CN102767208B - 一种轮式装载机侧倾翻预测的方法 - Google Patents

一种轮式装载机侧倾翻预测的方法 Download PDF

Info

Publication number
CN102767208B
CN102767208B CN201210285387.0A CN201210285387A CN102767208B CN 102767208 B CN102767208 B CN 102767208B CN 201210285387 A CN201210285387 A CN 201210285387A CN 102767208 B CN102767208 B CN 102767208B
Authority
CN
China
Prior art keywords
acceleration
vehicle
loader
vector
wheel loader
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210285387.0A
Other languages
English (en)
Other versions
CN102767208A (zh
Inventor
祝青园
陈浩宇
谢文怡
盛世岳
李聪
叶添杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201210285387.0A priority Critical patent/CN102767208B/zh
Publication of CN102767208A publication Critical patent/CN102767208A/zh
Application granted granted Critical
Publication of CN102767208B publication Critical patent/CN102767208B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Operation Control Of Excavators (AREA)

Abstract

一种轮式装载机侧倾翻预测的方法,涉及铰接式车辆倾翻预测方法。提供一种在轮式装载机工作时,能实时监测轮式装载机运动参数及计算倾翻危险指标,达到主动预防倾翻危险的轮式装载机侧倾翻预测的方法。在车体上建立坐标系,利用车辆仪表盘测得车速,结合铰接点夹角计算出车辆离心加速度,由三轴陀螺仪计算出车辆相对中立加速度转角,从而在车辆坐标系中表示出中立加速度,并由离心加速度重力加速度求出和加速度。采集四个轮的支持力,结合车辆动力学方程,由X-Y轴动平衡关系计算出车辆质心坐标以及整车质量。定义质心和车辆倾翻时的转动轴线倾翻面,该转动轴线倾翻面的法向量和和加速度夹角减去90度为稳态余量角,故可作为评判依据。

