CN102803664A - 具有冷却系统的蒸汽发电装置 - Google Patents

具有冷却系统的蒸汽发电装置 Download PDF

Info

Publication number
CN102803664A
CN102803664A CN2010800282898A CN201080028289A CN102803664A CN 102803664 A CN102803664 A CN 102803664A CN 2010800282898 A CN2010800282898 A CN 2010800282898A CN 201080028289 A CN201080028289 A CN 201080028289A CN 102803664 A CN102803664 A CN 102803664A
Authority
CN
China
Prior art keywords
cooling
cooling circuit
pump
fluid
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800282898A
Other languages
English (en)
Other versions
CN102803664B (zh
Inventor
M.雷西格
M.菲希特纳
M.萨特尔贝尔格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of CN102803664A publication Critical patent/CN102803664A/zh
Application granted granted Critical
Publication of CN102803664B publication Critical patent/CN102803664B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/003Plants characterised by condensers arranged or modified to co-operate with the engines condenser cooling circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/006Methods of steam generation characterised by form of heating method using solar heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

在蒸汽发电装置(1)中,第一冷却回路(101)包括冷凝蒸汽(4A、9A)的冷凝器(6)和泵送第一冷却流体(15)通过所述冷凝器(6)以便冷却所述冷凝器(6)的第一泵(16),第三冷却回路(PGB)是利用第二冷却流体(27)冷却不同于所述冷凝器(6)的至少一个组件的闭环冷却回路,以及第二冷却回路(PCB)包括使所述第一冷却流体(15)和所述第二冷却流体(27)热耦连的热交换器(26)并且利用在所述热交换器中的所述第一冷却流体(15)冷却所述第二流体(27),并且所述第二冷却回路(PCB)包括独立于所述第一泵(16)的操作地泵送所述第一冷却流体(15)通过所述第二冷却回路(PCB)的第二泵(44)。

