和碳纤维填充塑料中的材料。
14.根据权利要求9所述的流动性测定仪,其中所述第一信号包括多频。
15.根据权利要求14所述的流动性测定仪,其中所述压电元件基于所述第一信号的所述多频中的每一个的质量的评估来发射所述不同的信号,所述不同的信号包括所述第一信号的所述多频中的单一频率。
16.根据权利要求14所述的流动性测定仪,其中所述压电元件基于确定所述第一信号的所收集样本的所述多频中的哪一个具有高于所述多频中的其它频率的质量水平来发射所述不同的信号。
CN201080034858.XA 2009-06-16 2010-05-26 不停止流体流过测量仪器的换能器频率调节 Active CN102803908B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/485,424 2009-06-16
US12/485,424 US7966893B2 (en) 2009-06-16 2009-06-16 Adjusting transducer frequency without ceasing fluid flow through a meter
PCT/US2010/036134 WO2010147741A2 (en) 2009-06-16 2010-05-26 Adjusting transducer frequency without ceasing fluid flow through a meter

Publications (2)

Publication Number Publication Date
CN102803908A CN102803908A (zh) 2012-11-28
CN102803908B true CN102803908B (zh) 2016-06-29

Family

ID=43305233

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080034858.XA Active CN102803908B (zh) 2009-06-16 2010-05-26 不停止流体流过测量仪器的换能器频率调节

Country Status (8)

Country Link
US (1) US7966893B2 (zh)
EP (1) EP2443423B1 (zh)
CN (1) CN102803908B (zh)
BR (1) BRPI1015978B8 (zh)
CA (1) CA2764995C (zh)
MX (1) MX2011014047A (zh)
RU (1) RU2530482C2 (zh)
WO (1) WO2010147741A2 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8844347B2 (en) * 2012-02-29 2014-09-30 General Electric Company Sensor port insert apparatus
US9170140B2 (en) * 2012-05-04 2015-10-27 Cameron International Corporation Ultrasonic flowmeter with internal surface coating and method
US9140586B2 (en) * 2012-09-25 2015-09-22 General Electric Company Removable sensor port insert apparatus
DE202013102553U1 (de) * 2013-06-14 2014-06-16 Endress + Hauser Flowtec Ag Ultraschall-Durchflussmessgerät
US9080908B2 (en) * 2013-07-24 2015-07-14 Jesse Yoder Flowmeter design for large diameter pipes
DE102013109349A1 (de) * 2013-08-29 2015-03-05 Endress + Hauser Flowtec Ag Ultraschallwandler und Ultraschall-Durchflussmessgerät
DE102013114475B4 (de) * 2013-12-19 2021-04-08 Sick Ag Ultraschallmessvorrichtung und Verfahren zum Bestimmen der Strömungsgeschwindigkeit
US9295923B2 (en) * 2014-03-20 2016-03-29 Daniel Measurement And Control, Inc. Transducer for ultrasonic flow meter
DE102014010375B4 (de) * 2014-07-12 2021-06-17 Diehl Metering Gmbh Ultraschallwandleranordnung sowie Ultraschallwasserzähler
US9718666B2 (en) 2014-12-12 2017-08-01 Veeder-Root Company Fuel dispensing nozzle with ultrasonic transducer for regulating fuel flow rates
FR3035497B1 (fr) * 2015-04-21 2018-09-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives Systeme et procede de mesure d'un debit de fluide par traitement d'ondes acoustiques
ES2962872T3 (es) * 2015-08-28 2024-03-21 Crisi Medical Systems Inc Sistema de sensor de flujo que incluye contactos de resorte
US10718645B2 (en) * 2017-10-27 2020-07-21 Daniel Measurement And Control, Inc. Adjustable transducer assemblies
US10564016B2 (en) 2017-12-06 2020-02-18 Honeywell International Inc. Ultrasonic transducers using adaptive multi-frequency hopping and coding
WO2019152040A1 (en) 2018-02-01 2019-08-08 Reliance Worldwide Corporation Flow tube for hosting a flow meter and a shut-off valve
MX2020007984A (es) * 2018-02-01 2020-10-16 Reliance Worldwide Corp Montaje de sensor.
EP3974783B1 (de) * 2020-09-25 2024-02-14 Krohne Messtechnik GmbH Ultraschallwandler, verfahren zum betreiben eines ultraschallwandlers, ultraschalldurchflussmessgerät und verfahren zum betreiben eines ultraschalldurchflussmessgeräts
DE102020129196A1 (de) 2020-09-25 2022-03-31 Krohne Messtechnik Gmbh Ultraschallwandler, Verfahren zum Betreiben eines Ultraschallwandlers, Ultraschalldurchflussmessgerät und Verfahren zum Betreiben eines Ultraschalldurchflussmessgeräts

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4096754A (en) * 1977-08-26 1978-06-27 E. I. Du Pont De Nemours And Company Removable probe
US4320666A (en) * 1978-07-22 1982-03-23 Redding Robert J Fluid flow measuring apparatus
US4742717A (en) * 1986-09-16 1988-05-10 Kaijo Denki Co., Ltd. Gas flow rate measuring device
CN1608198A (zh) * 2001-10-26 2005-04-20 东京电力株式会社 多普勒型超声流量计
JP2006194634A (ja) * 2005-01-11 2006-07-27 Fuji Electric Systems Co Ltd ドップラ式超音波流量計、及びドップラ式超音波流量計における超音波振動子への送信電圧調整方法と配管内の流体の状態監視方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3097526A (en) * 1963-07-16 fischbacher
US3976968A (en) * 1954-11-19 1976-08-24 The United States Of America As Represented By The Secretary Of The Navy Underwater target detection apparatus
US4164865A (en) * 1977-02-22 1979-08-21 The Perkin-Elmer Corporation Acoustical wave flowmeter
US4203322A (en) * 1977-09-29 1980-05-20 E. I. Du Pont De Nemours And Company Apparatus for the ultrasonic measurement of the flow velocity of fluent media
DE3411778A1 (de) * 1984-03-30 1985-10-03 Bopp & Reuther Gmbh, 6800 Mannheim Verfahren und vorrichtung zum messen der stroemungsgeschwindigkeit von fluiden mittels ultraschall
GB8430217D0 (en) * 1984-11-30 1985-01-09 Redding R J Electronic gas meter
US4616510A (en) 1985-04-15 1986-10-14 Moore Products Company Fluid velocity measuring method and apparatus
DE3671516D1 (de) * 1985-09-30 1990-06-28 Siemens Ag Verfahren zur messung von stroemungsgeschwindigkeiten mit ultraschallschwingungen.
DE3937585C2 (de) * 1989-11-11 1998-11-05 Teves Gmbh Alfred Einrichtung zur Abstandsmessung
DE4114650A1 (de) * 1991-05-05 1992-11-12 Krieg Gunther Verfahren und vorrichtung zur messung von volumenstroemen in fluessigkeiten und gasen
US6343511B1 (en) * 1995-06-07 2002-02-05 Panametrics, Inc. Ultrasonic path bundle and systems
EP0835444A4 (en) * 1995-06-07 1998-11-18 Panametrics BEAM OF ELEMENTS PLACED IN ULTRASONIC PATHWAYS AND RELATED SYSTEMS
US6298735B1 (en) * 1999-04-23 2001-10-09 Agilent Technologies, Inc. Pneumotachometer having annular ring transducers
CN1293369C (zh) * 1999-06-24 2007-01-03 松下电器产业株式会社 流量计
CN1318824C (zh) * 2002-01-28 2007-05-30 松下电器产业株式会社 超声波发送接收器及超声波流量计
US6925891B2 (en) * 2002-04-30 2005-08-09 Matsushita Electric Industrial Co., Ltd. Ultrasonic flowmeter and method of measuring flow volume
AU2003289153A1 (en) * 2002-12-20 2004-07-14 Matsushita Electric Industrial Co., Ltd. Ultrasonic transmitter/receiver, process for producing the same, and ultrasonic flowmeter
DE102004011377A1 (de) * 2004-03-05 2005-09-15 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung einer Prozessgrösse
EP1615203A1 (en) * 2004-07-07 2006-01-11 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Ultrasonic transducer system
US7307373B2 (en) * 2005-08-12 2007-12-11 Daniel Measurement And Control, Inc. Transducer assembly for an ultrasonic fluid meter
US7397168B2 (en) * 2005-08-12 2008-07-08 Daniel Measurement And Control, Inc. Transducer housing for an ultrasonic fluid meter
EP2173252A4 (en) * 2007-07-31 2010-12-15 Unetixs Vascular Inc DOUBLE FREQUENCY ULTRASONIC DOPPLER PROBE