Description

一种轮式装载机侧倾翻预测的方法
技术领域
本发明涉及铰接式车辆倾翻预测方法,尤其是涉及一种轮式装载机侧倾翻预测的方法。
背景技术
伴随我国经济建设的发展,我国工程车辆发展异常迅速,其中轮式装载机是典型量大、面广的工程车辆,而工程车辆倾翻(包括侧倾翻、前后倾翻)事故比例高、危害大,其中又以轮式装载机尤为突出。对于轮式装载机来讲,在实际应用中常使用翻车保护结构(Roll-OverProtect Structure,ROPS)来抵御倾翻给驾驶员带来的危害。翻车保护结构,是指车辆驾驶室在翻车时受到巨大的冲击载荷,其翻车保护结构应具有足够的侧向刚度来阻止其变形,同时又要能够吸收一定的能量,减小事故给驾驶员带来的危害([1]Kenneth F.Orlowski CrashTests---The influence of Roof Strength on Injury Mechanics,SAE paper 851734)。
但翻车保护结构只是被动防御倾翻带来的危害,并不能从根本上防止倾翻的发生,所以才有了倾翻主动防御的出现。倾翻主动防御是借助于车上的各种传感器、电脑和其他一些电子装置来实现的,通过倾翻主动防御最大限度的避免倾翻的发生。其中应用广泛的有Time ToRoll(以下简称TTR,对倾翻发生时间的预测)预警机制;其原理通常都是通过测量当前各种运动参数,对比倾翻参考模型,预测未来时间段的倾翻危险来达到主动预防倾翻([2]Chen,B.,Peng,H..Rollover Warning For Articulated Vehicles Based on A Time-To-Rollover Metric[C].Proceedings of the 1999ASME International Congress and Exposition,Knoxville,TN,November1999)。该方法能提供提前预警功能并具备一定的精确性。
上述方法存在以下缺点:现有公路车辆倾翻预警算法以及预警参考模型不能应用于轮式装载机,因为当系统工作时,系统的参考模型是假设车辆的结构和质心不变,而实际情况是轮式装载机在工作时结构发生变化,质心变化无规律,使得公路车辆的倾翻预警算法以及预警参考模型应用到轮式装载机上并不适用。
中国专利200710064320.3提供了一种车辆防侧翻惯性测量及控制方法,该方法所采用的装置包括一个微观形测量单元和传统速度仪表,可自主计算车辆防侧翻系数,自动发出提示信息以及执行制动控制指令,但由于公路车辆具有轮式装载机所不具有的悬挂结构,而轮式装载机本身具有摆动式驱动桥这类特殊结构,两者差异明显,并且轮式装载机翻车事故中还有部分是倾翻而不是侧翻,因而上述发明专利并不适用于轮式装载机这类工程车辆。现有技术中存在的技术缺陷,成为本领域技术人员急待解决的一个重要技术问题。
发明内容
本发明的目的是提供一种在轮式装载机工作时,能实时监测轮式装载机运动参数及计算倾翻危险指标,达到主动预防倾翻危险的轮式装载机侧倾翻预测的方法。
本发明的技术方案为:一种轮式装载机倾翻预测方法,所采用的装置包括三轴陀螺仪、胎压传感器、倾角传感器、传统速度仪表、数据采集系统和数据处理器;将三轴陀螺仪固装在轮式装载机前车架与后车架之间的铰接点处,将胎压传感器固装在轮胎气门上,将倾角传感器安装在铰接点处,速度仪表直接采用驾驶室的传统速度仪表,数据采集系统和数据处理器设于轮式装载机的控制电路中;三轴陀螺仪、胎压传感器、倾角传感器和速度仪表分别均与轮式装载机的控制电路电信号连接。
本发明包括以下步骤:
1)静止状态下标定三轴陀螺仪的Z轴零偏,消除陀螺仪零偏重复性误差;
2)由车辆仪表盘输出车辆速度,倾角传感器读出铰接点转角,以计算车辆转弯半径,以及离心加速度大小以及方向,在车辆自身坐标系中用向量表示出该加速度;
3)由三轴陀螺仪输出参数计算原重力方向相对车辆自身的转角,并在车辆坐标系中表示出重力加速度方向;
4)将重力加速度和离心加速度矢量相加,得出加速度向量值;
