CN102723422B - 波长转换装置和发光装置 - Google Patents

波长转换装置和发光装置 Download PDF

Info

Publication number
CN102723422B
CN102723422B CN201210038232.7A CN201210038232A CN102723422B CN 102723422 B CN102723422 B CN 102723422B CN 201210038232 A CN201210038232 A CN 201210038232A CN 102723422 B CN102723422 B CN 102723422B
Authority
CN
China
Prior art keywords
fluorescent material
light
material layer
wavelength converter
spectral filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210038232.7A
Other languages
English (en)
Other versions
CN102723422A (zh
Inventor
李屹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Appotronics Corp Ltd
Shenzhen Appotronics Technology Co Ltd
Original Assignee
Appotronics Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Appotronics Corp Ltd filed Critical Appotronics Corp Ltd
Priority to CN201210038232.7A priority Critical patent/CN102723422B/zh
Priority to CN201510249990.7A priority patent/CN105042517A/zh
Publication of CN102723422A publication Critical patent/CN102723422A/zh
Application granted granted Critical
Publication of CN102723422B publication Critical patent/CN102723422B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明提出一种波长转换装置和发光装置,包括与荧光材料层固定连接的驱动装置,用于驱动荧光材料层与激发光周期性相对运动。荧光材料层中的荧光材料的分子式为(YLLumGdnTb3-L-m-n)Al5O12:Ce,或Y3(AlyGa5-y)O12:Ce,或(YLLumGdnTb3-L-m-n)(AlyGa5-y)O12:Ce,其中L、m、n、y都是大于等于0的实数,且满足L+m大于等于0且小于3,L+m+n大于等于0且小于等于3,y小于5;该荧光材料的发射光谱的主波长大于分子式为Y3Al5O12:Ce的荧光材料在相同的激发条件下的发射光谱的主波长。激发光照射在荧光材料层上的光斑的直径与激发光在荧光材料层上的相对运动一个周期的轨迹长度的比例小于3%。在本发明的波长转换装置和发光装置中,利用改性的YAG荧光粉及其与激发光之间的相对运动,可以大幅度提高红光发光的亮度。

Description

波长转换装置和发光装置
技术领域
本发明涉及光学技术领域,特别是涉及波长转换装置和发光装置。
背景技术
目前,基于波长转换的固态光源越来越成为研究和应用的热点,例如使用蓝光发光二极管(LED,light emitting diode)激发黄色荧光粉制作的白光光源已经被广泛的接受和使用。
