CN102754479A - 在通信系统中分配通信资源的装置和方法 - Google Patents

在通信系统中分配通信资源的装置和方法 Download PDF

Info

Publication number
CN102754479A
CN102754479A CN2010800636040A CN201080063604A CN102754479A CN 102754479 A CN102754479 A CN 102754479A CN 2010800636040 A CN2010800636040 A CN 2010800636040A CN 201080063604 A CN201080063604 A CN 201080063604A CN 102754479 A CN102754479 A CN 102754479A
Authority
CN
China
Prior art keywords
interference
communication resource
signal
power level
interval
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800636040A
Other languages
English (en)
Other versions
CN102754479B (zh
Inventor
M·宁特维格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia Technologies Oy
Original Assignee
Nokia Oyj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Oyj filed Critical Nokia Oyj
Priority to CN201610104213.8A priority Critical patent/CN105611577A/zh
Publication of CN102754479A publication Critical patent/CN102754479A/zh
Application granted granted Critical
Publication of CN102754479B publication Critical patent/CN102754479B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/245TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/247TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where the output power of a terminal is based on a path parameter sent by another terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/262TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account adaptive modulation and coding [AMC] scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Noise Elimination (AREA)

Abstract

用于提供干扰消除和通信资源预留限量以在通信系统中分配通信资源的装置、系统和方法。在一个实施方式中,装置包括处理器(1320)和包括计算机程序代码的存储器(1350)。将存储器(1350)和计算机程序代码配置为,通过处理器(1320),促使装置识别对主要信号进行干扰信号的干扰消除的接收信号功率水平的间隔,并产生提供对主要信号进行干扰信号的干扰消除的接收信号功率水平的间隔的消息。在相关的实施方式中,将存储器(1350)和计算机程序代码配置为,通过处理器(1320)促使装置确定通信资源预留限量,并请求通信资源预留限量的增加。