5)建立车辆动力学方程,通过胎压传感器采集到的数据计算出四个车轮法向作用力,结合步骤4)中的加速度向量值,求出车辆质量大小以及车辆质心坐标值;
6)计算倾翻面法向量值以及倾翻轴线坐标值;
7)由车辆瞬时转向半径和车速计算出未来某时刻后的车辆坐标系相对当前车辆的旋转和平移量,从而计算出未来重力加速度向量值;
8)将步骤7)得到的重力加速度向量值与步骤2)中的离心加速度经矢量合成,求得未来合力矢量值;
9)求出各个面的稳态余量角与安全阈值δ0比较,当稳态余量角δn<5°时即表明存在倾翻危险,应采取相应措施;
10)按设定的时间间隔,重新采集数据,跳转到步骤1)循环开始。
在步骤5)中,质心坐标值的确定由轮式装载机四轮法向力以及通过轮式装载机动力学翻转模型计算得,再通过步骤9)中求出稳态余量角,所述稳态余量角由下述表达式求得,稳态余量角用来反映轮式装载机倾翻的危险状态:
式中,向量为重力和惯性力合力方向,向量为某个倾翻面的法向量,δn为向量的夹角,即为稳态余量角;当δn<5°时,表示装载机即将发生倾翻,系统报警提示。
在步骤10)中,所述设定的时间间隔可为0.1s。
本发明的原理如下:
本发明是在车体上建立坐标系,利用车辆仪表盘测得车速,结合铰接点夹角计算出车辆离心加速度,由三轴陀螺仪计算出车辆相对中立加速度转角,从而在车辆坐标系中表示出中立加速度,并由离心加速度重力加速度求出和加速度。采集四个轮的支持力,结合车辆动力学方程,由X-Y轴动平衡关系计算出车辆质心坐标以及整车质量。定义质心和车辆倾翻时的转动轴线倾翻面,该转动轴线倾翻面的法向量和和加速度夹角减去90度为稳态余量角,故可作为评判依据。
根据TTR基本思想,认为在足够小的时间段内车辆参数不变,根据轮式装载机动态参考模型,计算出未来时刻在车辆坐标系中重力加速度的矢量值。因车辆坐标系随车一起转动,故认为离心加速度不变。从而求得未来时刻和加速度。将失稳面法向量和和加速度向量矢量相乘,利用三角函数关系,求出未来时刻车辆稳态余量角,将该值与阈值比较,即可判断出车辆稳定状态情况。
与现有技术比较,本发明具有如下突出优点:
1、可实时计算车辆质心位置,自动发出提示信息,并可提供未来某时刻的倾翻危险预测,具有一定的时间提前量,从而具备预警功能。
2、可在静止状态快速标定Z轴陀螺仪零偏,消除陀螺仪零偏重复性误差。
3、特别适用于轮式装载机这种质心运动不确定的铰接式工程车辆。
4、可从根本上最大限度地避免倾翻(包括侧倾翻、前后倾翻等各种倾翻形式)事故的发生,安全性显著提高。
总之,本发明可从根本上预防轮式装载机倾翻危险,该预测方法检测率高、误警率低,检测性能可靠性高。此外,该预测方法建模收敛速度快,无须参数调整,而且由于计算量少,工程实现容易,填补了轮式装载机倾翻预警系统的空白。
附图说明
图1为本发明实施例所述轮式装载机在坡面上的转向示意图。
具体实施方式
参见图1,图1中的各标号表示:1.轮式装载机右前轮,2.轮式装载机前车架,3.轮式装载机左前轮,4.三轴坐标系X轴,5.三轴坐标系Y轴,6.三轴坐标系Z轴,7.轮式装载机前车架与后车架之间的铰接点,8.轮式装载机后车架,9.轮式装载机左后轮,10.轮式装载机后车架摆动桥,11.轮式装载机右后轮,12.轮式装载机质心坐标。
为了实现本发明所述的轮式装载机侧倾翻预测的方法,本发明所采用的装置包括MEMS三轴陀螺仪、胎压传感器(4个)、倾角传感器、传统速度仪表、数据采集系统和数据处理器,其中MEMS三轴陀螺仪主要包括微机械敏感元件、驱动元件;提供车体的转角速度和装载机工作过程中的姿态;数据采集和数据处理系统由NI(National Instruments)公司的CompactRIO系统以及LABVIEW程序编程,NI CompactRIO系统是一个开放的嵌入式构架,包括内置嵌入式控制器、实时操作系统、可编程FPGA现场可编程门阵列以及工业Input/Output模块,可以快速实现测量与控制系统的设计、原型和发布。利用NI-9205模拟信号采集模块和NI-9422数字信号采集模块实现动态预测模型中输入参数的实时在线采集,并将研究得到的倾翻动态预测模型植入到FPGA现场可编程门阵列中,当系统判断有倾翻危险时,控制器通过NI-9263模拟量输出模块输出5V电压信号,驱动相应报警装置进行报警。