与通用照明不同的是,在投影显示领域,为了得到彩色图像,一般采用单色时序光源作为照明光源。一种方法是使用多个滤光片依次过滤白光得到单色光,但是过滤过程的效率很低;另一种方法是直接使用单色的波长转换材料来得到单色光,例如使用绿色荧光粉受激产生绿光。第二种方法的效率比第一种方法有显著的提高,然而问题在于红色荧光粉的效率太低,且使用寿命太短,进而使得红光成为整个光源系统的效率和寿命的瓶颈。
为了解决产生红光的问题,有人提出使用高效率且稳定的黄色荧光粉,通过滤光片把其发射光谱中的绿光成分过滤掉来产生红光。目前最常用的黄色荧光粉是YAG荧光粉,YAG荧光粉的分子式是Y3Al5O12:Ce,其中冒号前的部分指的是该荧光粉的主体晶格的分子式,冒号后面的是掺杂在该晶格中的发光中心的元素。YAG荧光粉的发射光谱如图1中的101所示,一般定义其中600nm以上的部分为红光光谱成分,在图1中表示为101R。当然由于光的颜色随波长是连续变化的,此处的600nm的界线仅是为了方便说明的举例。
由于YAG荧光粉被证明具有非常良好的稳定性,这种方法可以很好的解决红光的寿命瓶颈的问题,然而从图1中可以看到,这种方法同时会造成600nm以下的光谱能量的损失,而这部分能量是YAG荧光粉发射光谱101中能量最集中的区域。这主要是由于YAG荧光粉在红光光谱成分的能量分布较低所致。
为了解决这个问题,人们提出通过在YAG荧光粉的主体晶格中掺杂其它元素对YAG荧光粉进行改性,使其发射光谱向长波长移动,以提高其红光光谱成分的相对能量分布。图2中表示了YAG荧光粉改性前后的发射光谱比较,改性前的发射光谱为101,改性荧光粉一的分子式为(Y2Tb1)Al5O12:Ce,其发射光谱为201,改性荧光粉二的分子式为(Y1Tb2)Al5O12:Ce,其发射光谱为202。通过比较分子式可以知道,通过在Y3Al5O12晶格中把Y原子部分的替换为Tb原子,可以使发射光谱向长波长漂移,而且Y原子被Tb原子替换的越多,则发射光谱向长波长漂移的越多。通过计算可知,201所示的光谱的主波长比101所示的光谱主波长长5nm,202所示的光谱的主波长比101所示的光谱主波长长10nm。
显而易见的,改性后的荧光粉的红光光谱成分具有更强的能量分布,因此相对于改性前的YAG荧光粉可以产生更多的红光。
然而,YAG荧光粉的改性在使发射光谱的主波长变大的同时,还会使其温度稳定性下降,如图3所示。其中310是未改性的YAG荧光粉的效率随温度的变化曲线,311和312分别是(Y2Tb1)Al5O12:Ce和(Y1Tb2)Al5O12:Ce的效率随温度的变化曲线。由图中可见,荧光粉发射光谱的主波长向长波长移动越大,则荧光粉的温度稳定性越差,工作中的波长转换效率越低。
其它的改性也有相类似的效果,例如使用Gd元素替换YAG晶格中的Y元素,或使用Ga元素替换YAG晶格中的Al元素,都会使荧光粉的发射光谱的主波长变大,但同时也会引起其温度稳定性的下降,而且主波长越大,则温度稳定性下降越剧烈。虽然使用Lu元素替换YAG晶格中的Y元素不会引起温度稳定性的下降,但是这同时会使荧光粉的发射光谱的主波长变小,红光光谱成分的能量分布减小。
通过实验,我们还尝试了将两种或两种以上的替换元素同时使用,例如(Y1Gd1Tb1)(Al4Ga1)O12:Ce,甚至使用替换元素将原YAG晶格中的元素完全替换掉,例如(Tb2Gd1)Ga5O12:Ce,但是仍然不能解决发射光谱的主波长增大与热稳定性之间的矛盾。
所以,需要一种波长转换装置,在使红光光谱成分获得更大的能量分布的同时波长转换效率不发生下降。
发明内容
本发明解决的主要技术问题是荧光材料发射的红光能量与该荧光材料的热稳定性之间的矛盾。
本发明提出一种波长转换装置,包括荧光材料层,该荧光材料层用于接收激发光并发射受激光;还包括与荧光材料层固定连接的驱动装置,用于驱动荧光材料层与激发光周期性相对运动。