Description

在通信系统中分配通信资源的装置和方法
技术领域
概括地,本发明涉及通信系统,并且更具体地,本发明涉及利用干扰消除和通信资源预留限量在通信系统中分配通信资源的装置、系统和方法。
背景技术
第三代合作伙伴计划(“3GPP”)的长期演进(“LTE”),也被称为3GPPLTE,指的是涉及3GPP第8版或更高版本的研究和开发,其中版本是通常用于描述在工业上正在进行的针对识别可提高诸如通用移动通信系统(“UMTS”)的系统的技术和能力的努力的名称。概括地,基于该计划的目标包括提高通信效率、降低成本、改进服务、利用新频谱机会以及与其它开放标准实现更好的结合。3GPP LTE计划自己不是标准产生的成果,但是会导致用于UMTS的标准的新建议。这些领域中的进一步开发也被称为先进的长期演进(“LTE-A”)。
3GPP中的演进UMTS陆地无线接入网络(“E-UTRAN”)包括向无线通信设备提供用户平面(包括分组数据汇聚协议/无线链路控制/媒体访问控制/物理(“PDCP/RLC/MAC/PHY”)子层)和控制平面(包括无线资源控制(“RRC”)子层)协议端接的基站。通常将无线通信设备或终端称为用户设备(“UE”)或移动台(“MS”)。基站是通信网络的实体,通常将其称为节点B或NB。具体地,在E-UTRAN中,将“演进”基站称为eNodeB或eNB。对于有关E-UTRAN的整体架构的细节,参见3GPP技术规范(“TS”)36.300,v8.5.0(2008-05),通过引用的方式将其引入本文。术语基站、NB、eNB和小区通常涉及在蜂窝通信系统中提供无线网络接口的、可在这里交换使用的并且包括诸如不同于这些在3GPP标准下设计的蜂窝通信系统的通信系统的设备或位置。
期望未来的无线通信系统为大量的诸如低功率基站的接入点或节点提供服务,其中每个接入点或节点为少量的无线通信设备提供服务,并且每个接入点或节点在相对小的小区或位置上提供高的比特率的局域覆盖。由于通信系统部署的高密度,例如在高密度的城区和诸如体育馆的受到高度关注的公共设施,因此传统的网络规划无法实施。实际上,希望节点自治地进行交互以共享通信资源,并且从而使用灵活频谱使用(“FSU”)协议来管理用户设备之间的干扰。上述的实践意在提供“优化局域”覆盖,以作为诸如基于LTE通信系统的通信系统的补充。
干扰消除(“IC,Interference cancellation”)是在接收机(例如,无线通信设备)中使用过程,所述过程可在通信系统中显著提高整体接收性能。当接收机处的干扰的相应水平较高时,例如在受到高度关注的公共设施,干扰消除允许接收机对干扰信号进行解码,并从接收信号中减去相同的信号,从而在可使用重叠分配的频率和时隙的通信系统的通信信道中能够进行可靠的通信。
由于无线通信设备的使用增加和为在较小服务区域中大量无线通信设备提供通信服务的重要性,在通信系统中提供对其架构几乎不产生影响并具有合理的资本投资的这样的能力是重要的。因此,在现有技术中所需要的是在通信系统中共享通信资源而不会导致在其中包括使用无线通信设备的通信系统的成本或性能的实质退化的装置、系统和方法。
发明内容
通过本发明的实施方式,可概括地解决或规避这些或其它问题,并可概括地取得技术优势,其中本发明的实施方式包括用于提供干扰消除和通信资源预留限制以在通信系统中分配通信资源的装置、系统和方法。在一个实施方式中,装置包括处理器和存储器,其中所述存储器包括计算机程序代码。将存储器和计算机程序代码配置为,利用处理器促使装置识别对主要信号(primary signal)进行干扰信号的干扰消除的接收信号功率水平的间隔,并产生提供对主要信号进行所述干扰信号的干扰消除的接收信号功率水平的间隔的消息。在相关的实施方式中,将存储器和计算机程序代码配置为,利用处理器促使装置确定通信资源预留限制,并请求通信资源预留限制的增加。
前面已经按顺序概述了本发明的相当宽广的特征和技术优点,下面可以更好地理解本发明的详细说明。下面将描述形成本发明权利要求主题的本发明的附加特征和优势。本领域技术人员应当理解的是,所公开的概念和具体实施方式可容易地用作修改或设计用于执行本发明相同目的的其它结构或过程的基础。本领域技术人员还应当理解的是,这样的等效结构不偏离在所附权利要求中提出的本发明的精神和范围。
附图说明
现在参照下面的说明并结合附图,更为全面地理解本发明和其优势,其中:
图1和图2描述了包括提供本发明原理的应用环境的基站和无线通信设备的通信系统实施方式的系统级示意图;
图3和图4描述了包括提供本发明原理的应用环境的无线通信系统的通信系统实施方式的系统级示意图;
图5描述了表明提供本发明原理的应用环境的干扰消除原理的通信系统的实施方式的系统级示意图;
图6(a)-6(d)描述了表明根据本发明原理的通信系统中接收机处的示例性的接收主要信号和干扰信号强度的图形表示;
图7描述了表明根据本发明原理的在可应用干扰消除的接收机处的干扰信号强度和提供通信资源的重用机会的门限的示例性范围的图形表示;
图8描述了根据本发明原理的示例性吞吐量相对于通信系统的下行链路中的不同调制和编码方案的信噪比的图形表示;
图9描述了表明根据本发明原理的示例性干扰消除过程的框图;
图10和图11描述了根据本发明原理的干扰消除过程的实施方式的流程图;
图12A和图12B描述了根据本发明原理的确定通信资源预留限制的方法的实施方式的流程图;以及
图13描述了根据本发明原理构建的通信系统的通信元件的实施方式的框图。
具体实施方式
下面将详细讨论当前优选实施方式的制造和使用。然而,应当理解的是,本发明提供许多能够以特定上下文的各种变形来实施的可应用的发明概念。所讨论的特定实施方式仅仅是对制造和使用本发明的特定方式的描述,并不是对本发明范围的限制。考虑到上述内容,相对于利用干扰消除和通信资源预留限制以实现通信系统中通信资源的有效利用的装置、系统和方法的特定上下文中的示例性实施方式来描述本发明。尽管这里描述的系统和方法参照3GPP LTE蜂窝网络进行描述,但是它们也可被应用于包括全球移动通信系统(“GSM”)、全球微波互联接入(“WiMax”)通信系统、或Wi-Fi通信系统的任何无线通信系统。
现在转向图1,描述的是包括提供本发明原理的应用环境的基站115和无线通信设备(例如,用户设备)135、140、145的通信系统的实施方式的系统级示意图。基站115与公用交换电话网络(在图中没有示出)耦合。基站115被配置为具有在多个扇区中发送和接收信号的多个天线,其中多个扇区包括第一扇区120、第二扇区125和第三扇区130,其中每个扇区典型地横跨120度。尽管图1在每个扇区(例如,第一扇区120)中描述一个无线通信设备(例如,无线通信设备140),但是扇区(例如,第一扇区120)可通常地包含多个无线通信设备。在可替换的实施方式中,基站115可仅由一个扇区(例如,第一扇区120)形成,并且多个基站可被构建为根据协作/协同的多输入多输出(“C-MIMO”)操作等进行发送。通过对来自基站天线的辐射信号进行聚焦和定相(phasing)来形成扇区(例如,第一扇区120),并且每个扇区(例如,第一扇区120)可使用独立的天线。多个扇区120、125、130增加订户台(例如,无线通信设备135、140、145)的数量,其中通过减小对基站天线进行聚焦和定相所导致的干扰,用户台可同时与基站115进行通信而不需要增加所使用的带宽。
现在转向图2,描述的是通信系统的实施方式的系统级示意图,其中通信系统包括提供本发明原理的应用环境的基站和无线通信设备。通信系统包括通过通信路径或链路220(例如,通过光纤通信路径)与诸如公共交换电话网络(“PSTN”)230的核心电信网络相耦合的基站210。基站210通过无线通信路径或链路240、250分别与位于其蜂窝区域290中的无线通信设备260、270相耦合。
在如图2所示的通信系统的操作中,基站210通过由基站210分别经过通信路径240、250分配的控制和数据通信资源与每个无线通信设备260、270进行通信。控制和数据通信资源可包括频分双工(“FDD”)和/或时分双工(“TDD”)通信模式中的频率和时隙通信资源。
现在转向图3,描述的是包括提供用于本发明原理的应用环境的无线通信系统的通信系统的实施方式的系统级示意图。无线通信系统可被配置为提供演进的UMTS陆地无线接入网络(“E-UTRAN”)通用移动电信服务。移动管理实体/系统架构演进网关(“MME/SAE GW”,将其中一个表示为310)通过S1通信链路(将其中一个标示为“S1链路”)为E-UTRAN节点B(将其标示为“eNB”、“演进的节点B”,也将其称为“基站”,将其中的一个标示为320)提供控制功能。基站320通过X2通信链路(标示为“X2链路”)进行通信。各种通信链路典型地是光纤、微波、或诸如同轴链路的其它高频金属通信路径,或者其组合。