Description

具有冷却系统的蒸汽发电装置
技术领域
本发明涉及一种包括冷却系统的蒸汽发电装置(或称蒸汽动力设施),所述冷却系统包括第一冷却回路、第二冷却回路和第三冷却回路。本发明还涉及这种蒸汽发电装置的冷却系统的操作方法。本发明还涉及这种蒸汽发电装置的控制单元。
背景技术
在一般的蒸汽发电装置中,使用三个冷却回路来执行各种冷却操作。
第一冷却回路通常被称作“循环水管道和线渠系统”或主冷却回路,缩写是“PAB”。它在发电装置中提供最大的冷却功率。它包括冷凝器和被分为热部和冷部的第一管道系统。所述冷部将冷却塔的冷流体出口与冷凝器的入口连接。所述热部将冷却塔的热流体入口与冷凝器的出口连接。冷却塔用于冷却第一冷却流体。PAB具有通常被称作循环水泵或主泵的至少一个第一泵。第一泵位于冷却塔内。当被启动时,第一泵从冷却塔泵出第一冷却流体(水),第一冷却流体通过第一管道系统的冷部、通过对其进行加热的冷凝器、通过第一管道系统的热部并回到冷却塔。在冷凝器中,第一冷却流体冷却该冷凝器。被冷却的冷凝器冷却热蒸汽,以使所述蒸汽凝结。蒸汽涡轮机被所述蒸汽驱动并且用于驱动产生电的发电机。
第二冷却回路通常被称作“维护水管道和线渠系统”或辅助冷却回路,缩写是“PCB”。它包括第二管道系统和热交换器。所述热交换器包括入口和出口。所述第二管道系统也被分为冷部和热部。所述冷部将冷却塔的冷流体出口与热交换器的入口连接。所述热部将冷却塔热流体入口与热交换器的出口连接。在它的热部,第二管道系统通过与冷却塔连接的第一管道系统的一段部分地实现。这部分被称作“第一共用管道段”。在它的冷部,第二管道系统也通过与冷却塔连接的第一管道系统的一段部分地实现。这部分被称作“第二共用管道系统”。
PCB使用第一冷却流体来冷却热交换器。仅在第一泵的操作期间,第一冷却流体从冷却塔通过第二管道系统、对其进行加热的热交换器以及第二管道系统的热部流回到冷却塔。
有时,第二冷却回路装配有位于其冷部但是不在第二共用管道段的小型增压泵。该增压泵在第一流体流从第二共用管道段分支后为第一流体流增压。如果使用板式热交换器,则增压器是必要的。在操作中,如果PCB上降低的压力大于PAB上降低的压力,则增压泵增加板式热交换器中的压力。这确保了流过板式热交换器的第一冷却流体的高流速,继而避免热交换器受损。增压泵的操作总是与第一泵的操作同步。
第三冷却回路通常被称作“闭式冷却水系统”或组件冷却系统,缩写为“PGB”。它是包括第三管道系统和与待冷却组件热耦连的多个组件冷却器的闭式冷却回路。热交换器也是PGB的一部分。第三管道系统将热交换器与组件冷却器连接。组件冷却器是公知的并且这种组件冷却器的非强制性列表可以包括冷凝泵冷却器、用于HTF系统(包括泵等)的冷却器、ST润滑油冷却器、发电机冷却器、给水泵冷却器、取样冷却器等等。PGB还示出多个用于泵送第二冷却流体(水)的闭式冷却水泵。在PGB中,第二冷却流体在热交换器和组件冷却器之间循环。在热交换器中,第一冷却流体与第二冷却流体热耦连,但是与第二冷却流体在物理上保持分离。热量从第二冷却流体传递到第一冷却流体。
已知的蒸汽发电装置和已知方法的问题在于,在操作中只有通过第一泵的帮助才能实现组件的适当冷却。第一泵是主泵并且这样在不操作主泵的情况下,整个冷却系统都停止运行。这在不具有用于在夜间产生发电的热存储器件的太阳能蒸汽发电装置的情形中尤其不利。一般而言,发电装置在待机模式(例如夜间操作)不传送发电。典型地,太阳能蒸汽发电装置在每天的夜间时段被驱动到待机模式。有时,例如在冬季期间,每天更多次选择待机模式。与它的发电模式操作(发电产生操作)相反,它在待机模式消耗发电,这是由于一些组件必须保持处于操作状态,以在早上快速重启发电模式。此外,尽管太阳辐射不生成用于产生发电的蒸汽,但是产生所谓的“密封蒸汽”。实际上,生成制造过热并且变为密封蒸汽的饱和辅助蒸汽。密封蒸汽与用于生成电的蒸汽分离地供应入涡轮机中。所述密封蒸汽至少部分地被从所述涡轮机导引入冷凝器。因而,为了防止组件和冷凝器因过热而被损坏,在待机模式必须有冷却操作。组件和冷凝器的冷去需要激活主泵。在冷却系统中,主泵是最大的发电消耗者之一并且因此整个发电装置显示出相对地的效率。装置的控制单元使主泵在待机模式保持启动。
发明内容
因此,本发明的目的是提供一种改进的蒸汽发电装置,具体是一种太阳能蒸汽发电装置、改进的控制单元和蒸汽发电装置的冷却系统的可以避免上述问题的改进的操作方法。
本发明的目的通过根据权利要求1所述的蒸汽发电装置、根据权利要求11所述的控制单元和根据权利要求12所述的蒸汽发电装置的冷却系统的操作方法来实现。
根据本发明,蒸汽发电装置包括冷却系统,该冷却系统包括第一冷却回路、第二冷却回路和第三冷却回路,其中所述第一冷却回路包括冷凝蒸汽的冷凝器和泵送第一冷却流体通过所述冷凝器以便冷却所述冷凝器的第一泵,所述第三冷却回路是闭环冷却回路,该闭环冷却回路利用第二冷却流体来冷却不同于所述冷凝器的至少一个组件,而且所述第二冷却回路包括使所述第一冷却流体和所述第二冷却流体热耦连的热交换器并且利用在所述热交换器中的所述第一冷却流体冷却所述第二流体,并且所述第二冷却回路包括独立于所述第一泵的操作地泵送所述第一冷却流体通过所述第二冷却回路的第二泵。
因此,根据本发明的蒸汽发电装置的控制单元被设计为在所述装置的发电模式期间控制第一泵的操作,所述第一泵被包括在第一冷却回路中并且被用于泵送第一冷却流体通过所述第一冷却回路的冷凝器,以便冷却所述冷凝器,以及在所述装置的待机模式期间关停所述第一泵,并且在待机模式期间启动所述第二泵,所述第二泵被包括在所述装置的第二冷却回路中并且被用于独立于所述第一泵的操作地泵送第一冷却流体通过所述第二冷却回路,所述第二冷却回路包括将所述第一冷却流体与第三冷却回路的第二冷却流体热耦连的热交换器并且利用所述热交换器中的所述第一冷却流体冷却所述第二流体,所述第三冷却回路是利用所述第二冷却流体来冷却不同于所述冷凝器的至少一个组件的闭环冷却回路。