荧光材料层至少包括第一区段,该第一区段上包括第一荧光材料,该第一荧光材料的分子式为(YLLumGdnTb3-L-m-n)Al5O12:Ce,或Y3(AlyGa5-y)O12:Ce,或(YLLumGdnTb3-L-m-n)(AlyGa5-y)O12:Ce,其中L、m、n、y都是大于等于0的实数,且满足L+m大于等于0且小于3,L+m+n大于等于0且小于等于3,y小于5;
该第一荧光材料的发射光谱的主波长大于分子式为Y3Al5O12:Ce的荧光材料在相同的激发条件下的发射光谱的主波长;
激发光照射在荧光材料层上的光斑的直径与激发光在荧光材料层上的相对运动一个周期的轨迹长度的比例小于3%。
本发明还提出一种发光装置,包括用于发射激发光的激发光源;还包括上述的波长转换装置,用于接收所述激发光并发射受激光或受激光与没有被吸收的剩余激发光的混合光。
在本发明的波长转换装置和发光装置中,利用改性的YAG荧光粉及其与激发光之间的相对运动,大幅度提高红光发光的亮度。
附图说明
图1是YAG荧光粉的发射光谱;
图2是改性前后的YAG荧光粉的发射光谱对比;
图3是图2中所示的荧光粉的效率随温度的变化曲线;
图4是本发明的第一实施例的结构示意图;
图5a、5b和5c是本发明的第二实施例及其变形的结构示意图;
图6是本发明的第三实施例的结构示意图;
图7是本发明的第三实施例中荧光材料层的正视图。
具体实施方式
在以下描述中,Y代表元素钇,Lu代表元素镥,Gd代表元素钆,Tb代表元素铽,Al代表元素铝,Ga代表元素镓,O代表元素氧,Ce代表元素铈,nm代表长度单位纳米。
本发明的波长转换装置的结构示意图如图4所示。其中,波长转换装置400包括荧光材料层431,该荧光材料层431用于接收激发光437并发射受激光(图中未画出);还包括与荧光材料层431固定连接的驱动装置421,用于驱动荧光材料层431与激发光周期性相对运动。在本实施例中,该驱动装置为马达,它可以驱动荧光材料层431做匀速圆周运动。
在本实施例中,荧光材料层431包括第一荧光材料,该第一荧光材料的分子式为(YLLumGdnTb3-L-m-n)Al5O12:Ce,或Y3(AlyGa5-y)O12:Ce,或(YLLumGdnTb3-L-m-n)(AlyGa5-y)O12:Ce,其中L、m、n、y都是大于等于0的实数,且满足L+m大于等于0且小于3,L+m+n大于等于0且小于等于3,y小于5。
对于第一荧光材料第一种可能的分子式(YLLumGdnTb3-L-m-n)Al5O12:Ce,该改性荧光材料是将YAG晶格中Y原子替换或部分替换成Lu,Gd,Tb等原子;由于L、m、n都是大于等于0的实数,且L+m+n大于等于0且小于等于3,因此,在一个单位晶格Y、Lu、Gd、Tb的平均原子个数均满足大于等于0且小于等于3,且Y、Lu、Gd、Tb的平均原子个数之和等于3;同时,由于L+m大于等于0且小于3,因此在该荧光材料中至少存在Gd和Tb两种元素之一。实验证明,这样的原子替换会使荧光材料的发射光谱的主波长变大。
对于第一荧光材料的第二种可能的分子式Y3(AlyGa5-y)O12:Ce,该改性荧光材料是将YAG晶格中的Al的位置替换或部分替换成Ga元素;由于y大于等于0且小于5,因此该荧光材料中一定存在Ga元素,而且当y等于0时,YAG晶格中的Al原子完全被Ga原子所取代。实验证明,这样的原子替换会使荧光材料的发射光谱的主波长变大。
对于第一荧光材料的第三种可能的分子式(YLLumGdnTb3-L-m-n)(AlyGa5-y)O12:Ce,可以理解的,它是前面两种改性方法的组合使用,即在YAG晶格中同时将Y原子替换或部分替换成Lu,Gd,Tb等原子,将Al元素替换或部分替换成Ga原子。实验证明,这样的原子替换会使荧光材料的发射光谱的主波长变大。
综上所述,使用以上的改性方法的第一荧光材料的发射光谱的主波长大于分子式为Y3Al5O12:Ce的荧光材料在相同的激发条件下的发射光谱的主波长,进而提高第一荧光材料发射光谱中红光光谱成分的能量分布,并最终提高红光的亮度。此处强调在相同的激发条件下是因为荧光材料受激发射光谱的主波长与激发条件存在一定的关系,例如发射光谱会随着温度的变化和激发功率的变化而发生轻微变化。