本发明实施例的具体实施步骤为:
1)首先根据车载传统速度仪表(通过装载机四轮转速计算装载机运行线速度)测得装载机速度v,判断v是否小于微小量ε(ε取传统速度仪表测量噪声值),当v<ε时,标定陀螺仪零偏,对陀螺仪输出数据清零;
2)由角度传感器读出铰接点7转角α,再根据装载机运行线速度v,以计算车辆转弯半径R0,以及铰接点离心加速度大小以及方向;
R 0 = OE ′ = L sin α [ K + ( 1 - K ) cos α ]
K = L 1 L
α = arctan L 2 R 0
以轮式装载机前车架与后车架之间的铰接点7为原点,轮式装载机前车架2对称中心线为X轴,建立三轴坐标系(X轴4,Y轴5,Z轴6),该坐标系建立在前车架上.令装载机前车架2方向为X轴4,在自身坐标系中用向量表示出该加速度;
3)由三轴陀螺仪输出参数计算原重力方向相对车辆自身的转角,并在车辆坐标系中表示出重力加速度
4)将重力加速度和离心加速度矢量相加,得出合加速度向量值
5)建立车辆动力学方程
绕Z轴力矩平衡方程:
绕Y轴平衡方程:
绕X轴力矩平衡方程:
根据4个胎压传感器采集到的数据经过计算得出四个车轮(右前轮1、左前轮3、左后轮9、右后轮11)的法向作用力,结合加速度,求出车辆质量大小以及轮式装载机质心坐标12G(X,Y,Z);
6)由上步骤4)确定的轮式装载机质心坐标12,结合装载机倾翻轴线坐标值(右前轮1和A(xa,ya,za)、左前轮3和B(xb,yb,zb)以及轮式装载机后车架摆动桥10与轮式装载机后车架8连接点E(xe,ye,ze))计算倾翻面法向量值;
前倾翻面:
后倾翻面:
左侧翻面:
右侧翻面:
7)由车辆瞬时转向半径和车速计算出未来某时刻后的车辆坐标系相对当前车辆的旋转和平移量,假设在微小时间内装载机运行状态不变,可计算出未来某时刻(由T表示)后车辆坐标系相对当前坐标系旋转和平移量,则坐标系原点相对于初始时刻转角β
β = v R O · T
则重力实际方向相对坐标系转角为-β,旋转矩阵为T-β
G T → = T - β · G →
计算出未来T时刻重力加速度向量值
8)将未来T时刻重力加速度向量值与第一阶段步骤2)中离心加速度矢量合成,因坐标系随车辆一起运动,离心加速度表示方式不变,求得未来X时刻合力矢量值
F → = G T → + a → .
9)求装载机各个面的稳态余量角δn
与安全阈值δ0比较,若δn>δ0,取δ0为5°,微小时间后刷新数据,重新开始计算,否则输出报警;
10)0.1s后,重新采集数据,跳转到步骤1)循环开始。
上述说明书中所出现的符号分别表示:
δn:稳态余量角;定义为重力和惯性力合力方向与倾翻面的法向量之间的夹角
δ0:安全阈值,通常取5°
A:右前轮坐标
B:左前轮坐标
E:摆动桥与车架连接点
E/:后车轴中心点
重力和惯性力合力矢量
F1:左边车轮所受垂直载荷
F2:右边车轮所受垂直载荷
g:重力加速度
重力加速度向量值
未来T时刻重力加速度向量值
h:重心到侧倾中心的距离
倾翻面法向量
R0:装载机转弯半径
ε:微小量,取速度仪表测量噪声值
v:装载机线速度
vx:整机在X方向速度
vy:整机在Y方向速度
L:前后轴轴距
L1:前轴到铰接点的距离
L2:后轴到铰接点的距离
K:比例系数
Q:轴的长度
α:前车架转弯角
β:坐标系原点相对于初始时刻转角
θ:整机航向角
后车轴延长线与车辆转向中心和铰接店连线所夹的锐角。
a:铰接点离心加速度
铰接点离心加速度矢量
Fy1:前轮在Y方向受的侧向力
Fy2:后轮在Y方向受的侧向力
Izz:整机绕Z轴的转动惯量
Ir:整机绕侧倾轴的转动惯量
T:未来某时刻
T:旋转矩阵
m:整机质量。