根据本发明的操作这种蒸汽发电装置的方法包括以下步骤,也就是:在发电模式期间使用所述第一泵;以及在所述第一泵停止工作的待机模式期间使用第二泵泵送所述第一冷却流体通过所述第二冷却回路。
这里,用语“发电模式”应该指蒸汽发电装置的操作模式,在该模式中,能量的主要来源(例如,化石燃料或太阳)导致生成用于驱动涡轮机以便产生电能的蒸汽。有时这也被称作发电产生操作或发电产生模式。在发电模式,第一(主)冷却回路处于操作中并且第一泵被启动,以便将最大的冷却功率传到冷凝器。
用语“待机模式”应该指蒸汽发电装置的操作模式,在该模式中,能量的主要来源不用于导致生成蒸汽但是所述装置的一些组件因各种原因(例如允许发电模式的快速启动)仍需要处于操作中。因而,不是整个装置都不进行操作。只是发电产生设备暂时被关停或中断一段时间。
根据本发明,如果第一泵被关停,所述第二泵执行泵送处于冷却状态的第一流体通过第二冷却回路。但是与第一泵相反,第二泵可以被设计为与第一泵相比消耗少很多的发电,这是因为所述第二冷却回路所需的冷却功率也低于所述第一冷却回路所需的冷却功率。因此,根据本发明的所述蒸汽发电装置(尤其是如果所述冷却系统在根据本发明的上述控制单元的控制下)和蒸汽发电装置的冷却系统的操作方法实现更有效的蒸汽发电装置。
详细地,在所述第二冷却回路中的第一流体流不在依赖处于操作中的第一泵。具体地,当所述蒸汽发电装置的发电模式被关掉时,不在需要使用于以高冷却功率冷却所述冷凝器的所述(主)第一冷却回路处于操作中。通过关掉所述第一泵可以停止由所述第一泵驱动的第一冷却流体的循环,并且因此第一泵的相对高的电能消耗不再发生。
尽管主泵被关掉,但是通过所述第二冷却回路的帮助仍将冷却组件。这对太阳能发电装置尤其有利,所述太阳能发电装置在待机模式不传递发电但是仍需要一些组件在待机模式期间被冷却。通过消耗第二泵相对低的发电来使组件保持冷却具有两个有点。第一,它增加了所述太阳能能量装置的整体效率。第二,即使在关掉主泵的条件下,太阳能能量装置仍可以在早间相对快地启动,这是因为在待机模式期间组件可以在寒冷条件下保持处于操作中。
所述控制单元控制泵的启动或关停状态。具体地,控制单元分辨待机模式和发电模式,以便合适地设置第一泵和第二泵的操作。控制单元还可以控制泵送发电。控制单元还可以与冷却回路中的所有阀门连接并且通过控制阀门的状态设置电机的控制信号调节阀门的状态(打开/关闭/半打开)。所述控制单元还可以从温度或压力传感器接收多个传感器信号,以便适当地调节、同步或去同步泵的操作并且分别地启动一个泵,同时关停另一个泵和/或打开/关闭各个阀门。
本发明的尤其有利的实施例和特征由从属权利要求和以下的说明书给出。具体地,可以根据所述蒸汽发电装置的从属权利要求进一步发展本发明的方法并且在所述设备权利要求的上下文中详尽阐述的优点也适用于方法权利要求。
在下文中,用语“PAB热部”应该指第一冷却回路的热部。它描述在第一泵进行操作的情况下,所述第一冷却回路的相对于第一冷却流体的流动方向位于冷凝器下游的那部分,并且所述PAB热部将冷凝器和冷却塔连接。用语“PAB冷部”应该指第一冷却回路的冷部。它描述所述第一冷却回路的位于冷凝器上游的另一部分。
此外,用语“PCB热部”应该指第二冷却回路的热部。它描述第二和/或第一冷却回路的用于导引在热交换器中被加热的第一流体从热交换器回到冷却塔的那部分。“PCB冷部”应该指第二冷却回路的冷部。它描述第二和/或第一冷却回路的用于将来自冷却塔的第一冷却流体供应到热交换器。
根据本发明的一个方面,所述蒸汽发电装置包括冷却塔,所述冷却塔被包括在所述第一冷却回路和所述第二冷却回路中,并且所述第二冷却回路独立于所述第一冷却回路,所述第一冷却回路的冷部连接到冷却塔。有利地,这使得可以绕过第一冷却回路的冷部并且直接将处于冷状态的第一冷却流体供应到第二冷却回路。因而,实现第二冷却回路的冷部与第一冷却回路的分离。
根据本发明的第一实施例,第二泵被安装在冷却塔的容水部中,例如被安装在所谓的泵机坑中,冷的冷却流体在冷却塔中被冷却后被收集到所述容水部中。如果第二泵被安置在冷却塔内,则可以用这种方式支撑第二泵,即所述第二泵可以被安置在不同的高度,或者换言之,所述第二泵可以沉入流体中。然而,一旦被安装在某一位置,所述第二泵就只能保持处于所选择的位置。
根据本发明的第二实施例,所述第二泵被安装在冷却塔外。如果所述第二泵被安置在冷却塔外,则它可以用作两个目的。在待机模式期间,它用于独立于所述第一泵地在第二冷却回路中泵送第一流体。在发电模式期间,它可以用作第二冷却回路中的增压泵,所述增压泵增加在第二冷却回路中的第一冷却流体的压力,如果在第二冷却回路中使用板式热交换器并且在第二冷却回路中的压降高于在第一回路中的压降,那么用作增压泵是尤其合理的。在此实施例中,本发明的控制单元和额外的增压泵控制器可以在增压泵操作模式期间控制第二泵。在发电模式期间,增压泵将与第一泵的操作同步地执行正常的增压操作。但是在待机模式期间,增压泵将完全独立于在待机模式期间被关停的主泵执行独立的辅助冷却操作。第二泵用于两种不同操作是非常经济和节省成本的。
有利地,在优选实施例中,第二泵被安装在第二冷却回路的冷部中,所述第二冷却回路的冷部在冷却塔中或者优选地在冷却塔外靠近冷却塔。
在本发明的优选实施例中,第一冷却回路包括绕过第一泵的发明。这在第一冷却回路和第二冷却回路具有用于使被加热的第一冷却流体返回冷却塔的共用管道段的情况下尤其有利。在下文中,此发明被称作“旁通阀”。控制单元可以控制该阀门的状态(打开/关闭)。