基站320与用户设备(“UE”,将其中一个标示为330)进行通信,其中用户设备典型地是由用户携带的移动收发器。从而,将基站320与用户设备330相耦合的通信链路(将其标示为“Uu”通信链路,将其中一些标示为“Uu链路”)是利用诸如正交频分复用(“OFDM”)信号的无线通信信号的空中链路。
现在转向图4,描述的是包括提供用于本发明原理的应用环境的无线通信系统的通信系统的实施方式的系统级示意图。无线通信系统提供E-UTRAN架构,包括向用户设备(将其中的一个标示为420)提供E-UTRAN用户平面(载荷数据,分组数据汇聚协议/无线电链路控制/媒体访问控制/物理子层)和控制平面(无线电资源控制子层)协议端接(termination)的基站(将其中的一个标示为410)。基站410与X2接口或通信链路(将其标示为“X2”)互连。基站410还通过S1接口或通信链路(将其标示为“S1”)与包括移动管理实体/系统架构演进网关(“MME/SAE GW”,将其中的一个标示为430)的演进分组核心(“EPC”)连接。S1接口在移动管理实体/系统架构演进网关430和基站410之间支持多个实体关系。对于支持公共陆地之间移动切换的应用,由移动管理实体/系统架构演进网关430通过S1接口的迁移(relocation)支持eNB间的活动模式移动性。
基站410可提供诸如通信(例如,无线电)资源管理的功能。例如,基站410可执行如下功能:诸如国际互联网协议(“IP”)报头压缩和用户信号流加密、对用户信号流加密、无线电承载控制、无线电许可控制、连接移动性控制、上行链路和下行链路中给用户设备的资源的动态分配、在用户设备配件处对移动性管理实体的选择、将用户平面(也将其称为“U平面”)数据路由到用户平面实体、寻呼消息的调度和传输(源自移动性管理实体)、广播信息的调度和传输(源自移动性管理实体或者操作和维持)、以及用于移动性和调度的测量和报告配置。移动管理实体/系统架构演进网关430可提供如下功能:诸如将寻呼消息分发给基站410、安全控制、出于寻呼原因的用户平面分组的端接、切换支持用户设备移动性的用户平面、空闲状态移动性控制、和系统架构演进承载控制。用户设备420接收来自基站410的信息块组的分配。
现在转向图5,描述的是表明提供用于本发明原理的应用环境的干扰消除原理的通信系统的实施方式的系统级示意图。干扰消除是在接收机(例如,无线通信设备或基站)中使用的技术,在其中将来自干扰发射机(例如,另一无线通信设备或基站)的传输(例如,干扰或不希望的信号)进行解码,并从所接收的主要(希望的)信号中去除,从而有助于主要信号的解码。通信系统包括将通信信号(主要信号)发送给第一接收机520的第一发射机510。通信系统包括将通信信号发送给第二接收机540的第二发射机530。来自第二发射机530的信号(干扰信号)通过具有诸如共享的通信资源的公共部分的干扰链路550对第一接收机520造成干扰。第一接收机首先对来自第二发射机530的干扰信号进行解码,对干扰信号进行重构,并且从所接收的来自第一发射机510的主要信号中减去所重构的干扰信号。在减去干扰信号后,第一接收机520从而对从第一发射机510接收的较弱的主要信号进行解码。根据发射机和接收机的移动性和它们之间通信路径的稳定性,通过利用干扰消除,可从主要信号中减去大约20分贝(“dB”)的干扰信号。特别在非理想的实现方式中,对于成功的干扰消除,应当抑制干扰和主要信号的比率。
现在转向图6(a)-6(d),描述的是表明根据本发明原理的通信系统(例如,图5的通信系统)中在接收机(例如,第一接收机520)处的示例性接收的主要信号和干扰信号强度的图形标示。图6(a)描述了在第一接收机520处相对于用虚线所示的本底噪声(noise floor)620的所接收的主要(想要的)信号610。主要信号610的信噪比较高,并且因此其解码通常是成功的。
参见图6(b),增加了干扰信号630。将干扰信号630的水平选择为界限640,其中干扰信号630开始对第一接收机520的主要信号610的接收造成无法容忍(intolerable)的干扰。例如可由基于调制和编码方案(“MCS”)的保持剩余的信号与干扰加噪声比(“SINR”)至少为8dB的需要对“无法容忍的干扰”进行定义。低于界限640的干扰信号可以忍受,无需进行干扰消除。如果不使用干扰消除,界限640上方的干扰信号630会使第一接收机520处主要信号610的接收退化,或者产生扰乱。
在图6(c)中,将干扰信号630的信号水平650示为高于主要信号610的信号水平650。当主要信号610开始不清楚时,可以对干扰信号630进行解码,重构、并从主要信号610中以一定级别的精度减去干扰信号。图6(c)中的干扰信号630的信号水平650是最小可能的干扰信号水平,其中对干扰信号630的解码和去除可成功地呈现出主要信号610。
最后,在图6(d)中,干扰信号630的信号水平660已经升高到利用干扰消除可处理的最大水平。由于诸如信道频率响应、发射机非线性、频率误差、由于接收机移动的不规则性、接收机的受限动态范围等非理想条件,非常难以完全消除干扰信号。由于干扰信号水平高于在图6(d)中示出的信号水平660,因此尽管使用干扰消除,也会出现无法容忍的干扰结果。
现在转向图7,描述的是表明根据本发明原理的可应用干扰消除的接收机的干扰信号强度的示例性范围和提供重新使用通信资源的机会的门限的图形表示。图7描述了接收的主要(想要的)信号710和例如由接收机中噪声处理导致的本底噪声720,例如Johnson噪声。
门限tu是接收机处所能容忍的不需要进行干扰消除以接收主要(想要的)信号710的干扰(不想要的)信号的最高(例如,最大)水平。接收机预测主要信号强度Pprimary。接收机还预测调制和编码方案MCSprimary。此外,接收机预测最小的信噪比SNRprimary以使用调制和编码方案MCSprimary对主要信号进行解码,以及容限(margin)“m”(例如,m=3dB),其中容限“m”可以是固定的,或根据调制和编码方案MCSprimary进行选择。接收机从而确定门限(例如,tu=Pprimary-SNR primary-m(dB))。预测过程可通过利用参数的过去值或参数最近历史的平均值来执行。
门限tc1是接收机实际可利用干扰消除以防止无法容忍的干扰的干扰信号的最低(例如,最小)水平。换句话说,在干扰信号水平低于门限tc1时,干扰消除不能对干扰信号进行解码。接收机确定要求对利用参考调制和编码方案进行编码的信号成功进行解码的参考信噪比“SNRref”。参考调制和编码方案可以是1/5编码的正交相移键控(“QPSK”)调制和编码方案,并且参考信噪比SNRref可以是-2dB。接收机进一步确定容限“a”。容限“a”可以是具有值为3dB的预定常量。接收机计算门限tc1(tc1=Pprimary+SNRref+a(dB))。例如,接收机可选择a=3dB,并计算门限tc1=Pprimary-2dB+3dB=Pprimary+1dB。
门限tc2是接收机处的干扰信号的最高(例如,最大)水平,其中干扰消除可防止无法容忍的干扰。换句话说,在干扰信号水平高于门限tc2时,由于干扰信号过强而不能对主要信号进行解码,因此干扰消除不是有效的。接收机计算门限参数tc2a=Pprimary-SNR primary+b(dB),其中b是预测的消除精度。消除干扰信号留下低于原始干扰信号水平“b”dB的剩余信号。参数“b”例如可预定在30dB。参数“b”可根据传播环境进行调整。如果过去的历史显示操作处于高频率选择性环境(例如,传输信道中强的多径和/或显著的延迟传播),可将较小的值用于参数“b”。如果过去的历史指示用户设备的移动性,通常可将较小的值用于参数“b”。在干扰消除后,可根据剩余干扰强度的估计水平调整参数“b”。然后,将门限参数tc2b计算为接收机前端可处理的最大功率,其中最大功率通常由于低噪声发生器或混频器的失真而受到限制。门限参数tc2b还由于模数转换器中的限幅(clipping)而受到限制。从而将门限tc2计算为tc2=min(tc2a,tc2b)。
因此,间隔(窗)730表示接收信号幅度的范围,由于接收的主要信号的幅度显著大于干扰信号的幅度,因此在该范围中不需要进行干扰消除。在线性功率单位(例如,瓦特)中,间隔730可从0(W)延伸到tu(W)。当转换为功率的对数测量(例如,以dB为单位表示的m)时,间隔730可从负无穷大(dB)延伸到tu(dB)。间隔(窗)740表示接收信号幅度的范围,其中可利用干扰消除以利于对主要信号710进行可靠的解码。间隔740可在门限tc1到tc2之间延伸。更明显的是,在接收机处根据干扰信号的调制和编码方案成功地进行解码。
现在转向图8,描述的是根据本发明原理的通信系统的下行链路(例如,基于LTE的通信系统中的下行链路)中的示例性吞吐量相对于不同调制和编码方案的信噪比的图形表示。曲线810对应于1/5编码的正交移相键控(“QPSK”)调制和编码方案(实现低数据速率(比特/子载波/符号)、但以低信噪比可靠工作的鲁棒性调制和编码方案的实施例)。曲线820是9/10编码的64正交幅度调制(“QAM”)调制和编码方案,其中这是以高信噪比实现高数据速率的较小鲁棒性调制和编码方案的实施例。一旦曲线到达平稳状态,则可实现可靠的解码。曲线830表示Shannon(香农)信道容量界限。可将诸如1/5编码的QPSK调制和编码方法的大部分鲁棒的调制和编码方案选择为参考调制和编码方案。换句话说,门限tc1可指示利用可使用干扰消除进行处理的参考调制和编码方案的干扰信号的最低接收信号强度。
对于每个调制和编码方案MCSinterferer,可以为期望SNR的增加定义偏移量Δ(MCSinterferer),以相对于参考调制和编码方案,对调制和编码方案进行解码。例如,图8示出了曲线820相对于曲线810到达平稳状态,需要的SNR大约多22dB。因此,Δ(1/5编码的QPSK调制和编码方案)=0dB,并且Δ(9/10 64QAM调制和编码方案)=22dB。在所示的实施方式中,调制和编码方案大约以0.9dB的步长分级。
再次参照图5,第二发射机(干扰发射机)530可使用较小鲁棒性的调制和编码方案(例如,一个发射机在每个符号每个子载波利用大量的比特,例如在图8中由曲线820所示),以在向第二接收机540的传输中实现更高的吞吐量。因此,在第一接收机520处,干扰消除要求的最小信号水平(门限tc1)可通过Δ(MCSinterferer)增加。通过选择用于干扰信号的调制和编码方案,用于消除的上限tc2大体上保持不受影响,从而有效地导致使用可利用干扰消除进行处理的调制和编码方案MCSinterferer的干扰信号的接收信号强度的范围(也就是,“间隔或窗”,[tc1+Δ(MCSinterferer)…tc2])。门限和参数tu、tc1、tc2、MCSinterferer、Pprimary和MCSinterferer之间的关系可取决于在接收机处实现的干扰消除类型。例如,连续干扰消除(“SIC”)可首先对干扰信号进行解码,然后减去相同的内容,并且随后对主要信号进行解码。诸如并行干扰消除(“PIC”)或联合解码的其它类型的干扰消除可同时处理干扰和主要信号。接收机可以按适于实现的干扰消除方案的方式计算门限tu、tc1和tc2。接收机可处理允许并行解码的主要信号,例如通过叠加编码获得的主要信号。接收机可确定能够使用通过利用在接收机处可用的已知干扰消除技术的干扰消除的接收信号强度的多个间隔。
与这里讨论相关的图7所示,干扰消除为在接收机和发射机之间重用通信资源(例如,信道、时隙、子带或其结合)创建机会。相比于将一个通信资源唯一地分配给一个通信路径或链路,由于每个通信链路可使用更多资源,因此使用干扰消除的通信资源共享提高了整体的性能。干扰消除为在通信链路之间共享通信资源创建了机会。这里介绍检测和利用这样机会的过程。
现在转向图9,描述的是表明根据本发明原理的示例性干扰消除过程的示意图。接收机(将其标示为“Rx”)识别可容忍干扰的通信资源。接收机确定不使用干扰消除不会对主要信号的接收造成无法容忍的退化的干扰信号的最大水平。接收机还确定使用参考干扰调制和编码方案的接收干扰信号的最小和最大水平,其中参考干扰调制和编码方案能够使用用于主要信号的接收的干扰消除。接收机将具有该信息的消息(例如,广播消息)发送给周围区域中的发射机。接收机从而指明可执行接收机干扰消除的可操作范围的间隔(窗)。可预先确定消息的名义信号强度(也就是,其可以是常量和已知的)。优选地将消息的名义信号强度编码到消息中。
发射机(将其标示为“Tx”)从接收机接收消息,估计由发射机发送给接收机的信号的路径损耗,并将接收机处的相应接收信号水平与发射机处的发送功率水平相关。发射机据此选择发射机功率水平,发射机在通信资源上使用该发射机功率水平以发送从接收机看起来是干扰信号的信号。接收机利用干扰消除以从接收的主要(想要的)信号中减去由发射机发送的干扰信号。
现在转向图10,描述的是根据本发明原理的干扰消除过程的实施方式的流程图。可按照诸如关于图5解释和描述的第一接收机520的通信系统的接收机执行干扰消除(“IC”)过程。接收机确定接收机在通信(例如,无线电)资源上能够容忍更多干扰的水平。在通信系统中,接收机确定合适的干扰水平,并在消息中用信号通知干扰水平。
在第一步骤1010,接收机选择没有强干扰(或干扰信号)的通信资源。特别地,仅选择当前没有使用干扰消除的通信资源。根据通信资源上信号质量的测量来选择通信资源。在步骤1020中,接收机预测/估计主要(想要的)信号的未来强度。预测可包括估计主要信号的强度,并将估计用作预测。预测可取决于功率控制环的目标范围。接收机能够通过将功率控制请求经过接收机和发射机之间的传输路径发布给主要信号的发射机来维持目标强度。
在步骤1030中,根据主要信号的预测信号强度,确定表示在接收机处干扰(不想要的)信号的最低(最小)水平的门限tc1,其中可实际上利用干扰消除以防止无法容忍的干扰。该步骤可利用用于干扰信号的参考调制和编码方案。例如,以1/5编码的QPSK调制和编码方案(参考调制和编码方案)的干扰消除要求SINR为-2dB。留下3dB的余量,接收机相对于主要信号的预测信号强度,确定门限tc1为1dB。此外,接收机可确定主要信号质量低于目标设置(例如,由于其它的、低水平干扰的存在),并且其结果是增加门限tc1例如为3dB。
在步骤1040,根据主要信号的预测信号强度,确定表示在接收机处干扰信号的最高(例如,最大)水平的门限tc2,其中干扰消除可防止无法容忍的干扰。因此,根据主要信号的预测信号强度和干扰消除接收机的已知性能限制,接收机确定干扰信号的最大允许强度。例如,相对于主要信号的预测信号强度,门限tc2可以是25dB,导致无线前端有限的动态范围。
在步骤1050,根据主要信号的预测强度,接收机确定表示在接收机处可容忍的无需干扰消除来接收原始信号的干扰信号的最高(例如,最大)水平的门限tu。如果主要信号的预测SNIR低于预定门限,门限tu可减小。例如,接收机可选择低于预定本底噪声3dB的门限tu
在步骤1055,接收机选择用于将消息(例如,广播消息)发送给周围区域中的发射机的发送功率Pmsg。发送功率Pmsg可以是预定的常量。在步骤1060中,接收机将发送功率Pmsg编码到消息中。编码可通过使用用于指定类型的消息的预定发送功率水平隐含地完成。在步骤1070、1080和1090中,接收机分别将门限tc1、tc2、tu编码到消息中。在步骤1095中,接收机使用选择的发送功率Pmsg发送消息。传输可以是广播或信标类型。从而,可将消息寻址到与接收机具有合适距离的一个发射机、发射机的子集、或全部发射机。
现在转向图11,描述的是根据本发明原理的干扰消除过程的实施方式的流程图。可按照诸如关于图5解释和描述的第二发射机530的通信系统的发射机执行干扰消除(“IC”)过程。在步骤1110,从诸如关于图5解释和描述的第一接收机520的接收机接收消息。在步骤1120,确定消息的发送功率水平Pmsg。发送功率水平Pmsg可从消息中的编码字段中获得,或者作为指定类型消息的预定发送功率。在步骤1130,估计消息的接收信号强度或功率水平Pm。在步骤1140,确定消息传输的路径损耗(L=Pmsg-Pm(dB))。假设通信信道的相互作用和时间不变性,路径损耗L还可通过发射机发送的在接收机处看起来是干扰信号的信号来预测传输衰减。
在步骤1150,从消息中解码/获取门限tc1。门限tc1表示接收机处干扰(不想要的)信号的最低(例如,最小)水平,其中可实际利用干扰消除以防止无法容忍的干扰。在步骤1155,从消息中对门限tc2进行解码/提取。门限tc2表示接收机处干扰信号的最高水平(例如,最大),其中干扰消除可防止无法容忍的干扰。在步骤1160,从消息中对门限tu进行解码/提取。门限tu表示接收机处可容忍的无需对接收主要(想要的)信号进行干扰消除的干扰信号的最高(例如,最大)水平。
在步骤1165、1170、1175,根据公式tc1’=tc1+L(dB)、tc2’=tc2+L(dB)和tu’=tu+L(dB),门限tc1、tc2、tu涉及与使用路径损耗估计L的发射机tc1’、tc2’、tu’处的功率水平。在步骤1180,发射机选择调制和编码方案MCSt,和考虑到门限tc1’、tc2’、tu’的发送功率Pt。发送功率Pt可通过下式约束。
constr_1:Pt>=tc1’+Δ(MCSt)和Pt<=tc2’(dB);或
constr_2:Pt<=tu’(dB)。
通常将选择调制和编码方案的组合和在多个通信资源上的发送功率的方法称为链路自适应。例如,链路自适应可使用“waterfilling(充水)”算法将发送功率水平分配给通信资源,估计每个资源上的信噪比,并且选择最合适的调制和编码方案。对于指定的附加约束,例如(constr_1,constr_2),链路自适应可使用各种优化技术以选择调制和编码方案以及发送功率。发送功率水平Pt及调制和编码方案MCSt符合约束1导致可通过使用干扰消除处理接收机处的干扰信号,从而防止对接收机的主要信号产生无法容忍的干扰。可替换地,根据constr_2选择发送功率水平Pt,通过限制干扰信号的水平以防止对接收机产生无法容忍的干扰。在步骤1190,发射机通过使用发送功率水平Pt以及调制和编码方案发送数据。
在灵活的频谱使用方案中,使用干扰消除释放了通信资源,从而提高例如在小区边缘处的无线通信设备的服务水平,其中小区边缘的接收通常困难,但是仍然为在通信系统中分配稀缺通信资源提出的挑战。因此,灵活频谱使用的关键目的是限制特定无线通信设备可能占用的通信资源的数量,并且从而改进在诸如小区边缘的困难接收环境中的无线通信设备的“公平性”。
由特定无线通信设备同时使用的通信资源的数量由来自灵活频谱使用协商的所谓“预留限量(reservation limit)”进行约束。例如,在指定时间,用于无线通信设备的预留限量可被限制为100个通信资源中的20个。这里,“预留”可意味着在通信资源上进行发送,或者预留相同的通信资源以进行接收,从而有效地预防附近的无线通信设备在相同的通信资源上进行发送。
如这里所描述的,接收无线通信设备可通过发送消息(例如使用信标或广播类型的传输)通知重用通信资源的机会。另一接收无线通信设备于是可根据接收的信息,在通信资源上以控制功率水平进行发送,允许接收无线通信设备对干扰消除的使用。尽管该方法清楚地有益于整体性能,但是它对已经自愿利用干扰消除的接收无线通信设备是不利的。尽管之前在通信资源上未受到干扰的接收是可能的,但是其现在需要使用干扰消除,由于要求执行干扰消除的额外信号处理,因此负担有操作成本。
通常,干扰消除不是完美的,这是由于在缺少干扰信号时所得到的SNR比可实现的SNR要差。干扰消除过程可增加等待时间,并且从而接收的主要(想要的)信号被对干扰信号进行解码和去除的时间所延迟。干扰消除方法假设接收机(例如,无线通信设备)处的功率缩短其电池寿命。因此,所需要的是接收机通告重用的机会的“动机”,并且从而自愿接受由执行干扰消除而导致的负担。
在利用这里介绍的灵活频谱使用的改进系统中,接收机在协商过程中确定通信资源的预留限量。接收机检测通信资源上的干扰信号,并且然后通过信号通知联合使用通信资源的机会。接收机在通信资源上使用干扰消除,并且在成功执行干扰消除时,根据两个接收机在相同通信资源上进行通信的能力,请求增加通信资源的预留限量。因此,当来自另一发射机(例如,另一无线通信设备或基站)的信号(例如,干扰信号)的信号功率水平超出预定的门限时,接收机可请求增加通信资源预留限量。
例如,在用于接收的100个通信资源中,通常将接收机限制为20个。接收机确定通过利用干扰消除可容忍的干扰水平的范围。接收机广播功率水平范围,创造重用通信资源的机会。发射机(例如,另一无线通信设备或基站)接收消息,并且选择能够在接收机处进行干扰消除的发送功率水平以及调制和编码方案。从而发射机开始进行发送,并且接收机检测干扰信号并开始使用干扰消除。在成功使用干扰消除时,接收机请求其预留限量从20增加到21。接收机从而尝试通过例如通知高于其之前预留限量的附加通信资源的灵活频谱使用进行协商。
在一个操作模式中,接收机选择由适当的、主要的干扰者使用的通信资源,并且于是预留用于接收的相同资源,以将次级(secondary)干扰者排除在外。受到干扰的发射机没有注意到预留请求。受到干扰的发射机已经建立有效的预留,并没有义务继续扫描冲突,这是因为其已经建立了对通信资源没有阻碍的访问。因此,通过使用这里引入的系统、过程和方法,通过使用干扰消除,通信系统可方便地识别和利用可用于通信资源重用的情形。干扰消除的使用提高了通信系统的整体性能。
现在转向图12A和12B,描述的是根据本发明原理的确定通信资源预留限量的方法的实施方式的流图。通常,该方法包括确定/提供通信资源预留限量,接收/准许/拒绝增加通信资源预留限量的请求和在通信设备和附近通信设备之间执行“协商”。可由处理器(例如,诸如其灵活频谱使用模块的模块)根据诸如基站或无线通信设备(例如,用户设备)的通信设备中的存储器来执行该方法。模块可为通信系统中的一个或多个通信设备提供服务。此外,模块可在为与其连接的用户设备提供服务的接入点中实施,或者在为基站和相应用户设备提供服务的移动管理实体/系统架构演进网关(例如,图4中标示为430的MME/SAE GW)的模块中实施。
具体地,根据如图12A所示的示例性实施方式,该方法根据模块执行,并在开始步骤1200处开始。在步骤1210,模块确定为通信设备提供服务的可用通信资源的平均数量。如果通信设备可预留相同的资源或者通信资源已经由通信设备预留,则通信资源是可利用的。在步骤1220,将报告消息发送给附近的其它灵活频谱使用模块,对所确定的可用通信资源的平均数量进行编码。在步骤1230,模块根据确定的可利通信资源的平均数量更新其自己的统计值,并且在处理其自己的报告消息时与处理从其它模块接收的报告消息时没有不同。在步骤1240,模块等待定时器到期(例如,500毫秒(“ms”)),并且当定时器到期时,该方法返回步骤1210。
现在转向步骤图12B,可根据模块执行与前述方法并行操作的方法并且所述方法从开始步骤1250处开始。在步骤1250,暂停该方法的执行,直到接收到报告消息或请求消息为止。在步骤1260,已经从另一灵活频谱使用模块中以无线电消息的形式通过诸如图3和图4中所示的X2/S1接口的通信系统架构接收报告消息。以此相对应,模块从报告消息确定通信资源的可用数量。在步骤1265,模块根据可用通信资源的确定平均数量更新其自己的统计值。统计值可包括可用通信资源的整体平均数量和可用通信资源的最小数量。该方法随后返回步骤1255。
在步骤1270,该模块已经从通信设备接收用于增加通信资源预留限量的请求,并确定通信资源预留限量。该模块可确定通信资源预留限量以作为可用通信资源的整体平均数量。在步骤1275,该模块确定通信资源的数量,其中由发送请求的通信设备使用干扰消除。在步骤1280,该模块确定增加的通信资源预留限量。该模块可通过增加上述数量的通信资源确定增加的通信资源预留限量,其中干扰消除用于通信资源预留限量。在步骤1285,该模块准许通信资源预留限量增加到所确定的增加的通信资源预留限量。通信资源的准许可在多个通信设备之间共享,其中多个通信设备具有用于通信设备在干扰信号上执行干扰消除的机会。该方法随后返回步骤1255。
因此,诸如无线通信设备(接收机)的通信设备可在协商过程中确定通信资源的预留限量。无线通信设备还可检测通信资源上的干扰信号,并用信号发送用于通信资源的联合使用的机会。无线通信设备可在通信资源上使用干扰消除,并在成功执行干扰消除时,根据两个接收机(例如,无线通信设备和相邻无线通信设备)在相同通信资源上进行通信的能力,请求增加通信资源的预留限量。
现在转向图13,描述的是根据本发明原理构建的通信系统的通信元件1310的实施方式的框图。通信系统可包括例如蜂窝网络。通信元件或设备1310可没有限制性地表示为基站和无线通信设备(例如,订户台、终端、移动台、用户设备)等。通信元件1310至少包括处理器1320和存储临时性或更长久特性的程序和数据的存储器1350。通信元件1310还可包括与处理器1320和多个天线(将其中一个标示为1360)相耦合的射频收发器1370。通信元件1310可提供点对点和/或点对多点的通信服务。
诸如蜂窝网络中基站的通信元件1310可与通信网络元件耦合,例如网络控制元件1380与公共交换电信网络1390(“PSTN”)耦合。网络控制元件1380从而可由处理器、存储器、和其它电子元件(在图中没有示出)形成。网络控制元件1380通常提供对诸如PSTN 1390的通信网络的访问。可利用光导纤维、同轴电缆、双绞线、微波通信、或与合适的链路端接元件耦合的相似链路来提供访问。形成为无线通信设备的通信元件1310通常是整装(self-contained)的通信设备。
通信元件1310中可利用一个或多个处理设备实现的处理器1320执行与其操作相关联的功能,包括但不局限于,对形成通信消息的各个比特进行编码和解码(编码器/解码器1323)、对信息进行格式化、和对通信元件1310的整体控制(控制器1325),包括对由资源管理器1328表示的通信资源的管理相关的过程。涉及通信资源管理的示例性功能包括但不局限于,硬件安装、业务管理、性能数据分析、最终用户和设备的跟踪、配置管理、最终用户管理、无线通信设备管理、关税管理、订阅和安全、和开账单、局域网特性的积累和管理、通信资源管理等。与通信资源管理相关的全部或部分特定功能或过程的执行可在与通信元件1310独立和/或耦合的设备中执行,并将用于执行的这样的功能或过程的结果传送给通信元件1310。作为非限制性的实施例,通信元件1310的处理器1320可以为适于本地应用环境的任何类型,并且可包括一个或多个通用计算机、专用计算机、微处理器、数字信号处理器(“DSP”)、现场可编程门阵列(FPGA)、专用集成电路(ASIC)、和基于多核处理器架构的处理器。
通信元件1310的收发器1370将信息调制到载波波形上,由通信元件1310通过天线1360传输给另一通信元件。收发器1370对通过天线1360接收的信息进行解调制以由其它通信元件进行进一步处理。收发器1370能够支持通信元件1310的双工操作。
如上所述,通信元件1310的存储器1350可以是一个或多个存储器,并可以是适于本地应用环境的任何类型,并可使用任何合适的易失性或非易失性数据存储技术实现,例如基于半导体的存储器设备、磁存储器设备和系统、光存储器设备和系统、固定存储器、和可移动式存储器。存储在存储器1350中的程序可包括程序指令或计算机程序代码,当由相关处理器执行时,其能够使通信元件1310执行这里描述的任务。当然,存储器1350可形成与通信元件1310往复发送数据的数据缓冲器。这里描述的系统、子系统和模块的示例性实施方式至少部分地由计算机软件执行,其中计算机软件例如可由用户设备和基站的处理器、或硬件、或其组合来执行。更明显的是,系统、子系统和模块可在这里解释和描述的通信元件1310中实施。
当通信元件1310用作通信系统中的接收机(例如,用户设备)时,将存储器1350和计算机程序代码配置为,利用处理器1320促使通信元件1310识别用于干扰(不想要的)信号的干扰消除的接收信号功率水平相对于主要(想要的)信号的间隔,并产生将用于干扰信号的干扰消除的接收信号功率水平相对于用于发送的主要信号的间隔提供给基站的消息(例如,广播消息)。与其相一致,利用处理器1320,将存储器1350和计算机程序代码配置为促使通信元件1310识别由另一通信元件利用的在间隔中发送具有接收信号功率水平的信号的通信资源,并请求将通信资源分配给通信元件1310。还将存储器1350和计算机程序代码配置为利用处理器1320确定用于通信元件1310的通信资源预留限量,并请求增加通信资源预留限量。还将存储器1350和计算机程序代码配置为利用处理器1320识别作为根据主要信号的调制和编码方案的函数的间隔。还将存储器1350和计算机程序代码配置为利用处理器1320,当接收的信号功率水平在间隔中时,促使通信元件1310执行干扰信号的干扰消除。由于干扰消除,可在同一通信资源上发送干扰信号和主要信号。
此外,当通信元件1310用作通信系统中的接收机时,利用处理器1320(例如,根据其灵活频谱使用(“FSU”)模块1330),将存储器1350和计算机程序代码配置为促使通信元件1310确定通信资源预留限量,并请求(例如,在消息中实施)增加通信资源预留限量。与其相对应,利用处理器1320,将存储器1350和计算机程序代码配置为,在通信元件1310适于执行对主要信号进行干扰信号的干扰消除时,促使通信元件1310请求增加通信资源预留限量。利用处理器1320,还将存储器1350和计算机程序代码配置为,促使通信元件1310识别由将具有对主要信号进行干扰信号的干扰消除的接收信号功率水平的间隔内的接收信号功率水平的信号发送给通信元件1310的另一通信元件利用的通信资源、请求增加与其相应的通信资源预留限量、并请求将通信资源分配给通信元件1310。利用处理器1320,将存储器1350和计算机程序代码配置为,促使通信元件1310识别对主要信号进行干扰信号的干扰消除的接收信号功率水平的间隔,并产生提供对主要信号进行干扰信号的干扰消除的接收信号功率水平的间隔的消息。利用处理器1320,还将存储器1350和计算机程序代码配置为,在通信元件1310检测到另一通信元件在同一通信资源中发送信号以作为用于通信元件1310的主要信号时,促使通信元件1310请求增加通信资源预留限量。利用处理器1320,将存储器1350和计算机程序代码配置为,当由另一通信元件发送的信号的接收信号功率水平超出预定的门限时,促使通信元件1310请求增加通信资源预留限量。利用处理器1320,将存储器1350和计算机程序代码配置为,促使通信元件1310通过对干扰信号进行解码和利用解码的干扰信号执行干扰消除,以提高主要信号的接收质量。
当通信元件1310用作通信系统中的发射机(例如,基站)时,利用处理器1320,将存储器1350和计算机程序代码配置为,促使通信元件1310在接收机(例如,用户设备)处接收提供对主要信号进行干扰信号的干扰消除的接收信号功率水平的间隔的消息(例如,广播消息),并在接收机处选择落在接收信号功率水平间隔内的用于干扰信号的发送信号功率水平。与其相对应,利用处理器1320,将存储器1350和计算机程序代码配置为,促使通信元件1310从多个接收机接收消息,其中多个接收机将用于干扰信号的干扰消除的接收信号功率水平的间隔提供给多个接收机中每一个的主要信号,并选择落在多个接收机中每一个的接收信号功率水平间隔内的用于干扰信号的传输信号功率水平。利用处理器1320,将存储器1350和计算机程序代码配置为,促使通信元件1310提供通信资源预留限量,并响应于提供接收信号功率水平间隔的消息增加通信资源预留限量。间隔可以是根据干扰信号的调制和编码方案的函数。可将干扰信号和主要信号在同一通信资源(例如,包括频率和时隙通信资源)上发送。
进一步,当通信元件1310用作通信系统中的发射机时,利用处理器1320(例如,根据其灵活频谱使用(“FSU”)模块1330),将存储器1350和计算机程序代码配置为,促使通信元件1310确定用于接收机的通信资源预留限量,并响应于来自接收机的请求增加通信资源预留限量。与其相对应的,利用处理器1320,将存储器1350和计算机程序代码配置为,促使通信元件1310响应于提供在接收机对主要信号进行干扰信号的干扰消除的接收信号功率水平的间隔的消息(例如,广播消息),增加通信资源预留限量。利用处理器1320,将存储器1350和计算机程序代码配置为,促使通信元件1310选择落在接收机的接收信号功率水平的间隔内的用于干扰信号的发送信号功率水平。干扰信号和主要信号可在同一通信资源(例如,包括频率和时隙通信资源)上进行发送。
此外,构成本发明各实施方式的程序或代码片段可存储在计算机可读介质中,或者由在载波中实施的计算机数据信号或由载波调制的信号通过传输介质进行发送。例如,包括存储在计算机可读介质中的程序代码的计算机程序产品可形成本发明的各种实施方式。“计算机可读介质”可包括可存储或传送信息的任何介质。计算机可读介质的实施例包括电子电路、半导体存储设备、只读存储器(“ROM”)、闪存、可擦除ROM(“EROM”)、软盘、致密盘(“CD”)-ROM、光盘、硬盘、光纤介质、射频(“RF”))链路等。计算机数据信号可包括可通过诸如电子通信网络信道、光纤、空气、电磁链路、RF链路等的传输介质进行传播的任何信号。代码片段可通过诸如国际互联网、企业网等计算机网络进行下载。
如上所述,示例性实施方式提供方法和由提供用于执行该方法步骤的功能的各模块构成的相应装置。模块可实现为硬件(在包括诸如专用集成电路的基础电路的一个或多个芯片中实施),或者可实现为偶计算机处理器执行的软件或固件。具体的,在固件或软件的情况下,可将示例性实施方式提供为包括由计算机处理器在其上执行实施计算机程序代码(例如,软件或固件)的计算机可读存储结构的计算机程序产品。
尽管已经很详细地描述了本发明及其优势,然而可以理解的是,在不偏离所附权利要求所限定的本发明的精神和范围的情况下,可以进行各种变化、替换和修改。例如,上述的许多特征和功能可由软件、硬件、固件或其组合实现。此外,操作相同内容的许多特征、功能和步骤可重新排序、省略、添加等,并仍落入本发明广阔的范围内。
此外,本申请的范围不意在局限于说明书中描述的过程、机器、制造、以及内容、手段、方法和步骤的组合的特定实施方式。本领域的普通技术人员从本发明的公开中会容易的体会到,根据本发明,相比于利用这里描述的相应实施方式,可利用实质上执行相同功能或实质上达到相同结果的在当前存在或日后开发的过程、机器、制造、以及内容、手段、方法或步骤的组合。因此,所附权利要求意在它们的范围内包括这样的过程、机器、制造、以及内容、手段、方法或步骤的组合。

Claims (50)

1.一种装置,包括:
处理器;和
包括计算机程序代码的存储器;
将所述存储器和所述计算机程序代码配置为,通过所述处理器促使所述装置至少执行下列内容:
识别对主要信号进行干扰信号的干扰消除的接收信号功率水平的间隔;以及
产生提供对所述主要信号进行所述干扰信号的所述干扰消除的接收信号功率水平的所述间隔的消息。
2.根据权利要求1所述的装置,其中将所述存储器和所述计算机程序代码配置为,通过所述处理器促使所述装置识别由使用所述间隔内的接收信号功率水平发送信号的另一装置所利用的通信资源,并请求将所述通信资源分配给所述装置。
3.根据权利要求1所述的装置,其中将所述存储器和所述计算机程序代码配置为,通过所述处理器促使所述装置确定通信资源预留限量,并请求所述通信资源预留限量的增加。
4.根据权利要求1所述的装置,其中将所述存储器和所述计算机程序代码配置为,通过所述处理器将所述间隔识别为根据所述干扰信号的调制和编码方案的功能。
5.根据权利要求1所述的装置,其中将所述存储器和所述计算机程序代码配置为,利用所述处理器促使所述装置,在所述接收信号功率水平在所述间隔内时,执行所述干扰信号的干扰消除。
6.根据权利要求1所述的装置,其中将所述干扰信号和所述主要信号配置为在同一通信资源上进行发送。
7.一种装置,包括:
用于识别对主要信号进行干扰信号的干扰消除的接收信号功率水平的间隔的设备;
用于产生提供对所述主要信号进行所述干扰信号的所述干扰消除的接收信号功率水平的所述间隔的消息的设备。
8.根据权利要求7所述的装置,进一步包括:
用于促使所述装置识别由使用所述间隔内的接收信号功率水平发送信号的另一装置所利用的通信资源的设备;以及
用于请求将所述通信资源分配给所述装置的设备。
9.一种计算机程序产品,包括存储在计算机可读介质中的程序代码,配置为:
识别对主要信号进行干扰信号的干扰消除的接收信号功率水平的间隔;
产生提供对所述主要信号进行所述干扰信号的所述干扰消除的接收信号功率水平的所述间隔的消息。
10.根据权利要求9所述的计算机程序产品,其中将所述计算机可读介质中存储的所述程序代码配置为请求对多个接收机可利用的通信资源进行分配。
11.一种方法,包括:
识别对主要信号进行干扰信号的干扰消除的接收信号功率水平的间隔;以及
产生提供对所述主要信号进行所述干扰信号的所述干扰消除的接收信号功率水平的所述间隔的消息。
12.根据权利要求11所述的方法,进一步包括请求对多个接收机可利用的通信资源进行分配。
13.根据权利要求11所述的方法,进一步包括:
确定通信资源预留限量;以及
请求所述通信资源预留限量的增加。
14.一种装置,包括:
处理器;和
包括计算机程序代码的存储器;
将所述存储器和所述计算机程序代码配置为,通过所述处理器促使所述装置至少执行下列内容:
接收提供在接收机处对主要信号进行干扰信号的干扰消除的接收信号功率水平的间隔的消息;以及
选择在所述接收机处落入所述接收信号功率水平的所述间隔的用于所述干扰信号的发送信号功率水平。
15.根据权利要求14所述的装置,其中将所述存储器和所述计算机程序代码配置为,通过所述处理器促使所述装置至少执行以下内容:
从多个接收机中的每一个接收消息,所述消息在所述多个接收机的每一个处提供对主要信号的进行干扰信号的干扰消除的接收信号功率水平的间隔;以及
选择在所述多个接收机中每一个处落入所述接收信号功率水平的所述间隔的所述干扰信号的发送信号功率水平。
16.根据权利要求14所述的装置,其中将所述存储器和所述计算机程序代码配置为,通过所述处理器促使所述装置响应于提供接收信号功率水平的所述间隔的所述消息,提供通信资源预留限量并增加所述通信资源预留限量。
17.根据权利要求14所述的装置,其中所述间隔是根据所述干扰信号的调制和编码方案的功能。
18.根据权利要求14所述的装置,其中将所述干扰信号和所述主要信号配置为在同一通信资源上进行发送。
19.一种装置,包括:
用于接收提供在接收机处对主要信号的进行干扰信号的干扰消除的接收信号功率水平的间隔的消息的设备;以及
选择在所述接收机处落入所述接收信号功率水平的所述间隔的用于所述干扰信号的发送信号功率水平。
20.根据权利要求19所述的装置,进一步包括:
用于从多个接收机中的每一个接收消息的设备,其中所述消息在所述多个接收机的每一个处提供对主要信号的进行干扰信号的干扰消除的接收信号功率水平的间隔;以及
选择在所述多个接收机中每一个处落入所述接收信号功率水平的所述间隔的所述干扰信号的发送信号功率水平。
21.一种计算机程序产品,包括存储在计算机可读介质中的程序代码,配置为:
接收提供在接收机处对主要信号的进行干扰信号的干扰消除的接收信号功率水平的间隔的消息;以及
选择在所述接收机处落入所述接收信号功率水平的所述间隔的用于所述干扰信号的发送信号功率水平。
22.根据权利要求21所述的计算机程序产品,其中将所述计算机可读介质中存储的所述程序代码配置为:
从多个接收机中的每一个接收消息,所述消息在所述多个接收机的每一个处提供对主要信号的进行干扰信号的干扰消除的接收信号功率水平的间隔;以及
选择在所述多个接收机中每一个处落入所述接收信号功率水平的所述间隔的所述干扰信号的发送信号功率水平。
23.一种方法,包括:
接收提供在接收机处对主要信号的进行干扰信号的干扰消除的接收信号功率水平的间隔的消息;以及
选择在所述接收机处落入所述接收信号功率水平的所述间隔的用于所述干扰信号的发送信号功率水平。
24.根据权利要求23所述的方法,进一步包括:
从多个接收机中的每一个接收消息,所述消息在所述多个接收机每一个处提供对主要信号进行干扰信号的干扰消除的接收信号功率水平的间隔;以及
选择在所述多个接收机中每一个处落入所述接收信号功率水平的所述间隔的所述干扰信号的发送信号功率水平
25.根据权利要求23所述的方法,响应于提供接收信号功率水平的所述间隔的所述消息,进一步提供通信资源预留限量,并增加所述通信资源预留限量。
26.一种装置,包括:
处理器;和
包括计算机程序代码的存储器;
将所述存储器和所述计算机程序代码配置为,通过所述处理器促使所述装置至少执行下列内容:
确定通信资源预留限量;以及
请求所述通信资源预留限量的增加。
27.根据权利要求26所述的装置,其中将所述存储器和所述计算机程序代码配置为通过所述处理器,当所述装置适于执行对主要信号进行干扰信号的干扰消除时,促使所述装置请求所述通信资源预留限量的所述增加。
28.根据权利要求26所述的装置,其中将所述存储器和所述计算机程序代码配置为,通过所述处理器促使所述装置:
识别由另一装置利用的通信资源,所述另一装置利用在对主要信号进行干扰信号的干扰消除的接收信号功率水平的间隔内的接收信号功率水平将信号发送给所述装置;
请求与通信资源相关的所述通信资源预留限量的所述增加;以及
请求将所述通信资源分配给所述装置。
29.根据权利要求26所述的装置,其中将所述存储器和所述计算机程序代码配置为,通过所述处理器促使所述装置:
识别对主要信号进行干扰信号的干扰消除的接收信号功率水平的间隔;以及
产生提供对所述主要信号进行所述干扰信号的所示干扰消除的接收信号功率水平的所述间隔的消息。
30.根据权利要求26所述的装置,其中将所述存储器和所述计算机程序代码配置为,通过所述处理器促使所述装置,在所述装置检测到另一装置在同一通信资源上为所述装置发送作为主要信号的信号时,请求所述通信资源预留限量的所述增加。
31.根据权利要求26所述的装置,其中将所述存储器和所述计算机程序代码配置为通过所述处理器,在由另一装置发送的信号的接收信号功率水平超出预定门限时,促使所述装置请求所述通信资源预留限量的所述增加。
32.一种装置,包括:
用于确定通信资源预留限量的设备;以及
用于请求所述通信资源预留限量的增加的设备。
33.根据权利要求32所述的装置,进一步包括用于当所述装置适于执行对主要信号进行干扰信号的干扰消除时,促使所述装置请求所述通信资源预留限量的所述增加的设备。
34.一种计算机程序产品,包括存储在计算机可读介质中的程序代码,被配置为:
确定通信资源预留限量;以及
请求所述通信资源预留限量的增加。
35.根据权利要求34所述的计算机程序产品,其中将所述计算机可读介质中存储的所述程序代码配置为,根据执行对主要信号进行干扰信号的干扰消除,请求所述通信资源预留限量的所述增加。
36.一种方法,包括:
确定通信资源预留限量;以及
请求所述通信资源预留限量的增加。
37.根据权利要求36所述的方法,进一步包括根据执行对主要信号进行干扰信号的干扰消除,请求所述通信资源预留限量的所述增加。
38.根据权利要求36所述的方法,进一步包括请求对可由多个接收机利用的通信资源进行分配。
39.一种装置,包括:
处理器;和
包括计算机程序代码的存储器;
将所述存储器和所述计算机程序代码配置为,通过所述处理器促使所述装置至少执行下列内容:
确定通信资源预留限量;以及
响应于来自接收机的请求,增加所述通信资源预留限量。
40.根据权利要求39所述的装置,其中将所述存储器和所述计算机程序代码进一步配置为,通过所述处理器促使所述装置,响应于提供在所述接收机处对主要信号进行干扰信号的干扰消除的接收信号功率水平的间隔的消息,增加所述通信资源预留限量。
41.根据权利要求40所述的装置,其中将所述存储器和所述计算机程序代码进一步配置为,通过所述处理器促使所述装置,选择在所述接收机处落入所述接收信号功率水平的所述间隔内的用于所述干扰信号的发送信号功率水平。
42.根据权利要求40所述的装置,其中所述消息是广播消息。
43.根据权利要求40所述的装置,其中将所述干扰信号和所述主要信号被配置为在同一通信资源上进行发送。
44.一种装置,包括:
用于确定通信资源预留限量的设备;以及
用于响应于来自接收机的请求,增加所述通信资源预留限量的设备。
45.根据权利要求44所述的装置,进一步包括用于促使所述装置响应于提供在所述接收机处对主要信号进行干扰信号的干扰消除的接收信号功率水平的间隔的消息,增加所述通信资源预留限量的设备。
46.一种计算机程序产品,包括存储在计算机可读介质中的程序代码,配置为:
确定通信资源预留限量;以及
响应于来自接收机的请求,增加所述通信资源预留限量。
47.根据权利要求46所述的计算机程序产品,其中将所述计算机可读介质中存储的所述程序代码配置为,响应于提供在所述接收机处对主要信号进行干扰信号的干扰消除的接收信号功率水平的间隔的消息,增加所述通信资源预留限量。
48.一种方法,包括:
确定通信资源预留限量;以及
响应于来自接收机的请求,增加所述通信资源预留限量。
49.根据权利要求48所述的方法,进一步包括响应于提供在所述接收机处对主要信号进行干扰信号的干扰消除的接收信号功率水平的间隔的消息,增加所述通信资源预留限量。
50.根据权利要求49所述的方法,进一步包括选择在所述接收机处落入所述接收信号功率水平的所述间隔内的用于所述干扰信号的发送信号功率水平。
CN201080063604.0A 2010-02-11 2010-02-11 在通信系统中分配通信资源的装置和方法 Expired - Fee Related CN102754479B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610104213.8A CN105611577A (zh) 2010-02-11 2010-02-11 在通信系统中分配通信资源的装置和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FI2010/050086 WO2011098655A1 (en) 2010-02-11 2010-02-11 Apparatus and method to allocate communication resources in a communication system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201610104213.8A Division CN105611577A (zh) 2010-02-11 2010-02-11 在通信系统中分配通信资源的装置和方法

Publications (2)

Publication Number Publication Date
CN102754479A true CN102754479A (zh) 2012-10-24
CN102754479B CN102754479B (zh) 2016-03-23

Family

ID=44367319

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080063604.0A Expired - Fee Related CN102754479B (zh) 2010-02-11 2010-02-11 在通信系统中分配通信资源的装置和方法

Country Status (4)

Country Link
US (2) US8917647B2 (zh)
EP (1) EP2534877A4 (zh)
CN (1) CN102754479B (zh)
WO (1) WO2011098655A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107852648A (zh) * 2015-05-14 2018-03-27 英特尔Ip公司 用于在共享频谱中通信的演进节点b、共享频谱控制器和方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5785845B2 (ja) * 2011-05-20 2015-09-30 株式会社Nttドコモ 受信装置、送信装置及び無線通信方法
JP2013143575A (ja) * 2012-01-06 2013-07-22 Fujitsu Mobile Communications Ltd 無線通信端末装置及び無線通信端末装置制御方法
FR3001847B1 (fr) * 2013-02-04 2015-03-20 Commissariat Energie Atomique Methode d'adaptation de liaison dirigee par un choix de regime d'interference
WO2014201240A1 (en) 2013-06-12 2014-12-18 Convida Wireless, Llc Context and power control information management for proximity services
KR20160021869A (ko) 2013-06-21 2016-02-26 콘비다 와이어리스, 엘엘씨 컨텍스트 관리
WO2015006585A1 (en) 2013-07-10 2015-01-15 Qing Li Context-aware proximity services
US10560244B2 (en) * 2013-07-24 2020-02-11 At&T Intellectual Property I, L.P. System and method for reducing inter-cellsite interference in full-duplex communications
US9438283B2 (en) * 2014-05-23 2016-09-06 Intel Corporation Baseband time domain cancellation of data bus interference
US9467275B2 (en) * 2014-07-18 2016-10-11 Intel Corporation MAC protocol for full duplex wireless communications
US20160088573A1 (en) * 2014-09-24 2016-03-24 Intel Corporation Power adaption and randomization for interference cancelation and mitigation
US10257853B2 (en) * 2014-12-18 2019-04-09 Qualcomm Incorporated Techniques for identifying resources to transmit a channel reservation signal
FR3033119B1 (fr) * 2015-02-24 2017-03-31 Commissariat Energie Atomique Procede de prise de decision d'un transfert de communication dans un contexte interferentiel intra-bande
US9831974B1 (en) 2016-08-09 2017-11-28 International Business Machines Corporation Selective directional mitigation of wireless signal interference
US10129768B1 (en) * 2016-11-17 2018-11-13 Sprint Spectrum L.P. Determining potential interference in a wireless network
US20190241485A1 (en) 2017-12-22 2019-08-08 Exxonmobil Chemical Patents Inc. Catalysts for Producing Paraxylene by Methylation of Benzene and/or Toluene
WO2019190774A1 (en) 2018-03-30 2019-10-03 Exxonmobil Chemical Patents Inc. Process for co-production of mixed xylenes and high octane c9+ aromatics
CN110708750B (zh) * 2018-07-09 2021-06-22 华为技术有限公司 一种功率调整方法、终端及存储介质
WO2021052565A1 (en) * 2019-09-17 2021-03-25 Nokia Technologies Oy Apparatus, method and computer program for interference cancellation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1158678A (zh) * 1994-08-24 1997-09-03 诺基亚电信公司 在蜂窝通信系统中的功率控制方法和接收机
US20070104126A1 (en) * 2005-11-04 2007-05-10 Cisco Technology, Inc. Method for optimized layer 2 roaming and policy enforcement in a wireless environment
US20070153717A1 (en) * 2005-12-30 2007-07-05 Janne Tervonen Efficient resolution of relinquishment requests in a wireless communications network
US20080187065A1 (en) * 2007-02-06 2008-08-07 Inha-Industry Partnership Institute System and Method for Co-Channel Interference Cancellation in Cellular OFDM Systems
US20090129366A1 (en) * 2007-11-16 2009-05-21 Molisch Andreas F Multiple Power-Multiple Access in Wireless Networks for Interference Cancellation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6609008B1 (en) 2000-11-09 2003-08-19 Qualcomm Incoporated Method and apparatus for controlling signal power level in a communication system
KR100696208B1 (ko) 2004-12-08 2007-03-20 한국전자통신연구원 다중 안테나 송수신 시스템의 제어 방법, 송신기 및 수신기
GB2447635A (en) * 2007-03-19 2008-09-24 Fujitsu Ltd Scheduling qos communications between nodes within a predetermined time unit in wimax systems
KR20100067775A (ko) * 2008-12-12 2010-06-22 삼성전자주식회사 무선통신시스템에서 소형 셀의 자원 운영 장치 및 방법
US9191987B2 (en) 2009-11-25 2015-11-17 Nokia Technologies Oy Determining “fair share” of radio resources in radio access system with contention-based spectrum sharing
US8755459B2 (en) 2010-03-16 2014-06-17 Nokia Corporation Methods and apparatuses for interference cancellation with frequency error compensation for equalizer adaptation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1158678A (zh) * 1994-08-24 1997-09-03 诺基亚电信公司 在蜂窝通信系统中的功率控制方法和接收机
US20070104126A1 (en) * 2005-11-04 2007-05-10 Cisco Technology, Inc. Method for optimized layer 2 roaming and policy enforcement in a wireless environment
US20070153717A1 (en) * 2005-12-30 2007-07-05 Janne Tervonen Efficient resolution of relinquishment requests in a wireless communications network
US20080187065A1 (en) * 2007-02-06 2008-08-07 Inha-Industry Partnership Institute System and Method for Co-Channel Interference Cancellation in Cellular OFDM Systems
US20090129366A1 (en) * 2007-11-16 2009-05-21 Molisch Andreas F Multiple Power-Multiple Access in Wireless Networks for Interference Cancellation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107852648A (zh) * 2015-05-14 2018-03-27 英特尔Ip公司 用于在共享频谱中通信的演进节点b、共享频谱控制器和方法
CN107852648B (zh) * 2015-05-14 2022-01-11 苹果公司 用于在共享频谱中通信的演进节点b、共享频谱控制器和方法

Also Published As

Publication number Publication date
US9294962B2 (en) 2016-03-22
WO2011098655A1 (en) 2011-08-18
US20150063196A1 (en) 2015-03-05
US8917647B2 (en) 2014-12-23
EP2534877A1 (en) 2012-12-19
US20130058288A1 (en) 2013-03-07
EP2534877A4 (en) 2015-07-08
CN102754479B (zh) 2016-03-23

Similar Documents

Publication Publication Date Title
CN102754479B (zh) 在通信系统中分配通信资源的装置和方法
EP2238779B1 (en) Backhaul signaling for interference avoidance
AU2008299116B2 (en) Method and apparatus for using load indication for interference mitigation in a wireless communication system
Peng et al. Interference avoidance mechanisms in the hybrid cellular and device-to-device systems
US8289894B2 (en) Systems and methods for inter relay interference coordination
CN101605390B (zh) 无线基站以及无线通信系统
EP2095528B1 (en) Method for transmit power control dependent on subband load
US9918268B2 (en) Communication control device, communication control method, radio communication system, base station, and terminal device
EP2213124B1 (en) Preamble design for a wireless signal
EP2213123A1 (en) Preamble design for a wireless signal
CN105611577A (zh) 在通信系统中分配通信资源的装置和方法
RU2461148C2 (ru) Схема заголовка для беспроводного сигнала

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20151218

Address after: Espoo, Finland

Applicant after: Technology Co., Ltd. of Nokia

Address before: Espoo, Finland

Applicant before: Nokia Oyj

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160323

Termination date: 20170211