Claims (3)

1.一种轮式装载机侧倾翻预测的方法,其特征在于所采用的装置包括三轴陀螺仪、胎压传感器、倾角传感器、传统速度仪表、数据采集系统和数据处理器;将三轴陀螺仪固装在轮式装载机前车架与后车架之间的铰接点处,将胎压传感器固装在轮胎气门上,将倾角传感器安装在铰接点处,速度仪表直接采用驾驶室的传统速度仪表,数据采集系统和数据处理器设于轮式装载机的控制电路中;三轴陀螺仪、胎压传感器、倾角传感器和速度仪表分别均与轮式装载机的控制电路电信号连接,所述预测方法包括以下步骤:
1)静止状态下标定三轴陀螺仪的Z轴零偏,消除陀螺仪零偏重复性误差;
2)由车辆仪表盘输出车辆速度,倾角传感器读出铰接点转角,以计算车辆转向半径,以及离心加速度大小以及方向,在车辆自身坐标系中用向量表示出该加速度;
3)由三轴陀螺仪输出参数计算原重力方向相对车辆自身的转角,并在车辆坐标系中表示出重力加速度方向;
4)将重力加速度和离心加速度矢量相加,得出加速度向量值;
5)建立车辆动力学方程,通过胎压传感器采集到的数据计算出四个车轮法向作用力,结合步骤4)中的加速度向量值,求出车辆质量大小以及车辆质心坐标值;
6)计算倾翻面法向量值以及倾翻轴线坐标值;
7)由车辆瞬时转向半径和车速计算出未来某时刻后的车辆坐标系相对当前车辆的旋转和平移量,从而计算出未来重力加速度向量值;
8)将步骤7)得到的重力加速度向量值与步骤2)中的离心加速度经矢量合成,求得未来合力矢量值;
9)求出各个面的稳态余量角与安全阈值δ0比较,当稳态余量角δn<5°时即表明存在倾翻危险,应采取相应措施;
10)按设定的时间间隔,重新采集数据,跳转到步骤1)循环开始。
2.如权利要求1所述的一种轮式装载机侧倾翻预测的方法,其特征在于所述的步骤5)中,车辆质心坐标值的确定由轮式装载机四轮法向力以及通过轮式装载机动力学翻转模型计算得,再通过步骤9)中求出稳态余量角,所述稳态余量角由下述表达式求得,稳态余量角用来反映轮式装载机倾翻的危险状态:
式中,向量为重力和惯性力合力矢量,向量为某个倾翻面的法向量,δn为向量的夹角,即为稳态余量角;当δn<5°时,表示装载机即将发生倾翻,系统报警提示。
3.如权利要求1所述的一种轮式装载机侧倾翻预测的方法,其特征在于在步骤10)中,所述设定的时间间隔为0.1s。
CN201210285387.0A 2012-08-09 2012-08-09 一种轮式装载机侧倾翻预测的方法 Active CN102767208B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210285387.0A CN102767208B (zh) 2012-08-09 2012-08-09 一种轮式装载机侧倾翻预测的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210285387.0A CN102767208B (zh) 2012-08-09 2012-08-09 一种轮式装载机侧倾翻预测的方法

Publications (2)

Publication Number Publication Date
CN102767208A CN102767208A (zh) 2012-11-07
CN102767208B true CN102767208B (zh) 2014-08-27

Family

ID=47094757

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210285387.0A Active CN102767208B (zh) 2012-08-09 2012-08-09 一种轮式装载机侧倾翻预测的方法

Country Status (1)

Country Link
CN (1) CN102767208B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104021601B (zh) * 2014-05-30 2015-04-29 爱培科科技开发(深圳)有限公司 基于三轴加速度传感器的汽车碰撞检测方法和装置
CN105697158A (zh) * 2014-11-28 2016-06-22 马涅蒂-马瑞利公司 用于确定摩托车的倾翻的方法和控制单元
CN106004829B (zh) * 2016-07-04 2018-10-30 福州大学 装运机械安全智能辅助系统及方法
US11015320B2 (en) * 2016-09-09 2021-05-25 Volvo Construction Equipment Ab Rollover prevention system and method for construction machine
CN108407800B (zh) * 2018-02-06 2019-11-12 淮阴工学院 装载机防倾翻控制系统及控制方法
CN109878579B (zh) * 2019-01-24 2020-07-31 厦门大学 一种基于控制力矩陀螺的铰接车辆主动安全控制系统
CN112373460B (zh) * 2020-11-17 2021-10-26 东风汽车集团有限公司 基于场景变化动态调整阈值的车辆侧翻预警方法及系统
CN113062388A (zh) * 2021-03-21 2021-07-02 浙江大学 一种无人驾驶的绞吸束射式水陆两栖行走清淤装备
CN116976104B (zh) * 2023-07-27 2024-01-30 徐工集团工程机械股份有限公司科技分公司 装载机行驶控制方法、装置及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005271818A (ja) * 2004-03-25 2005-10-06 Mitsubishi Fuso Truck & Bus Corp 車両のロールオーバ抑制制御装置
CN101045449A (zh) * 2007-03-12 2007-10-03 北京航空航天大学 一种车辆防侧翻惯性测量及控制方法
CN201040850Y (zh) * 2007-04-19 2008-03-26 三一重机有限公司 液压挖掘机防倾翻装置
CN102390788A (zh) * 2011-09-14 2012-03-28 长沙中联重工科技发展股份有限公司 防倾翻控制方法、装置与系统及工程机械