另一阀门可以被安置在该共用管道段中并且抑制第一冷却流体流回冷却塔。控制单元可以控制所述另一阀门的状态(打开/关闭)。在此情形中,在第二冷却回路和第一冷却回路在热交换器后面(沿第一冷却流体的流动方向)连接的交叉点处,第一流体可以沿相反的方向回到冷却塔,这与第一流体在主泵处于操作中时的情形相同。第一冷却流体将沿第一泵的方向从热交换器流回,在此,第一冷却流体经由所述旁通阀绕过第一泵直接进入冷却塔。从冷凝器开始到回到冷却塔,所述第一冷却流体流过所述第一冷却回路的冷部的多个部分。
作为特别的优点,在返回冷却塔的过程中,第一冷却流体沿相反方法穿过冷凝器,就像如果第一泵处于操作中的那样。在此配置中,不仅组件而且冷凝器也可以被冷却,而不需要启动第一泵。第一冷却流体反向流过冷凝器有利地为发电装置的涡轮机提供更长的寿命,这是因为即使在暂时的发电模式中断期间,涡轮机仍可以保持处于密封蒸汽下,所述密封蒸汽在离开所述涡轮机之后可以部分地被供应到所述冷凝器,同时密封蒸汽的另一部分可以被供应到对其进行冷却的所谓的汽封蒸汽冷凝器中。密封蒸汽的使用对保持涡轮机严密密封是必要的。这防止空气进入涡轮机或冷凝器。
然而,密封蒸汽也必须在冷凝器中被冷却,这是因为否则的话冷凝器会由于过热而被损坏。冷凝器的冷却和继而密封蒸汽的冷却由在通过旁通阀进入冷却塔之前被泵送通过冷凝器的第一冷却流体提供。密封蒸汽的冷却不需要主泵所提供的高冷却功率,所述主泵产生第一冷却流体的高通过量。由用于第一冷却流体的较低通过量的第二泵提供的冷却功率足够适当地冷却冷凝器和组件。但是,由于冷凝器仍处于(被降低的)操作中并且保持排空,因此所述发电装置的发电模式在中断之后可以被更快地启动。
如果第一泵允许第一冷却流体沿与泵送方向相反的方向流动,则在不设置所述旁通阀的情况下也可以实现本发明。如果第一泵不提供此特征,则第一冷却流体可能不循环通过冷凝器。在冷却了热交换器之后,第三流体将立即回到冷却塔,这是因为第三流体仅沿其在正常发电产生操作期间(也就是当第一泵操作时)流动的方向进行流动。
根据本发明的另一方面,以及为了更好地控制第一流体的流动方向,另一阀门被安置在第一冷却回路和第二冷却回路的第一共用管道段中。第一共用管道段被实现在冷却塔和所述冷却系统的一点之间,在该点处,第二冷却回路的热部接合到第一冷却回路的热部和冷却塔。结果,所述另一阀门可以用于阻挡任何流体流过该共用管道段或使得挡任何流体能够流过该共用管道段。控制阀门的所述控制单元可以在发电模式(阀门打开)或待机模式(辅助冷却/阀门关闭)之间决定一种模式作为操作条件。
在另一实施例中,具有另一阀门的旁通管段被安置为并行于第一冷却回路的PAB热部并且将热交换器和冷却塔连接。所述控制单元可以控制所述另一阀门的状态(打开/关闭)。此配置为冷却系统提供更高程度的灵活性。具体地,根据具体情况,此配置使得第二冷却回路的热部完全独立于第一回路的热部操作或者结合第一回路进行操作。
本发明的另一方面涉及第二冷却回路中第一冷却流体的流动的控制。关于此点,如果第二冷却回路在其冷部包括与冷却塔直接连接的第一管道分支和与第一冷却回路的冷部连接的第二管道分支以及用于选择性地控制第二冷却回路的冷部中第一流体流动的多个其他阀门,则是有利的。控制单元可以控制各自阀门的状态(打开/关闭)。
分支和阀门的配置可以激活第一冷却流体从第一冷却回路的冷部流入第二冷却回路的冷部,这在发电模式期间在主泵操作下是受关注的。
分支和阀门的这种配置还允许选择性地启动第一冷却流体从冷却塔到第二冷却回路的直接流入,如果主泵在待机模式期间被关停,那么这种配置是有利的。在待机模式期间,该配置还允许选择第一冷却流体通过热交换器的流动方向。
例如,在待机模式期间,如果热交换器后面的直接进入冷却塔的回流被阻挡,则第一流体可以沿向后方向流过冷凝器并且例如经由旁通阀来绕过第一泵。
在不存在旁通阀并且第一分支包括第二泵的另一例子中,第一冷却流体还可以被导引成经由第二管道分支从第二冷却回路的冷部分流到第一冷却回路的冷部。沿着第一冷却回路,所述第一冷却流体沿其在发电模式期间主泵操作情况下流动的向前方向流过冷凝器。
因而,在上述两个例子中,冷凝器是在仅有第二泵操作的情况下由第一冷却流体来冷却的。第一冷却流体可沿主泵操作情况下的向前方向流过冷凝器,或者沿向后方向流过冷凝器。
在优选实施例中,蒸汽发电装置是包括能量转换回路的太阳能热能量装置,所述能量转换回路包括冷凝器、蒸汽涡轮机和太阳能能量转换器系统,所述太阳能能量转换器系统被设计为使用太阳能能量来生成用于驱动所述蒸汽涡轮机的蒸汽,所述蒸汽涡轮机被安置在所述太阳能能量转换器系统和所述冷凝器之间。关于太阳能发电装置的本发明的应用尤其有利,这是因为这种太阳能能量装置必须每天降档或者甚至每天降档多次。引起需要使所述装置降档的事件可以是例如夜间、沙尘暴或者多云或多雾天气条件或者换言之是一般缺少足够的阳光以处于发电模式的情况。在所述事件期间,所述装置必须在密封蒸汽下保持在待机模式。之后,所述装置必须提升回到发电模式。这时,有利地,在待机操作期间,不再需要操作第一泵来冷却组件。此冷却功能这时通过第二冷却回路的独立操作来实现。与已知的配置相比,由于所实现的能量节省作用是在所述太阳能热电装置的整个寿命期间积累的每日贡献的积累结果,因此本发明提供显著增加的能量效率。
附图说明
根据以下结合附图所作的详细描述,本发明的其它目的和特征将变得明显。然而,需要注意,附图仅是出于图解说明的目的设计的,不应作为限制本发明的限定。
图1示出了处于第一操作模式的蒸汽发电装置的第一实施例;
图2示出了处于第二操作模式的第一实施例;
图3示出了蒸汽发电装置的第二实施例;
