CN102779230A - 一种电力变压器系统状态分析和维修决策判断方法 - Google Patents

一种电力变压器系统状态分析和维修决策判断方法 Download PDF

Info

Publication number
CN102779230A
CN102779230A CN2012101969066A CN201210196906A CN102779230A CN 102779230 A CN102779230 A CN 102779230A CN 2012101969066 A CN2012101969066 A CN 2012101969066A CN 201210196906 A CN201210196906 A CN 201210196906A CN 102779230 A CN102779230 A CN 102779230A
Authority
CN
China
Prior art keywords
monitoring data
power transformer
function
maintenance decision
transformer system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012101969066A
Other languages
English (en)
Other versions
CN102779230B (zh
Inventor
田立斌
王珏
陈婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201210196906.6A priority Critical patent/CN102779230B/zh
Publication of CN102779230A publication Critical patent/CN102779230A/zh
Application granted granted Critical
Publication of CN102779230B publication Critical patent/CN102779230B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种电力变压器系统状态分析和维修决策判断方法,包括以下步骤:S1计算同类变压器历史监测数据Y在正常状态的概率分布函数h0(y)和故障状态下的概率分布函数h1(y);S2获取新监测数据,并根据贝叶斯公式利用新监测数据更新电力变压器系统处于故障状态的后验概率函数P;S3利用贝叶斯控制理论的最优值函数计算报警阈值;S4电力变压器系统投运后,获取新监测数据,通过新监测数据更新后验概率P,根据报警阈值,给出最佳维修决策建议。本发明的方法利用贝叶斯公式动态更新变压器的监测数据,能实时反映变压器状态,充分利用历史数据信息科学计算出报警阈值,最终给出维修决策建议,为生产人员合理安排生产计划提供辅助建议。