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4096754A (en) * 1977-08-26 1978-06-27 E. I. Du Pont De Nemours And Company Removable probe
US4320666A (en) * 1978-07-22 1982-03-23 Redding Robert J Fluid flow measuring apparatus
US4742717A (en) * 1986-09-16 1988-05-10 Kaijo Denki Co., Ltd. Gas flow rate measuring device
CN1608198A (zh) * 2001-10-26 2005-04-20 东京电力株式会社 多普勒型超声流量计
JP2006194634A (ja) * 2005-01-11 2006-07-27 Fuji Electric Systems Co Ltd ドップラ式超音波流量計、及びドップラ式超音波流量計における超音波振動子への送信電圧調整方法と配管内の流体の状態監視方法

Also Published As

Publication number Publication date
MX2011014047A (es) 2012-02-22
US20100313676A1 (en) 2010-12-16
WO2010147741A3 (en) 2011-02-17
CA2764995C (en) 2016-02-02
BRPI1015978A2 (pt) 2016-04-19
WO2010147741A2 (en) 2010-12-23
RU2530482C2 (ru) 2014-10-10
US7966893B2 (en) 2011-06-28
BRPI1015978B8 (pt) 2022-08-30
BRPI1015978B1 (pt) 2020-10-13
EP2443423A4 (en) 2014-04-09
EP2443423B1 (en) 2021-06-30
EP2443423A2 (en) 2012-04-25
RU2011153028A (ru) 2013-07-27
CA2764995A1 (en) 2010-12-23
CN102803908A (zh) 2012-11-28

Similar Documents

Publication Publication Date Title
CN102803908B (zh) 不停止流体流过测量仪器的换能器频率调节
EP2418464B1 (en) A method for replacement of a transducer assembly for an ultrasonic fluid meter
EP1913648B1 (en) Transducer housing for an ultrasonic fluid meter and an ultrasonic fluid meter
RU2509983C2 (ru) Преобразователь и способ его изготовления, ультразвуковой расходомер и способ измерения характеристик текучей среды
CN100587988C (zh) 用于超声流量计的换能器组件
US8534138B2 (en) Chordal gas flowmeter with transducers installed outside the pressure boundary, housing and method
CN104236607B (zh) 用于确定介质特性的装置
RU2660420C1 (ru) Преобразователь для ультразвукового расходомера
US20140013859A1 (en) Chordal Gas Flowmeter with Transducers Installed Outside the Pressure Boundary, Housing and Method
CN202453014U (zh) 超声波流量计传感器组件及其系统
RU2381598C2 (ru) Ультразвуковой расходомер и преобразователь для него
KR101135213B1 (ko) 초음파 유량계용 초음파 검출기
CN116576807A (zh) 一种无线能量和信号传输的电磁超声体波测厚装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1177497

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1177497

Country of ref document: HK

CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: Texas, USA

Patentee after: Daniel measurement and Control Co.,Ltd.

Address before: Texas, USA

Patentee before: Daniel Measurement and Control, Inc.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220704

Address after: Colorado, USA

Patentee after: MICRO MOTION, Inc.

Address before: Missouri, USA

Patentee before: Emerson Saab cviii

Effective date of registration: 20220704

Address after: Missouri, USA

Patentee after: Emerson Saab cviii

Address before: Texas, USA

Patentee before: Daniel measurement and Control Co.,Ltd.