图4示出了蒸汽发电装置的第三实施例;
图5示出了蒸汽发电装置的第四实施例;
图6示出了蒸汽发电装置的第五实施例。
附图中,相同的附图标记始终表示相同的对象。图中的对象未必是按比例绘制的。
具体实施方式
图1示意性地描绘了太阳能蒸汽发电装置1。在该太阳能蒸汽发电装置中,在发电模式期间,太阳能能量被转换为电能。
发电装置1包括能量转换回路2,该能量转换回路2包括太阳能能量转换系统3,该太阳能能量转换系统3被设计为在发电模式期间使用太阳能能量来生成蒸汽4A。因此,在太阳能能量转换器系统3中,媒质(通常是水)被加热(未详细示出)。可以通过利用太阳辐射加热该媒质来直接实现该媒质的加热。也可以通过利用太阳辐射加热例如油或任何其它物质的传热流体来间接实现该媒质的加热。其后,存储在热的传热流体中的热能被传递到该媒质。
能量转换回路2进一步包括与转换器系统3连接的蒸汽涡轮机5。涡轮机5被蒸汽4A驱动,以便产生用于电网(未描绘)的电能。转换回路2还包括与涡轮机5连接的冷凝器6,该冷凝器6用于冷却蒸汽4A并生成蒸汽4A的冷凝物4B。此外,转换回路泵7被安装在转换回路2中,以将冷凝物4B泵送回转换系统3。
还描绘了密封的蒸汽发生器8,其用于在不能产生蒸汽4A的发电装置1的待机模式期间产生密封蒸汽9A。密封蒸汽9A在涡轮机5的分离入口处被供应到涡轮机5中。从涡轮机5离开,密封蒸汽9A还被供应到冷凝器6,在该处被冷却并且作为密封蒸汽9A的冷凝物9B离开。密封蒸汽9A的使用使得装置1可以在早间迅速提升回到发电模式并且增加涡轮机的寿命。转换回路泵7还泵送密封蒸汽9A的冷凝器9B。为了清楚起见需要注意,尽管两个不同的附图标记用于蒸汽4A和密封蒸汽9A,但是在两种情形中蒸发的媒质都形成蒸汽4A或9A。在发电模式期间,太阳引起媒质蒸发并且形成蒸汽4A。在待机模式期间,密封蒸汽发生器8作为辅助加热装置替代太阳引起媒质蒸发并且形成密封蒸汽9A。当与密封蒸汽9A进行比较时,通常只有蒸汽4A提供能够用于经由涡轮机5产生电的蒸汽团。
转换回路2的单独的组件3、5、6、7和8通过转换回路管道10连接。不详细描绘用于发电装置1的发电模式的这些和其它组件,因为他们常用于蒸汽发电装置。转换回路2或它的单独的组件3、5、6、7和8的设计可以更加复杂。例如,转换回路2通常包括多于一个涡轮机5。
蒸汽4A和它的冷凝物4B的流动方向由第一(实线)箭头11指示。蒸汽9A和它的冷凝物9B的流动方向由第二(虚线)箭头12指示。
以下讨论作为本发明焦点的发电装置1的冷却系统13。冷却系统13包括:第一冷却回路,缩写是“PAB”101(循环水管道和线渠系统或主冷却回路);第二冷却回路,缩写是“PCB”102(维护水管道和线渠系统);以及第三冷却回路,缩写为“PGB”103(闭式冷却水系统或组件冷却系统)。还描绘了是PAB 101和PCB 102一部分的冷却塔14。冷却塔14冷却第一冷却流体15(水)。第一冷却流体15用于在PAB 101和PCB 102中执行冷却操作。
在发电模式期间,第一冷却流体15从冷却塔14通过PAB 101和PCB 102循环,然后回到冷却塔14。此循环通过PAB 101的两个主泵16的帮助而实现,主泵16常被称作循环水泵并且被安置在靠近冷却塔14的冷水出口17的冷却塔14的泵机坑内。在冷却塔14外,PAB 101包括两个第一单向阀18,以防止第一冷却流体15反向流入第一泵16。
冷凝器6也属于PAB 101。在冷凝器6中,第一冷却流体15和蒸汽4A在发电模式期间热耦连。在待机模式期间,仅密封蒸汽9A与第一冷却流体热耦连。在两种情形中,第一冷却流体15冷却蒸汽4A、9A。
PAB 101还包括PAB管道系统19,该管道系统19根据在发电模式期间第一冷却流体15的热条件而在主题上被分为或命名为PAB冷部20和PAB热部21。PAB冷部20将冷凝器6与冷却塔14的冷水出口17连接,而PAB热部21将冷凝器6与冷却塔14的第一热水入口23A连接。在PAB热部21的末端安装第一流量控制阀22。该第一流量控制阀22在发电模式期间打开。在冷水出口17处,与第一泵16并行地安置旁通阀24。旁通阀24在发电模式期间关闭。第三(粗宽)箭头25指示在发电模式期间通过PAB 101的水15的循环。
PCB 102包括热交换器26,该热交换器26将第一冷却流体15和在PGB 103中循环的第二冷却流体27热耦连。
PGB 103冷却发电装置1中不同于冷凝器6的组件(未描绘)。因此,PGB 103包括PGB管道系统28,该PGB管道系统28将安置在待冷却组件上或待冷却组件中的热交换器和闭式冷却水泵30与热交换器26连接。为简单起见,在图中仅示出一个组件热交换器29。闭式冷却水泵30驱动第二冷却流体27(也可以是水)的流动。第二单向阀31被安置在闭式冷却水泵27的下游。连接到PGB 103的大多数组件不仅在发电模式期间而且在待机模式期间都需要被冷却。这通过下面将详细说明的PCB 102和控制单元48的特定设计来实现。
PCB 102包括PCB管道系统32,该管道系统32根据第一冷却流体15的温度而被命名为PCB冷部33和PCB热部34。在发电模式期间,PCB热部34是借助于将热交换器26与PAB热部21连接的第一管道段35来实现的。此外,PAB热部21的用于引导第一冷却流体15回到第一热水入口23A的部分是PCB热部34的一部分。在发电模式,PCB冷部33是借助与第二管道段36和第三管道段37来实现的。第二管道段36包括第二流量控制阀38,而第三管道段37包括用作截止阀的第三流量控制阀39,其中,阀门38和39在发电模式期间打开。
PCB 102还包括第四管道段40和第五管道段41。
第四管道段40的一端与冷却塔14的第二冷水出口42直接连接。第四管道段40的另一端与第二管道段36接合。第四管道段40包括第四流量控制阀43,该第四流量控制阀43作为进一步的截止阀并且在发电模式期间关闭。
第四管道段40实现将冷却塔14与PCB 102直接连接的第一管道分支。第二管道段36实现将PAB冷部20与第二冷却回路PCB 102连接的第二管道分支。
第五管道段41的一端与第四管道段40连接。第五管道段41的另一端与热交换器26连接。第五管道段41包括第二泵44。第三单向阀45被安置在第二泵44的下游。在第三单向阀45的下游,第五管道段41包括服务冷却水碎屑过滤器(service cooling water debris filter)46。在发电模式期间,第二泵44可以用于增压第一冷却流体15使其流过热交换器26。如果第二泵被启动,则第四管道段40成为PCB冷部的一部分,这是因为冷的第一流体流过第四管道段40进入PCB 102。
为了执行待机模式的目的,当第一泵16被关停时,第一流量控制阀22、第二流量控制阀38和第三流量控制阀39关闭。旁通阀24和第四流量控制阀43被打开。第二泵44被启动并且独立于第一泵16的操作将第一冷却流体15泵送通过PCB 102。这时PCB冷部33是借助于第四管道段40和第五管道段41来实现的。这时,PCB热部34改变其配置并且通过将第一管道段35与冷凝器6连接的PAB热部21的一部分和除了第一泵16之外的PAB冷部20而实现,第一泵16通过旁通阀24而被绕过。在图1中,第四(虚线)箭头47指示被第二泵44驱动通过冷却系统13的第一流体15的流动。这突出了第一冷却流体15沿着与发电模式中的方向相比相反的方向(这里称作“逆向”,即沿相对于第三箭头25的相反方向)流过冷凝器6。在待机模式期间,控制单元48控制第二泵44的操作。控制单元48还用于控制阀门22、24、38、39和43的阀门状态。阀门38和/或39和/或43实现了用于选择性地控制PCB冷部33中第一冷却流体15流动的多个阀门。
如图2所示,旁通阀24处于其关闭状态,第一流量控制阀22打开,则第一冷却流体15将根据第五(虚线)箭头49进行流动。这时,PCB热部21与其发电模式期间相同。第一冷却流体15不流过冷凝器6,但是实现了组件冷却。
图3示出发电装置1的第二实施例。在此实施例中,第二泵44与第三单向阀45一起被从第五管道段41转移到第四管道段40中。省略旁通阀24。在第一泵16不进行操作的情况下,此配置允许两种不同的操作方案。
在第一种方案中,第一流量控制阀22打开,第二流量控制阀38关闭,第三流量控制阀39关闭,第四流量控制阀43打开。这时,第二泵44沿第五箭头49指示的方向泵送第一冷却流体。此操作与图2中描绘的操作相同。第一冷却流体15不流过冷凝器6。但是实现组件的冷却。
在第二种方案中,第二流量控制阀38打开并且冷凝器6被冷却,这是因为第二泵44不仅泵送第一冷却流体15通过热交换器26还通过冷凝器6。在此配置中,冷凝器6中的第一冷却流体15的流动方向与其在发电模式期间的流动方向相同,可以说是沿向前方向。这由第七(虚线)箭头53指示。
图4描绘了第三实施例,其中,省略第一流量控制阀22、旁通阀24、第二管道段36以及第二流量控制阀38、第三管道段37和第三流量控制阀39以及第四管道段40和第四流量控制阀43。仍在PCB 102中的是与第二冷水出口42直接连接的第五管道段41。与较早讨论的实施例相反,这时第二泵44被安置在冷却塔14的泵机坑中并且形成第五管道段41进入点。在此配置中,仅可以实现组件的冷却。第二泵44如第五箭头49指示地泵送第一冷却流体15通过PCB 102。
图5示出第四实施例。与第三实施例相反,这时旁通阀24和第一流量控制阀22如在图1和图2所示实施例中描绘的那样被安装。在待机模式,第二流量控制阀22关闭,旁通阀24打开。第二泵44从冷却塔14泵送第一冷却流体通过热交换器26并且逆向通过冷凝器6回到冷却塔14中。流动方向由第四箭头47指示。实现组件的冷却以及冷凝器6的冷却。
图6示出了第五实施例。与第四实施例相反,具有第五流量控制阀51的第六管道段50将第一管道段35与冷却塔14的第三热水入口23C连接。在待机模式期间,第一流量控制阀22关闭,第五流量控制阀51打开并且旁通阀24也打开。第二泵44从冷却塔14泵送第一冷却流体15通过热交换器26并且逆向通过冷凝器,然后回到冷却塔14,这由第四箭头47指示。第一冷却流体15的一部分沿第六管道段50前行回到冷却塔14,这由第六(虚线)箭头52指示。如果旁通阀24也关闭,则所有第一冷却流体15都将离开热交换器26并流回冷却塔14中,如第六箭头52所指示的。因而,可以选择性地启动或关停冷凝器6的冷却。
尽管本发明以优选实施例及其变型的形式已被公开,但是应该理解,在不脱离本发明的范围的情况下,可以对实施例进行许多额外的改进和变型。总之,尽管仅使用两个第一泵16和一个第二泵44来说明本发明的各种实施例,但是显然,泵的数量不应受限。根据实际的技术需求可以适当地选择数量。为了简单起见,在图中,仅示出了控制单元48与第二泵44连接。尽管未显现,但是澄清此点,控制单元48也与第一泵16以及阀门22、24、38、39和43连接并且与闭式冷却水泵30连接。如果替代冷却塔在流过式冷却器中使用活水冷却也可以实现本发明。
用语“流量控制阀”应该被理解为规定各自冷却流体的流速的阀门和/或根据情况允许或抑制各自冷却流体的任何流动的阀门。
为清楚起见,应该理解,本申请使用的表示英语不定冠词的用语“一”并不排除多个,并且“包括”并不排除其它步骤或元件。此外,除非另行说明,“单元”、“模块”可以包括多个单元或模块。

Claims (15)

1.一种蒸汽发电装置(1),其包括冷却系统(13),所述冷却系统(13)包括第一冷却回路(101)、第二冷却回路(102)和第三冷却回路(103),其中
· 所述第一冷却回路(101)包括冷凝蒸汽(4A、9A)的冷凝器(6)和泵送第一冷却流体(15)通过所述冷凝器(6)以便冷却所述冷凝器(6)的第一泵(16),
· 所述第三冷却回路(103)是闭环冷却回路,其利用第二冷却流体(27)来冷却不同于所述冷凝器(6)的至少一个组件,而且
· 所述第二冷却回路(102)包括热交换器(26),其热耦连所述第一冷却流体(15)和所述第二冷却流体(27)并且利用所述热交换器中的所述第一冷却流体(15)来冷却所述第二流体(27),并且所述第二冷却回路(102)包括第二泵(44),其独立于所述第一泵(16)的操作将所述第一冷却流体(15)泵送通过所述第二冷却回路(102)。
2.根据权利要求1所述的蒸汽发电装置(1),其中,所述装置(1)包括冷却塔(14),所述冷却塔(14)被包括在所述第一冷却回路(101)和所述第二冷却回路(102)中,并且所述第二冷却回路(102)独立于所述第一冷却回路(101),所述第一冷却回路(101)在其PAB冷部(20)处连接到所述冷却塔(14)。
3.根据权利要求1或2所述的蒸汽发电装置(1),其中,所述第二泵(44)被安装在冷却塔(14)的容水部中。
4.根据权利要求1或2所述的蒸汽发电装置(1),其中,所述第二泵(44)被安装在冷却塔(14)外。
5.根据前述权利要求之一所述的蒸汽发电装置(1),其中,阀门(24)绕过所述第一泵(16)。
6.根据前述权利要求之一所述的蒸汽发电装置(1),其中,另一阀门(22)被安置在所述第一冷却回路(101)和所述第二冷却回路(102)的第一共用管道中。
7.根据前述权利要求之一所述的蒸汽发电装置(1),其中,具有另一阀门(51)的旁通管段(50)被安置为与所述第一冷却回路(101)的PAB热部(21)并行并且将所述热交换器(26)与所述冷却塔(14)连接。
8.根据前述权利要求之一所述的蒸汽发电装置(1),其中,所述第二冷却回路(102)在其PCB冷部(33)中包括第一管道分支(40)和第二管道分支(36),所述第一管道分支(40)直接与所述冷却塔(14)连接,所述第二管道分支(36)与所述第一冷却回路(101)的PAB冷部以及用于选择性控制所述第二冷却回路(102)的所述PCB冷部(33)中的第一冷却流体(15)流动的多个其他阀门(38、39、43)连接。
9.根据前述权利要求之一所述的蒸汽发电装置(1),其中,所述装置(1)是包括能量转换回路(2)的太阳能热电装置,所述能量转换回路(2)包括冷凝器(6)、蒸汽涡轮机(5)和太阳能能量转换器系统(3),所述太阳能能量转换器系统(3)被设计为使用太阳能能量来生成用于驱动所述蒸汽涡轮机(5)的蒸汽(4A),所述蒸汽涡轮机(5)被安置在所述太阳能能量转换器系统(3)和所述冷凝器(6)之间。
10.根据前述权利要求之一所述的蒸汽发电装置(1),其中,所述装置包括控制单元(48),其被设计为
· 在所述装置(1)的发电模式期间控制所述第一泵(16)的操作,以及
· 在所述装置(1)的待机模式期间关停所述第一泵(16)并且在待机模式期间启动所述第二泵(44)。
11.一种蒸汽发电装置(1)的控制单元(48),其中,所述控制单元(48)被设计为
· 在所述装置(1)的发电模式期间控制第一泵(16)的操作,所述第一泵(16)被包括在所述发电装置(1)的第一冷却回路(101)中并且被用于泵送第一冷却流体(15)通过所述第一冷却回路(101)的冷凝器(6),以便冷却所述冷凝器(6),以及
· 在所述装置(1)的待机模式期间关停所述第一泵(16)并且在待机模式期间启动所述第二泵(44),所述第二泵被包括在所述发电装置(1)的第二冷却回路(102)中并且被用于独立于所述第一泵(16)的操作地泵送第一冷却流体(15)通过所述第二冷却回路(102),其中,所述第二冷却回路(102)包括将所述第一冷却流体(15)与第三冷却回路(103)的第二冷却流体(27)热耦连的热交换器(26)并且利用所述热交换器(26)中的所述第一冷却流体(15)来冷却所述第二流体(27),所述第三冷却回路(103)是利用所述第二冷却流体(27)来冷却不同于所述冷凝器(6)的至少一个组件的闭环冷却回路。
12.一种操作蒸汽发电装置(1)的冷却系统(13)的方法,其中,所述冷却系统(13)包括第一冷却回路(101)、第二冷却回路(102)和第三冷却回路(103),所述第一冷却回路(101)包括冷凝蒸汽(4A、9A)的冷凝器(6)和泵送第一冷却流体(15)通过所述冷凝器(6)以便冷却所述冷凝器(6)的第一泵(16),其中,所述第三冷却回路(103)是包括冷却至少一个不同于所述冷凝器(6)的组件的第二冷却流体(27)的闭环冷却回路,并且其中,所述第二冷却回路(102)包括使所述第一冷却流体(15)和所述第二冷却流体(27)热耦连的热交换器(26)并且用所述热交换器(6)中的第一冷却流体(15)来冷却所述第二冷却流体(27),所述方法包括以下步骤,即:
· 在发电模式期间使用所述第一泵(16);以及
· 在所述第一泵(16)停止工作的待机模式期间使用第二泵(44)来泵送所述第一冷却流体(15)通过所述第二冷却回路(102)。
13.根据权利要求12所述的方法,其中,独立于所述第一冷却回路(101),所述第二冷却回路(102)在其PCB冷部(33)处被供应以来自冷却塔(14)的第一冷却流体(15)。
14.根据前述权利要求12至13之一所述的方法,其中,流过所述第二冷却回路(102)的第一冷却流体(15)在所述第二冷却回路(102)的PCB热部(34)处被导引到所述第一冷却回路(101)中,并且
· 被导引成沿着与所述第一泵(16)引起的流动方向相比相反的方向流过所述冷凝器(6),或者
· 被导引成沿着与所述第一泵(16)引起的流动方向相比向前的方向流过所述冷凝器(6)。
15.根据前述权利要求12至14之一所述的方法,其中,另一阀门(51)被打开以使得在所述第二冷却回路(102)中的第一流体(15)绕过所述PAB冷部(20)或者被关闭以抑制所述旁通管段(50)中第一流体(15)的流动。
CN201080028289.8A 2009-06-26 2010-05-26 具有冷却系统的蒸汽发电装置以及其控制单元和操作该冷却系统的方法 Expired - Fee Related CN102803664B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US22066909P 2009-06-26 2009-06-26
US61/220669 2009-06-26
US61/220,669 2009-06-26
PCT/EP2010/057197 WO2010149448A2 (en) 2009-06-26 2010-05-26 Steam power plant with a cooling system

Publications (2)

Publication Number Publication Date
CN102803664A true CN102803664A (zh) 2012-11-28
CN102803664B CN102803664B (zh) 2015-11-25

Family

ID=43386946

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080028289.8A Expired - Fee Related CN102803664B (zh) 2009-06-26 2010-05-26 具有冷却系统的蒸汽发电装置以及其控制单元和操作该冷却系统的方法

Country Status (6)

Country Link
US (1) US8745985B2 (zh)
EP (1) EP2446120A2 (zh)
KR (1) KR101366029B1 (zh)
CN (1) CN102803664B (zh)
AU (1) AU2010264996B2 (zh)
WO (1) WO2010149448A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107035438A (zh) * 2017-06-22 2017-08-11 哈尔滨广瀚新能动力有限公司 一种采用引射器的有机朗肯循环汽轮发电机组冷却系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015112560A1 (en) 2014-01-21 2015-07-30 Drexel University Systems and methods of using phase change material in power plants
US10890383B2 (en) 2014-01-21 2021-01-12 Drexel University Systems and methods of using phase change material in power plants
KR101943639B1 (ko) * 2016-06-13 2019-01-30 한국전자통신연구원 단말기의 전력감소를 위한 상황정보 및 사용패턴 분석 기반 대기모드 제어 장치 및 그 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4315404A (en) * 1979-05-25 1982-02-16 Chicago Bridge & Iron Company Cooling system, for power generating plant, using split or partitioned heat exchanger
CN1413287A (zh) * 1999-12-21 2003-04-23 西门子公司 工业设备和用于操纵装置的容器
US7062913B2 (en) * 1999-12-17 2006-06-20 The Ohio State University Heat engine
DE102006028746A1 (de) * 2006-06-20 2007-12-27 Gesellschaft für Motoren und Kraftanlagen mbH Vorrichtung zur Energieumwandlung nach dem organischen Rankine-Kreisprozess-Verfahren sowie System mit derartigen Vorrichtungen
US20090064710A1 (en) * 2007-09-10 2009-03-12 Hoshizaki Denki Kabushiki Kaisha Cooling apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE790512A (fr) * 1971-10-25 1973-02-15 Tyeploelektroprojekt Installation de condensation pour les centrales equipees de turbines a vapeur
BE790513A (fr) * 1971-10-25 1973-02-15 Tyeploelektroprojekt Dispositif de condensation pour des centrales thermiques a turbines a vapeur
US4144723A (en) * 1976-03-15 1979-03-20 General Atomic Company Power plant secondary coolant circuit
US4212168A (en) * 1978-09-15 1980-07-15 Chicago Bridge & Iron Company Power producing dry-type cooling system
CN1112505C (zh) 1995-06-01 2003-06-25 特雷克特贝尔Lng北美公司 液化天然气作燃料的混合循环发电装置及液化天然气作燃料的燃气轮机
CA2289546A1 (en) 1997-05-16 1998-11-26 Siemens Aktiengesellschaft Gas-and steam-turbine plant and method of cooling the coolant of the gas turbine of such a plan

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4315404A (en) * 1979-05-25 1982-02-16 Chicago Bridge & Iron Company Cooling system, for power generating plant, using split or partitioned heat exchanger
US7062913B2 (en) * 1999-12-17 2006-06-20 The Ohio State University Heat engine
CN1413287A (zh) * 1999-12-21 2003-04-23 西门子公司 工业设备和用于操纵装置的容器
DE102006028746A1 (de) * 2006-06-20 2007-12-27 Gesellschaft für Motoren und Kraftanlagen mbH Vorrichtung zur Energieumwandlung nach dem organischen Rankine-Kreisprozess-Verfahren sowie System mit derartigen Vorrichtungen
US20090064710A1 (en) * 2007-09-10 2009-03-12 Hoshizaki Denki Kabushiki Kaisha Cooling apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107035438A (zh) * 2017-06-22 2017-08-11 哈尔滨广瀚新能动力有限公司 一种采用引射器的有机朗肯循环汽轮发电机组冷却系统
CN107035438B (zh) * 2017-06-22 2023-05-12 哈尔滨广瀚新能动力有限公司 一种采用引射器的有机朗肯循环汽轮发电机组冷却系统

Also Published As

Publication number Publication date
EP2446120A2 (en) 2012-05-02
WO2010149448A3 (en) 2012-01-05
WO2010149448A2 (en) 2010-12-29
AU2010264996A1 (en) 2011-11-17
US20120111005A1 (en) 2012-05-10
AU2010264996B2 (en) 2013-03-28
KR101366029B1 (ko) 2014-02-21
US8745985B2 (en) 2014-06-10
KR20120048574A (ko) 2012-05-15
CN102803664B (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
US9297367B2 (en) Combined geothermal and solar thermal organic rankine cycle system
US9745964B2 (en) Steam power plant having solar collectors
EP2647841B1 (en) Solar thermal power system
US20080034757A1 (en) Method and system integrating solar heat into a regenerative rankine cycle
KR101660923B1 (ko) 증기 터빈 플랜트
US9512826B2 (en) Power plant and heat supply method
US9879885B2 (en) Cooling water supply system and binary cycle power plant including same
WO2012168251A1 (en) Solar thermal power plant
WO2005119014A1 (en) Remote-heating plant for urban, civil, industrial and agricultural applications
CN103115388B (zh) 热电厂循环水供热系统
CN103884037A (zh) 采暖热网循环水热交换系统
CN102803664A (zh) 具有冷却系统的蒸汽发电装置
CN106196229A (zh) 引风机汽轮机低真空运行循环水采暖供热系统及其节能方法
EP2594764B1 (en) Steam turbine facility, and method for operating the same
CN102933801A (zh) 用于快速连接蒸汽发生器的方法
US20140102099A1 (en) Power generation plant and method of operating a power generation plant
RU151790U1 (ru) Источник электроснабжения на основе гидравлической электрической станции
JP2001055906A (ja) 複合発電方法及びその装置
KR20170134127A (ko) 복수의 팽창기를 구비한 열병합 발전시스템
RU2266414C2 (ru) Теплоэнергетическая установка для утилизации теплоты выхлопных газов газотурбинного двигателя
KR20180017752A (ko) 복수의 팽창기를 구비한 열병합 발전시스템
CN106225039A (zh) 给水泵汽轮机低真空运行循环水采暖供热系统及其节能方法
JP2017155667A (ja) 太陽熱発電システム及び太陽熱発電方法
RU2160873C1 (ru) Регулирующее устройство
CN117888975A (zh) 核能型多能携同联合循环蒸汽动力装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151125

Termination date: 20160526

CF01 Termination of patent right due to non-payment of annual fee