Description

一种电力变压器系统状态分析和维修决策判断方法
技术领域
本发明涉及电路变压器的分析维修方法,特别涉及一种电力变压器系统状态分析和维修决策判断方法。
背景技术
随着社会经济的发展,各行各业及居民用户对用电安全提高的要求也越来越高,而电力变压器是电力网络的核心设备,变压器的健康状况对电网安全可靠运行极为关键。通过变压器状态监测数据,分析变压器运行状态并做出维修判断决策,有利于生产人员科学地安排生产计划,减少事故的发生。
变压器在长期运行的过程中,由于电压、热、化学、机械振动以及其他因素的影响,出现绝缘老化、材质劣化的现象,以及外部的破坏和影响等,难免引发变压器故障事故。通过分析其监测数据的变化能判断变压器运行状态,目前,电力部门主要应用传统方法以及一些智能方法进行分析判断。
传统分析方法包括IEC三比值法、大卫三角形法等,智能方法常见的有人工神经网络、专家系统等。传统方法虽然仍然是电力行业普遍使用的状态分析方法,但其不足之处日益凸显。传统方法往往直接使用原始数据进行故障判断,未充分考虑数据中的不确定性,只根据单次测量值或近期数据进行判断分析,参数和阈值的选取依赖专家经验。人工神经网络方法具有很强的自学习能力,理论上能实现对任意复杂非线性函数的逼近。然而其训练过程通常需要大量历史数据,可生产实际中的故障数据往往占少数,再加之神经网络的结构和参数往往缺乏实际的物理意义,不利于调试和改进。专家系统是另一种常用的人工智能方法,它通过将专业知识和逻辑推理相结合来模拟领域专家解决复杂问题。但是专家系统的建立需要大量的实际经验,而且很难超越这些经验而直接从历史数据中发掘出规律。此外,专家系统内规则的数量随变量数成指数增长,当变量数较多时可能出现“组合爆炸”效应,需要庞大的计算量。
此外,变压器在运行过程中,除了老化因素外,环境的突变或负载的变化引起变压器监测数据的起伏,而外界情况趋于缓和时,监测数据可能又会趋于正常。若在不充分考虑变压器历史近期数据的情况下,仅仅根据当前数据进行分析判断,容易导致误判。此外,在以上传统方法和智能方法中,很少有决策能力,即只告诉生产人员出了什么问题,不能告诉生产人员该怎么做。
作为电力系统重要设备的主变压器主体复杂,运行环境多变万化,因此在可靠性和安全性上往往也有更高的标准,因此需要专门研究和开发针对主变压器的状态分析及决策判断算法。
发明内容
本发明的目的在于克服现有技术的上述缺点与不足,提供一种电力变压器系统状态分析和维修决策判断方法,实现历史数据和专家经验的有效结合,并结合部分观测的马尔科夫模型解决不完全信息下复杂系统的顺序决策问题,利用变压器监测数据进行故障检测并能做出维修决策建议,有利于维护人员科学地安排变压器维修计划,减少事故发生、节约维修成本。
本发明的目的通过以下技术方案实现:
一种电力变压器系统状态分析和维修决策判断方法,包括以下步骤:
S1计算同类变压器历史监测数据Y在正常状态的概率分布函数h0(y)和故障状态下的概率分布函数h1(y);
S2根据贝叶斯公式计算电力变压器系统处于故障状态的后验概率函数P;
S3利用贝叶斯控制理论的最优值函数计算报警阈值;
S4电力变压器系统投运后,获取新监测数据,通过新监测数据更新后验概率P,根据报警阈值,给出最佳维修决策建议。
步骤S1所述故障状态下的概率分布函数h1(y),包括过热条件下Y的分布函数h1o(y),放电条件下Y的分布函数h1d(y)。
步骤S2所述电力变压器系统处于故障状态的后验概率函数P,具体形式如下:
P mh = 1 - e - θh ( 1 - P ( m - 1 ) h ) 1 - e - θh ( 1 - P ( m - 1 ) h ) ( 1 - e ( n d 1 2 + z m ) / 2 ) , 对m=1,2,...,(1)
其中,h为监测数据采样间隔,m为截止到t时刻的采样总次数;
用于将多维变量yj转换为一维变量Z;
d 1 = [ ( μ 1 - μ 0 ) T Σ - 1 ( μ 1 - μ 0 ) ] 1 / 2 为马氏距离;
μ0和μ1分别为正常状态下和故障状态下监测数据变量的均值。
步骤S3所述利用贝叶斯控制理论的最优值函数计算报警阈值,具体为:
贝叶斯控制理论的最优值函数具有以下形式:
V m + 1 ( P ) = max { - A - RP , λh - ( b + cn ) - M ( h - ( 1 - P ) ( 1 - e - θh ) / θ )
+ ∫ - ∞ ∞ V m ( P h ( z , P ) ) h ( z | P ) dz } - - - ( 2 )
其中A表示系统停止和报警的成本,R表示维修更换的成本;λ表示单位运行时间的奖励,(b+cn)表示采样成本,M为故障状态下单位时间运行的损失,θ为系统的历史故障率;h(z|P)=h1(z)(1-e-θh(1-P))+h0(z)e-θh(1-P)表示一个无条件概率分布函数;报警阈值的计算是在设备投运前进行,获得报警阈值后保持不变,若有需要可若干时间后再进行一次调整。
对式(2)进行迭代,具体过程如下:
(1)选取函数初值V0(P)=-A-RP0和误差允许范围ε;P0由用户根据需要在[0,1]范围中取值;
(2)对于P∈[0,1]将区间[0,1]分为N等份,每次取一个值代入式(2)计算;
(3)如果max{|Vm(P)-Vm-1(P)|}>>ε,则m=m+1,返回步骤(2),否则进入步骤(4);
(4)结束,迭代结果为P*,满足P*=min{P:VC(P)=VS(P)}。
步骤S4所述通过新监测数据更新后验概率P,根据报警阈值,给出最佳维修决策建议,具体为:
将新监测到的数据代入下式中
P = P ( m + 1 ) h = 1 - e - θh ( 1 - P mh ) 1 - e - θh ( 1 - P mh ) ( 1 - e ( n d 1 2 + z ) / 2 ) - - - ( 3 )
其中P=P(m+1)h指获得新监测数据计算得到的后验概率,Pmh为上一次监测数据获得的后验概率。
若此时P<P*,则该设备可以继续运行;若P>P*,则最优决策为停止运行,发出警报。
与现有技术相比,本发明具有以下优点和有益效果:
1、本发明根据贝叶斯控制理论,用提取出的信息来更新先验知识,以先验概率的形式表示,最终结果通过后验概率向量的形式输出,向量内的每个元素分别对应系统处于各种不同故障模式的概率,从而实现故障的初步检测和分类。
2、由于贝叶斯方法的主要优点在于其对油中气体的变化趋势较为敏感,因而能够在早期发现一些细微的变化,只要油中气体的含量发生了异常的增加,贝叶斯算法都能及时地发现这一趋势,而不论其正常运行的基准值是多少,因此本发明的方法具有很高的灵敏度。
3、本发明通过最优值函数的迭代获取最优后验概率,选取合适的报警阈值,从而获得报警决策建议,为生产人员安排生产提供科学的维修建议,达到减少事故的发生、节约维修成本的目的。
附图说明
图1为本发明的电力变压器系统状态分析和维修决策判断方法的流程图。
具体实施方式
下面结合实施例及附图,对本发明作进一步地详细说明,但本发明的实施方式不限于此。
实施例
如图1所示,本发明一种电力变压器系统状态分析和维修决策判断方法,包括以下步骤:
S1计算同类变压器历史监测数据Y在正常状态的概率分布函数h0(y)和故障状态下的概率分布函数h1(y);所述故障状态下的概率分布函数h1(y),包括过热条件下Y的分布函数h1o(y),放电条件下Y的分布函数h1d(y)。
S2根据贝叶斯公式计算电力变压器系统处于故障状态的后验概率函数P;
所述电力变压器系统处于故障状态的后验概率函数P,具体形式如下:
P mh = 1 - e - &theta;h ( 1 - P ( m - 1 ) h ) 1 - e - &theta;h ( 1 - P ( m - 1 ) h ) ( 1 - e ( n d 1 2 + z m ) / 2 ) , 对m=1,2,...,(1)
其中,h为监测数据采样间隔,m为截止到t时刻的采样总次数;
Figure BDA00001765456100042
用于将多维变量yj转换为一维变量Z;
d 1 = [ ( &mu; 1 - &mu; 0 ) T &Sigma; - 1 ( &mu; 1 - &mu; 0 ) ] 1 / 2 为马氏距离;
μ0和μ1分别为正常状态下和故障状态下监测数据变量的均值。
S3利用贝叶斯控制理论的最优值函数计算报警阈值,具体为:
贝叶斯控制理论的最优值函数具有以下形式:
V m + 1 ( P ) = max { - A - RP , &lambda;h - ( b + cn ) - M ( h - ( 1 - P ) ( 1 - e - &theta;h ) / &theta; )
+ &Integral; - &infin; &infin; V m ( P h ( z , P ) ) h ( z | P ) dz } - - - ( 2 )
其中A表示系统停止和报警的成本,R表示维修更换的成本;λ表示单位运行时间的奖励,(b+cn)表示采样成本,M为故障状态下单位时间运行的损失,θ为系统的历史故障率;h(z|P)=h1(z)(1-e-θh(1-P))+h0(z)e-θh(1-P)表示一个无条件概率分布函数;报警阈值的计算是在设备投运前进行,获得报警阈值后保持不变,若有需要可若干时间后再进行一次调整。
对式(3)进行迭代,具体过程如下:
(1)选取函数初值V0(P)=-A-RP0和误差允许范围ε;P0由用户根据需要在[0,1]范围中取值;
(2)对于P∈[0,1]将区间[0,1]分为N等份,每次取一个值代入式(2)计算;
(3)如果max{|Vm(P)-Vm-1(P)|}>>ε,则m=m+1,返回步骤(2),否则进入步骤(4);
(4)结束,迭代结果为P*,满足P*=min{P:VC(P)=VS(P)}。
S4电力变压器系统投运后,获取新监测数据,通过新监测数据更新后验概率P,根据报警阈值,给出最佳维修决策建议,具体为:
将新监测到的数据代入下式中
P = P ( m + 1 ) h = 1 - e - &theta;h ( 1 - P mh ) 1 - e - &theta;h ( 1 - P mh ) ( 1 - e ( n d 1 2 + z ) / 2 ) - - - ( 3 )
其中P=P(m+1)h指获得新监测数据计算得到的后验概率P,Pmh为上一次监测数据获得的后验概率。
若此时P<P*,则该设备可以继续运行;若P>P*,则最优决策为停止运行,发出警报。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (5)

1.一种电力变压器系统状态分析和维修决策判断方法,其特征在于,包括以下步骤:
S1计算同类变压器历史监测数据Y在正常状态的概率分布函数h0(y)和故障状态下的概率分布函数h1(y);
S2根据贝叶斯公式计算电力变压器系统处于故障状态的后验概率函数P;
S3利用贝叶斯控制理论的最优值函数计算报警阈值;
S4电力变压器系统投运后,获取新监测数据,通过新监测数据更新后验概率P,根据报警阈值,给出最佳维修决策建议。
2.根据权利要求1所述的电力变压器系统状态分析和维修决策判断方法,其特征在于,步骤S1所述故障状态下的概率分布函数h1(y),包括过热条件下Y的分布函数h1o(y),放电条件下Y的分布函数h1d(y)。
3.根据权利要求2所述的电力变压器系统状态分析和维修决策判断方法,其特征在于,步骤S2所述电力变压器系统处于故障状态的后验概率函数P,具体形式如下:
P mh = 1 - e - &theta;h ( 1 - P ( m - 1 ) h ) 1 - e - &theta;h ( 1 - P ( m - 1 ) h ) ( 1 - e ( n d 1 2 + z m ) / 2 ) , 对m=1,2,...,(1)
其中,h为监测数据采样间隔,m为截止到t时刻的采样总次数;
Figure FDA00001765456000012
用于将多维变量yj转换为一维变量Z;
d1=[(μ10)T-110)]1/2为马氏距离;
μ0和μ1分别为正常状态下和故障状态下监测数据变量的均值。
4.根据权利要求1所述的电力变压器系统状态分析和维修决策判断方法,其特征在于,步骤S3所述利用贝叶斯控制理论的最优值函数计算报警阈值,具体为:
贝叶斯控制理论的最优值函数具有以下形式:
V m + 1 ( P ) = max { - A - RP , &lambda;h - ( b + cn ) - M ( h - ( 1 - P ) ( 1 - e - &theta;h ) / &theta; )
+ &Integral; - &infin; &infin; V m ( P h ( z , P ) ) h ( z | P ) dz } - - - ( 2 )
其中A表示系统停止和报警的成本,R表示维修更换的成本;λ表示单位运行时间的奖励,(b+cn)表示采样成本,M为故障状态下单位时间运行的损失,θ为系统的历史故障率;h(z|P)=h1(z)(1-e-θh(1-P))+h0(z)e-θh(1-P)表示一个无条件概率分布函数;
对式(2)进行迭代,具体过程如下:
(1)选取函数初值V0(P)=-A-RP0和误差允许范围ε;P0由用户根据需要在[0,1]范围中取值;
(2)对于P∈[0,1]将区间[0,1]分为N等份,每次取一个值代入式(2)计算;
(3)如果max{|Vm(P)-Vm-1(P)|}>>ε,则m=m+1,返回步骤(2),否则进入步骤(4);
(4)结束,迭代结果为P*,满足P*=min{P:VC(P)=VS(P)}。
5.根据权利要求4所述的电力变压器系统状态分析和维修决策判断方法,其特征在于,步骤S4所述通过新监测数据更新后验概率,根据报警阈值,给出最佳维修决策建议,具体为:
将新监测到的数据代入下式中
P = P ( m + 1 ) h = 1 - e - &theta;h ( 1 - P mh ) 1 - e - &theta;h ( 1 - P mh ) ( 1 - e ( n d 1 2 + z ) / 2 ) - - - ( 3 )
其中P=P(m+1)h指获得新监测数据计算得到的后验概率P,Pmh为上一次监测数据获得的后验概率;
若此时P<P*,则该设备继续运行;若P>P*,则最优决策为停止运行,发出警报。
CN201210196906.6A 2012-06-14 2012-06-14 一种电力变压器系统状态分析和维修决策判断方法 Expired - Fee Related CN102779230B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210196906.6A CN102779230B (zh) 2012-06-14 2012-06-14 一种电力变压器系统状态分析和维修决策判断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210196906.6A CN102779230B (zh) 2012-06-14 2012-06-14 一种电力变压器系统状态分析和维修决策判断方法

Publications (2)

Publication Number Publication Date
CN102779230A true CN102779230A (zh) 2012-11-14
CN102779230B CN102779230B (zh) 2015-01-28

Family

ID=47124140

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210196906.6A Expired - Fee Related CN102779230B (zh) 2012-06-14 2012-06-14 一种电力变压器系统状态分析和维修决策判断方法

Country Status (1)

Country Link
CN (1) CN102779230B (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103048573A (zh) * 2012-12-31 2013-04-17 重庆市电力公司 一种用于电力系统运行风险评估的方法及装置
CN103245861A (zh) * 2013-05-03 2013-08-14 云南电力试验研究院(集团)有限公司电力研究院 一种基于贝叶斯网络的变压器故障诊断方法
CN103678936A (zh) * 2013-12-26 2014-03-26 清华大学 一种多部件工程系统中异常部件定位方法
CN104007343A (zh) * 2014-05-23 2014-08-27 清华大学 一种基于贝叶斯网络的变压器动态综合故障诊断方法
CN104392172A (zh) * 2014-10-30 2015-03-04 北京科技大学 一种基于嵌入式的工业系统的安全检测方法及系统
CN104656053A (zh) * 2015-03-02 2015-05-27 国网重庆市电力公司电力科学研究院 电能计量装置状态估计方法及系统
CN105242129A (zh) * 2015-08-28 2016-01-13 广西电网有限责任公司电力科学研究院 一种变压器绕组故障概率确定方法
CN105372528A (zh) * 2015-11-24 2016-03-02 湖南大学 一种电力变压器内部故障的状态检修方法
CN105452972A (zh) * 2013-08-05 2016-03-30 Abb技术有限公司 用于分布式传动系的状况监测的方法
CN106373028A (zh) * 2016-08-29 2017-02-01 孟玲 一种电力维修系统
CN107368673A (zh) * 2017-06-16 2017-11-21 中国南方电网有限责任公司超高压输电公司检修试验中心 基于数据挖掘的电力变压器家族性缺陷辨识方法
CN108844612A (zh) * 2018-08-27 2018-11-20 重庆大学 一种基于数理统计概率模型的变压器内部故障识别方法
CN109446393A (zh) * 2018-09-12 2019-03-08 北京邮电大学 一种网络社区话题分类方法及装置
CN110346666A (zh) * 2019-07-15 2019-10-18 南京邮电大学盐城大数据研究院有限公司 一种基于加权马氏距离判别的电网变压器状态分析方法
CN110514239A (zh) * 2019-08-06 2019-11-29 国网江苏省电力有限公司电力科学研究院 一种油浸式变压器火灾早期预警装置
CN111272222A (zh) * 2020-02-28 2020-06-12 西南交通大学 一种基于特征量集的变压器故障诊断方法
WO2022028789A1 (de) * 2020-08-04 2022-02-10 Maschinenfabrik Reinhausen Gmbh Vorrichtung zur ermittlung eines fehlerwahrscheinlichkeitswerts für eine transformatorkomponente sowie ein system mit einer derartigen vorrichtung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003242277A (ja) * 2002-02-21 2003-08-29 Nec Corp 保守管理統合システム及びそれに用いる保守管理方法
CN102411106A (zh) * 2011-11-18 2012-04-11 广东电网公司广州供电局 电力变压器故障监测方法及装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003242277A (ja) * 2002-02-21 2003-08-29 Nec Corp 保守管理統合システム及びそれに用いる保守管理方法
CN102411106A (zh) * 2011-11-18 2012-04-11 广东电网公司广州供电局 电力变压器故障监测方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANDREW K.S. JARDINE等: "A review on machinery diagnostics and prognostics implementing condition-based maintenance", 《MECHANICAL SYSTEMS AND SIGNAL PROCESSING》, no. 20, 3 November 2005 (2005-11-03), pages 1483 - 1510 *
VILIAM MAKIS: "Multivariate Bayesian Control Chart", 《OPERATIONS RESEARCH》, vol. 56, no. 2, 30 April 2008 (2008-04-30) *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103048573A (zh) * 2012-12-31 2013-04-17 重庆市电力公司 一种用于电力系统运行风险评估的方法及装置
CN103245861A (zh) * 2013-05-03 2013-08-14 云南电力试验研究院(集团)有限公司电力研究院 一种基于贝叶斯网络的变压器故障诊断方法
CN103245861B (zh) * 2013-05-03 2016-06-08 云南电力试验研究院(集团)有限公司电力研究院 一种基于贝叶斯网络的变压器故障诊断方法
CN105452972B (zh) * 2013-08-05 2018-01-02 Abb瑞士股份有限公司 用于分布式传动系的状况监测的方法
CN105452972A (zh) * 2013-08-05 2016-03-30 Abb技术有限公司 用于分布式传动系的状况监测的方法
CN103678936A (zh) * 2013-12-26 2014-03-26 清华大学 一种多部件工程系统中异常部件定位方法
CN103678936B (zh) * 2013-12-26 2017-09-22 清华大学 一种多部件工程系统中异常部件定位方法
CN104007343A (zh) * 2014-05-23 2014-08-27 清华大学 一种基于贝叶斯网络的变压器动态综合故障诊断方法
CN104392172B (zh) * 2014-10-30 2017-07-04 北京科技大学 一种基于嵌入式的工业系统的安全检测方法及系统
CN104392172A (zh) * 2014-10-30 2015-03-04 北京科技大学 一种基于嵌入式的工业系统的安全检测方法及系统
CN104656053A (zh) * 2015-03-02 2015-05-27 国网重庆市电力公司电力科学研究院 电能计量装置状态估计方法及系统
CN105242129A (zh) * 2015-08-28 2016-01-13 广西电网有限责任公司电力科学研究院 一种变压器绕组故障概率确定方法
CN105242129B (zh) * 2015-08-28 2018-03-13 广西电网有限责任公司电力科学研究院 一种变压器绕组故障概率确定方法
CN105372528A (zh) * 2015-11-24 2016-03-02 湖南大学 一种电力变压器内部故障的状态检修方法
CN105372528B (zh) * 2015-11-24 2018-10-09 湖南大学 一种电力变压器内部故障的状态检修方法
CN106373028A (zh) * 2016-08-29 2017-02-01 孟玲 一种电力维修系统
CN106373028B (zh) * 2016-08-29 2021-02-19 杭州勤兴电控设备有限责任公司 一种电力维修系统
CN107368673B (zh) * 2017-06-16 2020-08-11 中国南方电网有限责任公司超高压输电公司检修试验中心 基于数据挖掘的电力变压器家族性缺陷辨识方法
CN107368673A (zh) * 2017-06-16 2017-11-21 中国南方电网有限责任公司超高压输电公司检修试验中心 基于数据挖掘的电力变压器家族性缺陷辨识方法
CN108844612A (zh) * 2018-08-27 2018-11-20 重庆大学 一种基于数理统计概率模型的变压器内部故障识别方法
CN109446393A (zh) * 2018-09-12 2019-03-08 北京邮电大学 一种网络社区话题分类方法及装置
CN109446393B (zh) * 2018-09-12 2020-06-30 北京邮电大学 一种网络社区话题分类方法及装置
CN110346666A (zh) * 2019-07-15 2019-10-18 南京邮电大学盐城大数据研究院有限公司 一种基于加权马氏距离判别的电网变压器状态分析方法
CN110514239A (zh) * 2019-08-06 2019-11-29 国网江苏省电力有限公司电力科学研究院 一种油浸式变压器火灾早期预警装置
CN111272222A (zh) * 2020-02-28 2020-06-12 西南交通大学 一种基于特征量集的变压器故障诊断方法
WO2022028789A1 (de) * 2020-08-04 2022-02-10 Maschinenfabrik Reinhausen Gmbh Vorrichtung zur ermittlung eines fehlerwahrscheinlichkeitswerts für eine transformatorkomponente sowie ein system mit einer derartigen vorrichtung

Also Published As

Publication number Publication date
CN102779230B (zh) 2015-01-28

Similar Documents

Publication Publication Date Title
CN102779230B (zh) 一种电力变压器系统状态分析和维修决策判断方法
CN102411106B (zh) 电力变压器故障监测方法及装置
CN109102189A (zh) 一种电气设备健康管理系统和方法
CN103793853A (zh) 基于双向贝叶斯网络的架空输电线路运行状态评估方法
CN102866313A (zh) 电力隧道电缆运行状态综合监控方法
CN104700321A (zh) 一种输变电设备状态运行趋势分析方法
CN104504607A (zh) 一种基于模糊聚类算法的光伏电站故障诊断方法
CN105184521A (zh) 一种计及设备健康状态的电网运行方式的风险评估方法、装置及系统
CN104237777A (zh) 基于核主元分析的支持向量机高压断路器故障诊断方法
CN107807860B (zh) 一种基于矩阵分解的电力故障分析方法及系统
CN110287543B (zh) 一种继电保护装置寿命预测方法
CN106407589A (zh) 一种风机状态评估与预测方法及系统
CN103698698A (zh) 一种基于模糊理论的高压断路器电寿命诊断方法
CN116308304B (zh) 基于元学习概念漂移检测的新能源智慧运维方法及系统
JP7257455B2 (ja) コントローラの意思決定論理の性能を監視するための方法および監視システム
CN110334948A (zh) 基于特征量预测的电力设备局部放电严重程度评估方法及系统
CN105354768A (zh) 输变电设备状态的评估方法和系统
CN118013470B (zh) 智慧环境环保监测数据综合录入分析方法及系统
CN116683648A (zh) 一种智能型配电柜及其控制系统
CN113763667A (zh) 一种基于5g边缘计算的火灾预警及状态监测装置及方法
CN110334865A (zh) 一种基于卷积神经网络的电力设备故障率预测方法及系统
CN104991549A (zh) 基于fta与多层次模糊神经子网络的轨道电路红光带故障诊断方法
CN111143835B (zh) 基于机器学习的电力计量系统业务逻辑非侵入式防护方法
CN110472851A (zh) 一种基于神经网络的配电网风险隐患动态评价模型构建方法
CN112801428A (zh) 一种基于概率预警的落雷损失预防控制方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150128

Termination date: 20210614