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8489287B2 (en) * 2010-12-31 2013-07-16 Automotive Research & Test Center Vehicle roll over prevention safety driving system and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005271818A (ja) * 2004-03-25 2005-10-06 Mitsubishi Fuso Truck & Bus Corp 車両のロールオーバ抑制制御装置
CN101045449A (zh) * 2007-03-12 2007-10-03 北京航空航天大学 一种车辆防侧翻惯性测量及控制方法
CN201040850Y (zh) * 2007-04-19 2008-03-26 三一重机有限公司 液压挖掘机防倾翻装置
CN102390788A (zh) * 2011-09-14 2012-03-28 长沙中联重工科技发展股份有限公司 防倾翻控制方法、装置与系统及工程机械

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
主动防倾翻技术及其在工程车辆上的应用展望;张玉新等;《工程机械》;20110630;第42卷;第56-60页 *
张玉新等.主动防倾翻技术及其在工程车辆上的应用展望.《工程机械》.2011,第42卷第56-60页.

Also Published As

Publication number Publication date
CN102767208A (zh) 2012-11-07

Similar Documents

Publication Publication Date Title
CN102767208B (zh) 一种轮式装载机侧倾翻预测的方法
US8983722B2 (en) System and method for vehicle rollover prediction
CN100450840C (zh) 一种车辆防侧翻惯性测量及控制方法
CN104949746B (zh) 一种车载式非接触车辆荷载质量动态监测装置及检测方法
CN110239462B (zh) 一种车辆侧翻的预警方法及系统
CN108099919A (zh) 车辆防侧翻预警方法、装置、存储介质及车辆
CN107745709A (zh) 车辆防侧翻预警控制方法、系统及硬件在环仿真方法
US7340368B2 (en) Determination of dynamic axle loads and/or wheel loads of a wheel vehicle
CN102782506B (zh) 车辆状态检测装置及车辆状态检测系统
CN104331611B (zh) 强侧向风作用下的公路车辆行驶危险态势预警方法及系统
CN104290755A (zh) 一种汽车行驶状态预警方法
CN106768633A (zh) 一种多轴车辆质量及质心位置动态测量装置及测量方法
CN103625406B (zh) 安全气囊装置以及其控制方法
CN104386065A (zh) 一种汽车侧倾中心位置测量装置及其计算方法
CN104034332A (zh) 一种基于卡尔曼滤波的救援清障车姿态角估计方法
CN203126745U (zh) 基于多信息融合的纯电动汽车侧翻检测与报警装置
CN104573322A (zh) 一种汽车侧倾中心轴位置动态测量装置及其确定方法
CN202661066U (zh) 一种基于加速度计和陀螺仪的汽车姿态预警装置
CN106197416A (zh) 一种多工况汽车侧翻指标计算装置及其计算方法
US8024086B2 (en) Determining a relative movement of a chassis and a body of a wheeled vehicle
CN106482962B (zh) 一种汽车侧翻测试系统及其预警方法
CN109878579B (zh) 一种基于控制力矩陀螺的铰接车辆主动安全控制系统
CN108871648A (zh) 基于轮载式智能传感汽车车轮六分力动态检测方法及系统
CN205898146U (zh) 一种多工况汽车侧翻指标计算装置
CN115406669A (zh) 一种多轴特种车辆侧翻指标优化方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant