CN102761961A - 一种嵌入在蜂窝网络系统的dgnss及nrtk系统 - Google Patents

一种嵌入在蜂窝网络系统的dgnss及nrtk系统 Download PDF

Info

Publication number
CN102761961A
CN102761961A CN2012100631387A CN201210063138A CN102761961A CN 102761961 A CN102761961 A CN 102761961A CN 2012100631387 A CN2012100631387 A CN 2012100631387A CN 201210063138 A CN201210063138 A CN 201210063138A CN 102761961 A CN102761961 A CN 102761961A
Authority
CN
China
Prior art keywords
reference station
data acquisition
module
server
acquisition module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012100631387A
Other languages
English (en)
Other versions
CN102761961B (zh
Inventor
王峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Publication of CN102761961A publication Critical patent/CN102761961A/zh
Application granted granted Critical
Publication of CN102761961B publication Critical patent/CN102761961B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种嵌入在蜂窝网络系统的DGNSS及NRTK系统。通过使用用户平面方法,在移动网络中使用网络实时动态技术(NRTK),他们也为高精度定位提供数据服务。利用移动网络(GSM,CDMA,WCDMA,CDMA2000,UMTS,TD-SCDMA和LTE)的内置硬件资源(包括GNSS接收机和宽带通信网络),本发明的架构是以TCP/IP格式实现DGNSS,WAAS和NRTK服务而并不增加主机移动网络硬件。

Description

一种嵌入在蜂窝网络系统的DGNSS及NRTK系统
技术领域
本发明涉及全球导航卫星系统(GNSS),广域增强系统(WAAS),差分全球导航卫星系统(DGNSS),网络实时动态技术(NRTK),并与GSM,CDMA,CDMA2000,UMTS,WCDMA,TD-SCDMA和提供基于位置服务的LTE移动网络整合,具体涉及一种嵌入在蜂窝网络系统的DGNSS及NRTK系统。
背景技术
网络辅助全球导航卫星系统(A-GNSS)已被应用于改善数十亿移动用户定位的实用性(US 6,625,458, US 7,064,706 B2)。当定位信号较弱或受到建筑和植物的阻挡时,A-GNSS接收机通过一个移动网络获得附加信息来帮助解算用户位置。当定位信号很弱和独立定位接收机不能获得定位的时候,A-GNSS会变得十分有用。当定位信号足够强的时候,能够使用A-GNSS的接收机和独立定位接收机具有相同的精度。当卫星基础增强系统(SBAS)(Pub. No. US 2010/0090888 A1)可用时定位精度可以达到3米,而当SBAS不可用时,精度可达10米。其主要的误差来源是电离层延时估算,卫星轨道误差,卫星时钟偏移误差和对流层延时估算。A-GNSS可以被应用于控制层面或用户层面。
有一种方法能提高定位的精度,就是使用差分定位(DGNSS)方法(美国专利No. 5,621,646)。DGNSS是由一个或多个位于测量点的参考站组成的,多个邻近移动定位用户的参考站和一个位于移动用户和参考站之间的通信网络。位于参考站上的全球定位接收机测量全球定位卫星的伪距并把他们的测量结果和卫星的参考位置广播到移动用户。由于移动用户和参考站的距离很近(通常少于10公里),它们的电离层延迟,卫星轨道误差和时钟偏移误差以及对流层延时都得到强烈的修正。因此可以通过差分全球定位方法把它们抵消绝大部分。目前为止,所有的DGNSS系统都是使用专用参考站和主要专用网络,独立于任何移动网络运行。
另一个可以提高定位精度的系统就是广域增强系统WAAS(US 6,647,340 B1)。它是由美国联邦航空管理局建立并且维护的,用来改进航班的安全性。这个系统的组成包括数十个地面参考站,用于测量GPS卫星伪距和载波相位;一些地面上行站,向两颗地球同步卫星发送和接收信息;三个主站用于计算GPS卫星轨道和时钟误差,还有不同地域的电离层和对流层延时。通过一个专用的网络,把参考站,主站和卫星上行站连接起来。一个兼容WAAS的全球定位接收机除了从WAAS同步卫星上接收卫星轨道和时钟修正外,还包括电离层延时,来获得提高的定位精度。欧洲和日本都有类似的系统。
GNSS的高精度定位可以通过实时动态方法(RTK)实现(US 7,148,843 B2)。RTK从载波相位测量中的整周数模糊解算获得厘米级的精度。和DGNSS类似,RTK系统组成包括一个或多个位于测量点的参考站,这些参考站上的全球定位接收机同时测量伪距和载波相位;多个高精度移动终端,它们能够测量包括伪距和载波相位;和贯通参考站和移动终端的有线或无线网络,用于交换相互信息来为移动终端获得准确定位。网络RTK(NRTK)通过网络和一个或多个RTK服务器把复数参考站连接起来,以覆盖巨大区域。(US 6,507,738 B1)NRTK系统利用各分散参考站的测量结果来计算电离层延时,卫星轨道,卫星时钟偏移和对流层延时的修正。再者,所有RTK系统都是使用专用参考站和主要的专用网络。系统的建造和维护费用高昂。在K. Alanen, L. Wirola, J. Appl and J, Arinne, Mobile RTK, using low-cost GNSS and Internet-enabled wireless phones, Inside GNSS pp. 32-39, May 2006中,提出了一种移动RTK。它使用具备GNSS接收机的手机作为移动终端以及参考站。虽然相对于其它电话它可以提供精确定位,但是它没有能力提供大多数用户想要的绝对位置。最近王峰为移动手机网络的全球定位提出了新的WAAS和RTK系统:(美国临时专利申请“嵌入蜂窝网络内的全球导航卫星系统的广域增强系统”。它利用已安装在许多个基站上实现网络同步的全球定位接收机(美国专利申请,Pub. No. US 2010/0156710 A1),和在移动网络中内置的有线和无线广播来为手机用户提供一种低成本的WAAS和RTK服务。它通过在基站电脑增加一个数据采集模块于基站电脑,在移动终端上添加客户端并在网络上添加服务器,来实现WAAS和RTK服务。
发明内容
本发明是向诸如GSM,CDMA,CDMA2000,UMTS,WCDMA,TD-SCDMA和LTE网络等移动网络的移动用户提供DGNSS,WAAS和NRTK服务的系统。本发明的系统利用位于很多基站中的内置GNSS接收机,基站控制器和位于选定的广播网络控制器,还有移动网络提供的有线和无线通信资源进行同步。本发明为DGNSS,WAAS和NRTK定位服务提供了一种机制,并运行在基于移动基站(MS)和基站辅助两种模式,且不向现有的移动网络添加任何硬件。该系统只需要在移动网络中安装三个软件模块,提供覆盖不同移动网络的基于位置服务(LBS),包括通过移动终端本地请求(MT-LR),移动初始位置请求(MO-LR)和网络发起位置请求(NI-LR)。本发明把系统功能分为三个软件模块并为每个模块定义了功能和输入/输出功能。
本发明的技术方案为:
一种嵌入在蜂窝网络系统的DGNSS及NRTK系统,包括接收机、第一参考站、第二参考站、基站控制器、广播网络控制器、定位服务器、数据采集模块、客户端模块、服务器模块、具有通信模块的移动终端、高精度移动终端;接收机安装在第一参考站上,第一参考站与基站控制器通信连接,第二参考站与广播网络控制器通信连接;数据采集模块安装在第一参考站中的计算机上;客户端模块分别安装在具有通信模块的移动终端、高精度移动终端上;服务器模块安装在定位服务器上;数据采集模块分别与客户端模块、服务器模块通信连接;。
所述的数据采集模块、客户端模块和服务器模块之间的通信连接采用TCP/IP协议。
所述数据采集模块采集的数据为环形缓冲区的测量数据,其数据包括:伪距,多普勒频移和载波相位。
所述数据采集模块采用差分全球导航定位系统定位具有通信模块的移动终端;数据采集模块采用实时动态技术定位高精度移动终端。
所述服务器模块用于计算修正卫星轨道,卫星时钟偏移,时钟频率漂移,电离层时延和对流层时延。
所述服务器模块分别向所述数据采集模块、客户端模块提供卫星轨道,卫星时钟偏差,时钟频率漂移,电离层时延和对流层时延的修正信号。
于所述服务器模块分别将第一参考站去定位请求及高精度移动终端中的客户端模块定位请求发送给数据采集模块。
所述服务器模块用于将服务范围地域分成若干单元,并把一个第一参考站里的数据采集模块和一个单元联合;持续跟踪高精度移动终端的位置,当高精度移动终端跨过卫星轨道,卫星时钟偏差,时钟频率漂移,电离层时延和对流层时延预定义边界或当一段设定的时间过去后,发布新的修正。
所述客户端模块发送差分全球导航定位系统请求至服务器模块;并向数据采集模块提供伪距;并接收数据采集模块修正过时钟的伪距;客户端模块采用差分全球导航定位系统定位高精度移动终端。
所述客户端模块发送解算过的高精度移动终端位置的请求至所述服务器模块或发送实时动态服务请求至服务器模块,从而服务器模块发送伪距和载波相位至客户端模块;
客户端模块采用实时动态方法定位高精度移动终端;
客户端模块接收来自第一参考站的接收机位置。
附图说明
图1为本发明一个简化的蜂窝网络拓扑示意图。
图2为在一个蜂窝网络中的DGNSS架构示意图。
图3为在基于MB操作中使用DGNSS时移动终端位置请求(MT-LR)的呼叫流向示意图。
图4为在辅助MB操作中使用DGNSS时移动终端位置请求(MT-LR)的呼叫流向示意图。
图5为在移动网络中DGNSS服务的网络初始位置请求(NI-LR)。
图6为没有GNSS参考站移动终端的移动原始位置请求(MO-LR)呼叫流向示意图。
图7为在基于MB操作中使用RTK的网络初始位置请求(NI-LR)呼叫流向示意图。
图8为在基于MB操作里使用RTK时移动原始位置请求(MO-LR)的呼叫流向示意图。
具体实施方式
图中各标号的具体意义为:
1——接收机;2——第一参考站;3——第二参考站;4——基站控制器(BSC);5——广播网络控制器(RNC);6——定位服务器;7——数据采集模块;8——客户端模块;9——服务器模块;10——具有通信模块的移动终端;11——高精度移动终端;12——GNSS卫星;13——定位请求移动终端;14——定位请求服务器;15——网关服务器。
附图内容的具体描述
在现代的移动网络中,根据同步需要,可以广泛部署GNSS接收机1。TD-SCDMA,WCDMA(TDD mode),CDMA2000和LTE需要十分严格的同步并且GNSS同步是一个很普遍的选择。因此,虽然不是所有的基站都配备GNSS接收机1,但覆盖大部分地区的移动网络在10km范围内固定位置有安装GNSS接收机1。他们在DGNSS和NRTK系统中作为第一参考站2使用。图1是一个简化的蜂窝网络拓扑。3G和4G网络在第一参考站2、第二参考站3、基站控制器4和广播网络控制器5之间需要严格的同步。大多数的选择是,通过以太网标准,使用GNSS和IEEE 15588V2包。在这两种情况下,GNSS接收机1需要建立在第一参考站2或邻近基站控制器4和广播网络控制器5之上。由于第二参考站3没有配备GNSS接收机1,同步是通过来自IEEE 1588 V2主时钟实现,它通过以太网给位于第二参考站3的从属IEEE V2贡献时间信号。本发明系统分为三个模块,包括利用位于第一参考站2的GNSS接收机1和/或基站控制器4,为移动用户提供DGNSS和NRTK服务的广播网络控制器5。通过三个模块,他们不需要向主机移动网络和功能添加任何硬件:1:GNSS数据采集模块(DASM)7,2:运行在DGNSS-NRTK定位服务器6、DGNSS-NRTK服务器模块(SSM)9,3:DGNSS-NRTK客户端模块(CSM)8;运行在具有通信模块的移动终端10。GNSS DASM 7 是安放在计算机里靠近固定的GNSS接收机1。如果第一参考站2配备了GNSS接收机1,这个模块就在参考站的电脑上运行。如果GNSS接收机1是安装在他们附近的话,模块是安装在BSC或者RNC的电脑里。因此,固定GNSS接收机1分布在一个广阔的地区。对GNSS来说,他们称为参考站。他们的测量数据通过数据采集模块7和服务器模块9可以在移动网络中传输。经过处理后,修正数据可以发送到高精度移动终端11的客户端模块8里,来提供DGNSS和NRTK服务。
1. DGNSS 服务
通过利用来自一个或多个临近第一参考站的修正,差分GNSS可以大大提高定位精度。一个第一参考站可以是一个放在已知测量点的GNSS接收机1,它进行测量和向它的移动用户广播伪距和选择性的载波相位。DGNSS服务获得他们精度的提高的事实基础,是由于独立接收机1的大部分误差是来自电离层时延,卫星轨道和时钟偏移误差还有对流层延时。由于第一参考站2是临近于移动用户,他们的误差绝大部分是常见的类型并且可以消除。第一参考站2上GNSS接收机1的伪距测量的方程式可以表示如下:
其中
Figure 104299DEST_PATH_IMAGE002
,分别表示测量的伪距和第一参考站r和GNSS卫星i之间的几何距离,
Figure 499508DEST_PATH_IMAGE004
是GNSS卫星i的三位坐标,
Figure 2012100631387100002DEST_PATH_IMAGE005
是第一参考站r的三维坐标,c是真空中的光速,
Figure 124000DEST_PATH_IMAGE006
是第一参考站2上GNSS接收机1的时钟偏移,
Figure 2012100631387100002DEST_PATH_IMAGE007
是GNSS卫星i的时钟偏移,
Figure 821829DEST_PATH_IMAGE008
分别是GNSS卫星i到第一参考站的电离层时延和对流层时延,
Figure 2012100631387100002DEST_PATH_IMAGE009
是测量噪声。由于第一参考站的三维坐标已知,测量的伪距和几何距离的区别在于误差修正:
Figure 2012100631387100002DEST_PATH_IMAGE011
这个修正是从每颗GNSS卫星的发送到需要的移动用户之间的伪距。请注意,首先计算第一参考站上的时钟偏移,其值已被应用到在把他们送到移动用户之前的伪距校正。移动用户u还测量与卫GNSS星相同伪距的
Figure 964228DEST_PATH_IMAGE012
。其测量的表达式与在第一参考站上算到的是相同的:
把用户u的修正伪距看作测量的伪距加上修正值:
Figure 225445DEST_PATH_IMAGE014
其中
Figure 2012100631387100002DEST_PATH_IMAGE015
是GNSS卫星i和用户u的几何距离,是用户的时钟偏移,
Figure 2012100631387100002DEST_PATH_IMAGE017
是用户u和第一参考站r之间的GNSS接收机的电离层延迟和对流层延迟的差值。由于第一参考站r和移动用户u之间的距离(全球导航卫星系统的行话称为基线)小(一般小于10公里),电离层延迟和对流层延迟非常接近。省略电离层和对流层延迟的差异,移动用户u的测量方程:
当超过4颗GNSS卫星是可见的,则可以解决上述公式中的4个未知数:三维用户的位置和它的时钟偏移。请注意,当应用差分改正时,并不需要在上面的方程来计算电离层和对流层延迟。在上述公式中,还没有明确检查卫星轨道误差。因为基线距离与全球导航卫星系统的卫星与用户之间的距离相比较小得多的,DGNSS几乎完全消除了这个错误。(参见Understanding  GNSS, Principles and Application, 2nd edition. Elliott D. Kaplan and Christopher J. Hegarty, Artech House, ISBN 1-58053-894-0第8章)。在这种方式DGNSS几乎完全消除了所有主要的电离层延迟误差,卫星轨道误差,卫星时间偏移误差和对流层延迟误差,并获得更高的精度。上面的算法实现在客户端模块的移动终端(基于移动台的操作)和数据采集模块(移动台辅助操作)。
由于校正信号取决于地点和时间,移动终端可以从一个地方移动到另一个地方,或长时间连续使用服务。当本系统检测从一个基站到下一个的切换时,会为用户重新测试最接近的全球导航卫星系统设备基站(参考站),同时从参考站路由修正的数据。它还定期在一个预先确定的时间间隔发送校正,从而得以确保精度。
图2是DGNSS服务在移动网络的最简单的形式,利用内置的第一参考站2上的GNSS接收机 1。具有通信模块的移动终端10打开地图上找到他/她的位置,发送请求给定位服务器8。然后定位服务器8将请求发送到第一参考站2去提供采集辅助(快速锁定卫星信号)和从第一参考站2上的 GNSS接收机1获得的差分修正。然后具有通信模块的移动终端10利用自身的测量以及从第一参考站2的差分改正解算它的位置。当位置通过具有通信模块的移动终端10计算,该方法被称为基于移动站(基于MS)。图2所示为基于移动站(基于MS)操作的移动起源的位置请求(MO-LR)的呼叫流程。
虽然基于MS的操作在导航应用上更高效,但另一个操作称为移动结束的位置请求(MT-LR)对于很多用户也是很重要的。正如图3所示,MT-LR是经常被任意的第三方应用程序发起,如家长想要知道自己的孩子在哪里,他们就有一个GNSS接收机1和通信模块。这项服务在图3的呼叫流程中实现。定位请求高精度移动终端11发送位置请求给定位服务器8。然后服务器在最近的参考站中搜寻该请求给具有通信模块的移动终端10。然后参考站发送辅助数据(可选)和DGNSS校正给具有通信模块的移动终端10。具有通信模块的移动终端10结合自身的全球导航卫星系统的测量和参考站的数据,解算它的位置后,发送最终位置给定位请求高精度移动终端11。
有时需要计算在定位服务器或参考站的计算机上的数据采集模块的位置,从移动终端使用全球导航卫星系统测量。这为弱的CPU等的低成本设备提供了服务。这是特别有效的MT-LR和NI-LR的服务。它的实施是在呼叫流程如图4所示。定位请求高精度移动终端11或网络服务器通过发送请求给定位服务器8来初始化位置请求。服务器搜寻请求给最接近具有通信模块的移动终端10的GNSS第一参考站2。第一参考站2上的数据采集模块发送请求,并选择性地采集数据到具有通信模块的移动终端10。然后具有通信模块的移动终端10获得了它的全球导航卫星系统测量(伪距),将数据发送给第一参考站2的计算机。结合其测量,第一参考站2上的数据采集模块使用DGNSS方法计算具有通信模块的移动终端10的位置,并把它发送到定位请求高精度移动终端11。
请注意,不像A-GNSS 的实施,采集和其他辅助数据是源于A-GNSS位置服务器,位置服务器只发送位置请求给辅助数据和差分数据都已生成的第一参考站2。通常情况下,第一参考站2是非常接近具有通信模块的移动终端10,所以数据只在第一参考站2和具有通信模块的移动终端10之间传播,减少移动网络的数据流量。
移动网络中的一个位置基础服务的第三次操作就是网络发起位置请求(NI-LR)。它主要用于E911服务,其中美国和欧盟的法律规定,网络运营商提供定位给应急移动呼叫者。其呼叫流程与MT-LR的操作非常相似,除了当检测到紧急呼叫时,初始请求来源于网络服务器。图5显示了 DGNSS服务中的NI-LR呼叫流程。定位请求服务器12发送位置请求给定位服务器8,定位服务器8反过来搜寻请求给带有最接近具有通信模块的移动终端10的GNSS接收机1的第一参考站2。第一参考站2发送辅助数据和DGNSS数据(伪距修正)给具有通信模块的移动终端10。然后计算它的位置,并将结果返回给定位请求服务器12。
在混杂的网络覆盖环境下,多个不同标准的网络重叠在同一地区。一些网络第一参考站2装备有GNSS接收机1,而剩下的在他们的第二参考值3没有 GNSS接收机1。本发明的架构提供了一个解决方案,通过跨越多个网络连接基于位置的请求给DGNSS-RTK服务器去分享GNSS接收机1资源。通过网络之间的网关服务器15,一个网络的具有通信模块的移动终端10不需要在第二参考站3 上装备有GNSS接收机1,但可以访问另一个网络的基于位置的服务,其中另一个网络在接近请求具有通信模块的移动终端10的第一参考站2上配备有GNSS接收机1。图6显示了这些操作的呼叫作流程。
2、网络化实时动态服务
除了在上一节中讲述到的DGNSS服务,我们的架构还提供网络化实时动态(NRTK)服务给高精度的移动用户。RTK技术方法运用高度精确的载波相位测量和整数模糊度解决算法来实现厘米级精度。
对于L1 GNSS接收机的伪距和载波相位测量方程可以表示为:
Figure 2012100631387100002DEST_PATH_IMAGE019
 其中
Figure 517383DEST_PATH_IMAGE020
Figure 2012100631387100002DEST_PATH_IMAGE021
分别是计量伪距以及GNSS卫星i和第二参考站j之间的几何距离(单位:米)。
Figure 70374DEST_PATH_IMAGE022
是卫星i的三维坐标。
Figure 2012100631387100002DEST_PATH_IMAGE023
是第二参考站j在地球中心地面固定(ECEF)桢的三维坐标。C是真空中的光速,
Figure 656076DEST_PATH_IMAGE007
 和
Figure 85921DEST_PATH_IMAGE024
分别是第二参考站上的GNSS卫星i和GNSS接收机j的时钟偏移。
Figure 2012100631387100002DEST_PATH_IMAGE025
分别是GNSS卫星i和第二参考站j的电离层和对流层延迟,
Figure 140595DEST_PATH_IMAGE009
是测量噪声。
Figure 415719DEST_PATH_IMAGE026
分别是卫星信号的频率和波长,
Figure 2012100631387100002DEST_PATH_IMAGE027
Figure 121507DEST_PATH_IMAGE028
分别是从GNSS卫星i到第二参考站j的载波相位和整数模糊度。
可以从伪距和载波相位的双差(DD)去消除GNSS卫星时钟偏移,接收时钟偏移,电离层和对流层延迟。DD方法消除短基线应用的GNSS卫星轨道误差也很不明了。在GNSS卫星i,j,移动用户u和第二参考站r之间的伪距和载波相位测量方程的DD形式可以表示为:
 。
上面的方程可以用大家熟知的RTK方法解算:首先从连续时间的测量和卡尔曼滤波器中得到浮点数解,参见文献Development of low-cost RTK-GNSS receiver with an open source program package RTKLIB, T. Takasu and A. Yasuda, International Symposium on GPS/GNSS, International Convention Center Jeju, Korea, November 4-6, 2009 ;然后应用 LAMBDA,参见文献Teunissen PJG (1998) GPS carrier phase ambiguity fixing concepts. In: Teunissen P, Kleusberg A (eds) GPS for geodesy, 2nd ed. Springer, Berlin Heidelberg NewYork, pp 317–388及文献Teunissen PJG (1999) An optimality property of the integer least squares estimator. J Geod 73:587–593;或 MLAMBDA,参见X.-W. Chang, X. Yang and T. Zhou, “MLAMBDA:a modified LAMBDA method for integer least-squares estimation”, J. Geod. (2005) 79:552-565算法得到整数模糊度解算。
由于相位测量噪声大约占一个周期的5%,我们可以确定GNSS信号中的波长的5%的定位精度,这大约是具有通信模块的移动终端10相对第二参考站3的1厘米定位精度。由于第二参考站3的GNSS天线的位置也被熟知是准确的,我们可以得到厘米精度范围内的移动用户的绝对位置。上面的RTK解算器实现在高精度移动终端11的客户端模块上,这些高精度移动终端11包括基于移动站(基于MS)的操作和第二参考站3的数据采集模块,移动台辅助(MS辅助)业务。
除了GNSS参考站(在基站,基站控制器和无线网络控制器上固定GNSS接收机)和移动终端必须装备有载波相位测量的GNSS接收机外,本发明的网络RTK技术在移动网络的系统架构与DGNSS架构非常类似的。本发明的独特的网络化RTK技术实现使用GNSS接收机,它们已部署在移动网络中的许多基站,基站控制器和同步无线网络控制器,从而避免建设昂贵的专用参考站。图7显示了我们的架构为网络发起位置请求(NI-LR)服务。定位请求服务器12 发送请求给DGNSS—RTK定位服务器8,定位服务器8然后确定最接近参考站2的移动终端14。定位服务器8发送位置请求给第一参考站2。然后第一参考站2上的数据采集模块开始发送测量数据(包括伪距和载波相位测量)给高精度移动终端11。然后高精度移动终端11上的客户端模块获得第一参考站2上的数据和它的测量去完成上面提到的RTK整数模糊度解算,从而获得一个准确的相对于基站的位置。最后,第一参考站2获得高精度移动终端11的绝对位置,并把它发送到定位请求服务器12。这种操作方法适合于实时的结构监测器,定位请求服务器12可以实时检测许多被检测结构的高精度终端11上的厘米级的运动。 尽管RTK数据很大,但它只能从第二参考站2到高精度移动终端11传输短距离。
本发明的架构也为RTK客户提供移动发起位置进行请求(MO-LR)服务。图8说明了MO-LR的高精度服务的呼叫流程。高精度移动终端11发送位置请求给DGNSS-RTK定位服务器8。然后服务器批准和搜寻请求给带有GNSS接收机1的最接近高精度移动终端11的第二参考站2。然后第二参考站2上的数据采集模块发送测得的伪距,载波相位,以及准确的基站位置给高精度移动终端11。从数据和参考站的位置,高精度移动终端11的客户端模块解算出它的位置。这种操作方式适合于用户想知道他们的绝对位置的应用。(如建设,开放式露天开采,准确的农业等)。
为了促进上述呼叫流程,三个软件模块要放置在一个移动网络系统中。他们是数据采集模块,客户端模块和服务器模块。软件模块必须要满足最低限度的功能。
1、数据采集模块
此模块驻留在参考站的计算机上。如果他们在基站控制器安装有GNSS接收机或计算机,以及有安装了GNSS接收机的无线网络控制器,那么它可以在基站的计算机上。其功能是缓冲GNSS的测量,连接服务器的接口和客户端模块的请求,提供DGNSS校正,载波相位数据,采集辅助数据(可选的改进的A-GNSS服务)和调查客户端或服务器模块上的GNSS天线位置请求。用于移动网络同步的卫星接收机通常还可以测量的伪距,多普勒频移,载波相位和接收GNSS卫星的轨道编码信息,卫星时钟偏移和漂移,以及电离层延迟参数。(见文件U-blox的LEA-4T和5T,它们被广泛用于移动网络同步的部署)。此外,他们还可以得到从其中一个在美国,欧盟或日本的GEO卫星广播回来的WAAS的消息,目的是为了提高测量和定位的精度。考虑到卫星接收机可以在最大10Hz的数据速率下获得数据,原始测量(伪距,多普勒频移和载波相位)可以迅速填补基站计算机的有限的存储空间。为了让数据管理变得更有效,我们放置一个环形缓冲区在我们的数据采集模块中,因此在一定的持续时间内最新的测量对于服务器模块和移动用户始终是可用的。通过标准位置请求可存取数据。
2、客户端模块
此模块驻留在移动终端。它的功能是启动服务器模块上的基于位置的服务请求,获得DGNSS的校正数据、载波相位数据和可选择的辅助数据,使用DGNSS或NRTK技术方法计算移动终端的位置,对服务器或GNSS测量的数据采集模块的请求作出响应。
3、服务器模块
此模块驻留在移动网络的服务器上。其功能是对从移动用户、网络用户、直接需求到一个适当的参考站和移动终端的数据采集模块和客户端模块的位置请求作出回应。对于NRTK和WAAS服务,它也收集了测量数据,包括驻留在多元的大面积分布的参考站计算机上的数据采集模块,以及计算更正卫星轨道、卫星时钟偏移、不同地区的电离层和对流层延迟。然后,它将修正信息提供给请求移动用户(基站模式)和数据采集模块(基站辅助模式)。服务器模块还不断跟踪移动终端从一个基站移动到下一个基站的运动,当他们移动到一个不同的区域或当预先设定的时间过去时重发修正信息,从而更新修正。
本发明的DGNSS和NRTK系统可以在任何移动网络的用户平面或控制平面架构中实现。控制平面的实现具有更好的鲁棒性,以及受数据阻塞的影响较小。但是它更依赖于每个网络的架构,以及需要许多硬件层进行交互。用户面更容易实现,可以运送大量的数据,却不会压垮网络。它使用网络中的高层传输协议TCP / IP协议,从而避免了低层的依赖网络的硬件层之间的交互作用。由于载波相位和其他测量数据可能会非常大,NRTK数据更适合于在用户平面实施。 DGNSS数据和NRTK载波相位数据可以被视为在整个运输层是一样的,使得实施和维护方便。
本发明的DGNSS架构和现有的架构之间的主要区别如下:1、本发明的架构不设立独立的参考站。相反,它使用现有的在移动网络中用于同步的分布在基站(BS)、基站控制器(BSC)和无线网络控制器(RNC)的GNSS接收机。2、本发明的参考站没有独立的计算机处理和与用户和主站通信。相反,本发明的参考站利用现有的在BS,BSC和RNC上的电脑的优势。3、本发明的架构在参考站、用户和主站之间的通信不使用专用和专有网络。相反,它们从主机移动网络中分享无线和有线通信资源。网络不仅提供语音,视频,数据,短信息和互联网流量的通信服务,而且也提供导航和基于位置的服务。移动网络的拓扑结构是由依赖于硬件层和高层软件协议层组成,与简单的专有DGNSS或NRTK网络作比较。在顶层,对所有基于位置的数据流量使用TCP / IP协议。4、本发明的架构没有主站。相反,有一个位置服务器,它实质上是一个网络服务器上运行的软件模块。本发明的架构提供在移动网络中基于位置的服务的所有类型:移动发起位置请求(MO-LR)、移动结束位置请求(MT-LR)和网络发起位置请求(NI-LR),而现有的DGNSS和NRTK网络只有两个操作服务:告诉一个用户其附近的移动终端位置,以及主站获得移动终端的位置。本发明的架构使用移动网络中已经建立广泛的协议去提供巨大的应用服务:移动用户可以跟踪另一个移动终端的位置(见上面的MT-LR)。第三方服务器可以监视选定的终端位置(NI-LR)。
在本发明的架构中使用的硬件也有很大不同。在所有商业WAAS—NRTK系统所用的参考站都是昂贵的L1-L2双频GNSS接收机,使用它的频散特性去消除电离层延迟。它始终是提供连续定位服务的。因此,也被称为连续运行参考站(CORS)。移动网络使用廉价的L1单频GNSS接收机去提供同步。基站的一类典型的计算机就是奔腾III类的计算机。本发明只需使用CPU周期和内存的一小部分 就可以完成DGNSS和RTK服务的数据采集和计算。只有当被部署在数据采集模块的环形缓冲区中的数据需要时,本发明的架构能够提供基于位置的服务。连同GNSS接收机时,它要求作为一个CORS。
通信硬件也和那些专用的DGNSS-NRTK系统很不一样。移动网络是由数百个不同的供应商组成的。在不同的硬件层面上使用不同的协议。本发明的架构通过遵从移动网络里的开放标准来为所有设备提供DGNSS-RTK服务。通用网络在手机中具有更高的带宽利用率,能够优质地向绝大多数用户和多元化设备提供服务。只有当利用移动网络提供的服务, DGNSS-NRTK架构才能够实现对比于世界上任何存在的NRTK系统更大规模和为更多的用户提供服务,而不对网络造成堵塞。
和K. Alanen, L. Wirola, J. Appl and J, Arinne, Mobile RTK, using low-cost GNSS and Internet-enabled wireless phones, Inside GNSS pp. 32-39, May 2006公开的技术相比,本发明的架构也很不相同。虽然两者都使用单频接收机和通信用移动网络,在该文献的系统里并没有固定的参考站或中央服务器。它只对一部分用户提供单一操作服务:测量从一部手机到另一部手机的真实位置。

Claims (10)

1.一种嵌入在蜂窝网络系统的DGNSS及NRTK系统,其特征在于包括接收机(1)、第一参考站(2)、第二参考站(3)、基站控制器(4)、广播网络控制器(5)、定位服务器(6)、数据采集模块(7)、客户端模块(8)、服务器模块(9)、具有通信模块的移动终端(10)、高精度移动终端(11);接收机(1)安装在第一参考站(2)上,第一参考站(2)与基站控制器(4)通信连接,第二参考站(3)与广播网络控制器(5)通信连接;数据采集模块(7)安装在第一参考站(2)中的计算机上;客户端模块(8)分别安装在具有通信模块的移动终端(10)、高精度移动终端(11)上;服务器模块(9)安装在定位服务器(6)上;数据采集模块(7)分别与客户端模块(8)、服务器模块(9)通信连接。
2.根据权利要求1所述系统,其特征在于所述的数据采集模块(7)、客户端模块(8)和服务器模块(9)之间的通信连接采用TCP/IP协议。
3.根据权利要求1所述系统,其特征在于所述数据采集模块(7)采集的数据为环形缓冲区的测量数据,其数据包括:伪距,多普勒频移和载波相位。
4.根据权利要求1所述系统,其特征在于所述数据采集模块(7)采用差分全球导航定位系统定位高精度移动终端(11);数据采集模块(7)采用实时动态技术定位高精度移动终端(11)。
5.根据权利要求1所述系统,其特征在于所述服务器模块(9)用于计算修正卫星轨道,卫星时钟偏移,时钟频率漂移,电离层时延和对流层时延。
6.根据权利要求1所述系统,其特征在于所述服务器模块(9)分别向所述数据采集模块(7)、客户端模块(8)提供卫星轨道,卫星时钟偏差,时钟频率漂移,电离层时延和对流层时延的修正信号。
7.根据权利要求1所述系统,其特征在于所述服务器模块(9)分别将第一参考站(2)去定位请求及高精度移动终端(11)中的客户端模块(8)定位请求发送给数据采集模块(7)。
8.根据权利要求1所述系统,其特征在于所述服务器模块(9)用于将服务范围地域分成若干单元,并把一个第一参考站(2)里的数据采集模块(7)和一个单元联合;持续跟踪高精度移动终端(11)的位置,当高精度移动终端(11)跨过卫星轨道,卫星时钟偏差,时钟频率漂移,电离层时延和对流层时延预定义边界或当一段设定的时间过去后,发布新的修正。
9.根据权利要求1所述系统,其特征在于所述客户端模块(8)发送差分全球导航定位系统请求至服务器模块(9);并向数据采集模块(7)提供伪距;并接收数据采集模块(7)修正过时钟的伪距;客户端模块(8)采用差分全球导航定位系统定位高精度移动终端(11)。
10.根据权利要求1所述系统,其特征在于所述客户端模块(8)发送解算过的高精度移动终端(11)位置的请求至所述服务器模块(9)或发送实时动态服务请求至服务器模块(9),从而服务器模块(9)发送伪距和载波相位至客户端模块(8);
客户端模块(8)采用实时动态方法定位高精度移动终端(11);
客户端模块(8)接收来自第一参考站(2)的接收机(1)位置。
CN201210063138.7A 2011-03-12 2012-03-12 一种嵌入在蜂窝网络系统的dgnss及nrtk系统 Expired - Fee Related CN102761961B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161452093P 2011-03-12 2011-03-12
US61/452,093 2011-03-12

Publications (2)

Publication Number Publication Date
CN102761961A true CN102761961A (zh) 2012-10-31
CN102761961B CN102761961B (zh) 2015-02-18

Family

ID=47056249

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210063138.7A Expired - Fee Related CN102761961B (zh) 2011-03-12 2012-03-12 一种嵌入在蜂窝网络系统的dgnss及nrtk系统

Country Status (1)

Country Link
CN (1) CN102761961B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104202723A (zh) * 2014-09-03 2014-12-10 上海北斗卫星导航平台有限公司 位置增强数据播发服务系统及方法
CN104536023A (zh) * 2015-01-09 2015-04-22 山东天星北斗信息科技有限公司 一种高低频误差分流预测的无延时亚米级差分定位方法
CN106324621A (zh) * 2016-08-08 2017-01-11 广东工业大学 一种多进程并发差分解算服务器、方法及导航系统
WO2017070910A1 (zh) * 2015-10-29 2017-05-04 华为技术有限公司 移动网络中的定位方法、服务器、基站、移动终端和系统
CN106871776A (zh) * 2017-02-14 2017-06-20 千寻位置网络有限公司 一种基于gnss的实时变形监测系统
CN108112265A (zh) * 2016-09-21 2018-06-01 东莞华南设计创新院 带非平面MIMO天线的wifi定位方法和其系统
CN108834073A (zh) * 2018-03-30 2018-11-16 山东路科公路信息咨询有限公司 一种公路网数据采集系统
US10877161B2 (en) 2015-10-29 2020-12-29 Huawei Technologies Co., Ltd. Positioning method in mobile network, base station, and mobile terminal
CN112203349A (zh) * 2020-10-12 2021-01-08 海能达通信股份有限公司 数据的接收方法、装置、电子设备及计算机存储介质
US11300686B2 (en) 2016-12-31 2022-04-12 Huawei Technologies Co., Ltd. Virtual reference station switching method and device in real time kinematic system
US11994599B2 (en) 2020-07-23 2024-05-28 Coretronic Corporation Positioning system and positioning method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1307684A (zh) * 1998-05-04 2001-08-08 施耐普特拉克股份有限公司 操作卫星定位系统接收机的方法和装置
CN1309519A (zh) * 2000-02-15 2001-08-22 摩托罗拉公司 用于压缩全球定位系统卫星广播消息信息的方法和设备
US6507738B1 (en) * 1999-05-21 2003-01-14 Trimble Navigation, Ltd. Long baseline RTK using a secondary base receiver a non-continuous data link and a wireless internet connectivity
CN1897748A (zh) * 2006-06-27 2007-01-17 重庆邮电大学 基于td-scdma系统的rtk定位方法
US20100156710A1 (en) * 2008-12-19 2010-06-24 Nokia Corporation Synchronization indication in networks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1307684A (zh) * 1998-05-04 2001-08-08 施耐普特拉克股份有限公司 操作卫星定位系统接收机的方法和装置
US6507738B1 (en) * 1999-05-21 2003-01-14 Trimble Navigation, Ltd. Long baseline RTK using a secondary base receiver a non-continuous data link and a wireless internet connectivity
CN1309519A (zh) * 2000-02-15 2001-08-22 摩托罗拉公司 用于压缩全球定位系统卫星广播消息信息的方法和设备
CN1897748A (zh) * 2006-06-27 2007-01-17 重庆邮电大学 基于td-scdma系统的rtk定位方法
US20100156710A1 (en) * 2008-12-19 2010-06-24 Nokia Corporation Synchronization indication in networks

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104202723B (zh) * 2014-09-03 2018-01-02 上海北斗卫星导航平台有限公司 位置增强数据播发服务系统及方法
CN104202723A (zh) * 2014-09-03 2014-12-10 上海北斗卫星导航平台有限公司 位置增强数据播发服务系统及方法
CN104536023A (zh) * 2015-01-09 2015-04-22 山东天星北斗信息科技有限公司 一种高低频误差分流预测的无延时亚米级差分定位方法
US10877161B2 (en) 2015-10-29 2020-12-29 Huawei Technologies Co., Ltd. Positioning method in mobile network, base station, and mobile terminal
WO2017070910A1 (zh) * 2015-10-29 2017-05-04 华为技术有限公司 移动网络中的定位方法、服务器、基站、移动终端和系统
US11125884B2 (en) 2015-10-29 2021-09-21 Huawei Technologies Co., Ltd. Positioning method in mobile network, server, base station, mobile terminal, and system
CN106324621A (zh) * 2016-08-08 2017-01-11 广东工业大学 一种多进程并发差分解算服务器、方法及导航系统
CN108112265A (zh) * 2016-09-21 2018-06-01 东莞华南设计创新院 带非平面MIMO天线的wifi定位方法和其系统
US11300686B2 (en) 2016-12-31 2022-04-12 Huawei Technologies Co., Ltd. Virtual reference station switching method and device in real time kinematic system
CN106871776A (zh) * 2017-02-14 2017-06-20 千寻位置网络有限公司 一种基于gnss的实时变形监测系统
CN108834073A (zh) * 2018-03-30 2018-11-16 山东路科公路信息咨询有限公司 一种公路网数据采集系统
US11994599B2 (en) 2020-07-23 2024-05-28 Coretronic Corporation Positioning system and positioning method
CN112203349A (zh) * 2020-10-12 2021-01-08 海能达通信股份有限公司 数据的接收方法、装置、电子设备及计算机存储介质

Also Published As

Publication number Publication date
CN102761961B (zh) 2015-02-18

Similar Documents

Publication Publication Date Title
CN102761961B (zh) 一种嵌入在蜂窝网络系统的dgnss及nrtk系统
US10567905B2 (en) Systems and methods for locating a mobile device using angle of arrival and inertial sensor measurements
CN110520748B (zh) 用于使用传感器改进移动装置的位置精确度的系统及方法
CN109001763B (zh) 一种基于低轨星座的导航增强方法及系统
US8643540B2 (en) Wide area positioning system
JP5972900B2 (ja) 時間同期ワイヤレスネットワークアクセスポイントのためのシステムおよび方法
US8370629B1 (en) Trusted hybrid location system
KR101772707B1 (ko) 보조 데이터 처리 및 중계 모듈과 보조 데이터 처리 방법에 대한 개선
JP2020522167A (ja) 第5世代ワイヤレスネットワークにおいてモバイルデバイスを測位するためのシステムおよび方法
US8681741B1 (en) Autonomous hybrid WLAN/GPS location self-awareness
CN105353391A (zh) 一种支持多类型定位终端的多网融合定位增强系统及方法
US20110148700A1 (en) Method and system for mobile device based gnss position computation without ephemeris data
JP2007518979A (ja) Tdoa/gps混成ワイヤレス位置検出システム
CN104583802A (zh) 用于用户设备的位置定位的系统和方法
US8193986B2 (en) Method and system for enhancing a location server reference database through round-trip time (RTT) measurements
US20110207472A1 (en) Method and system for cellular clock-assisted wireless access point locating
CN102355726A (zh) 混合定位方法及其定位系统
WO2022164596A1 (en) Reconfigurable intelligent surface (ris)-aided ue passive rf sensing
US11796687B2 (en) Method and apparatus for location determination using plate tectonics models
US20130009813A1 (en) Method and System for a Virtual Wide Area GNSS Reference Network
TW202208881A (zh) 超長基線即時動態
US11895562B2 (en) Determining approximate position of a user machine based on inernet (IP) address
US20220046383A1 (en) Validating and using map data for positioning
CN112731268B (zh) 一种差分数据的处理方法和定位跟踪系统
Zhu et al. Connecting integer ambiguities to avoid reinitialization and keep VRS seamless switching for virtual grid-based NRTK

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent of invention or patent application
CB03 Change of inventor or designer information

Inventor after: Wang Feng

Inventor after: Qiu Shuze

Inventor before: Wang Feng

COR Change of bibliographic data

Free format text: CORRECT: INVENTOR; FROM: WANG FENG TO: WANG FENG QIU SHUZE

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150218

CF01 Termination of patent right due to non-payment of annual fee