然而根据图3可知,随着工作温度的提升,第一荧光材料的效率的下降速度远远高于YAG荧光材料,因此在本实施例中,利用与荧光材料层431固定连接的驱动装置421来驱动该荧光材料层431与激发光周期性相对运动,并以此来降低第一荧光材料的温度。根据图3可知,在较低温度的区间,改性的荧光材料的热稳定性与YAG荧光材料相比相差并不多,因此只要把荧光材料的工作温度控制在较低的范围,例如100摄氏度以下,甚至50摄氏度以下,就可以大幅度的降低温度对改性荧光材料的影响,从而使最终出射的红光发光的亮度提高。
具体的工作原理如下:
由于荧光材料层的比热容的存在,荧光材料受激发后温度不会立刻达到最高值,而是有一个上升的过程;这个上升过程所需要的时间的长短T与荧光材料层的比热容的大小有关。在本实施例中,驱动装置是一个马达421,荧光材料层431的外形是一个圆形,它被马达421带动围绕该圆形的圆心转动;同时激发光437的位置保持不变。这样,每一个局部的第一荧光材料都只有在转动到激发光437照射的位置时才会被激发,一旦离开激发光437照射的位置就会开始冷却。
可以简单计算出每一局部的第一荧光材料在一个周期内被激发的时间t。设激发光437照射到荧光材料层431表面所形成的光斑为直径等于D的圆形,光斑所照射的位置距离荧光材料层431的圆心的距离是R,马达转动一圈需要C秒,这样有:
t = D 2 πR · C - - - ( 1 )
由公式(1)可见,激发光437的光斑直径D越小,光斑照射的位置距离圆心的举例R越大,马达的转速越高,t就越小。实际工作中,马达的转速一般是7200转/分钟,因此C=8.333毫秒。只要激发光437的光斑直径D与该光斑在荧光材料层上的轨迹长度的比例小于3%,t就小于250微秒。例如在D=2毫米,R=30毫米的情况下,t仅为88微秒。在这种情况下,每一局部的第一荧光材料在一个周期内被激发的时间t远远小于荧光材料温度上升过程的时间T(一般来说是毫秒量级),此时荧光材料受激发后温度来不及上升就离开了激发光激发的位置。因此,利用荧光材料层431相对于激发光437的相对运动,使得第一荧光材料工作于被脉冲激发的工作状态,其温度可能远远低于连续被激发的工作状态。
然而,激发光437激发荧光材料层所产生的热量仍然会引起第一荧光材料温度上升,只不过在本发明的波长转换装置中,利用上述的脉冲工作状态,这部分热量近似于平均地分散于激发光437扫过的荧光材料层的轨迹,因此可以理解的,只要增大R的值,就可以减小局部第一荧光材料所分担的热量,也就是降低第一荧光材料的温度。
在实际工作中,由于激发光437在荧光材料层上形成的光斑往往是确定的,而马达的转速也是确定不变的,因此可以通过增大激发光437所照射的位置距离荧光材料层431的圆心的距离R来不断降低第一荧光材料的工作温度,直到其效率达到要求为止。根据实验,对于直径1.88毫米的激发光斑,当R约等于10毫米时可以满足一般的使用要求,此时激发光斑的直径与该光斑在荧光材料层上的轨迹长度的比例约等于3%;而R约等于20毫米时可以取得更高的效率,此时激发光斑的直径与该光斑在荧光材料层上的轨迹长度的比例约等于1.5%。
更一般的,驱动装置还可以为其它形式,例如直线往复运动的马达。此时,只要激发光照射在荧光材料层上的光斑的直径与该光斑在荧光材料层上的轨迹长度的比例小于3%,就可以认为满足实际使用需要;当激发光照射在荧光材料层上的光斑的直径与该光斑在荧光材料层上的轨迹长度的比例小于1.5%时,荧光材料层可以实现更高的效率。
值得说明的是,当激发光照射在荧光材料层上的光斑不是圆形时,可以用该光斑的外接圆的直径来表示该光斑的尺寸,因此在本发明中光斑的直径指的是其自身的直径(当光斑是圆形时)或其外接圆的直径。
值得说明的,在本发明中掺杂在荧光材料晶格中的发光中心都是稀土元素Ce,而Ce的掺杂浓度也会影响该荧光材料的发射光谱的主波长。因此在本发明中所说的第一荧光材料的发射光谱的主波长大于分子式为Y3Al5O12:Ce的荧光材料在相同的激发条件下的发射光谱的主波长,这样的比较是在第一荧光材料中的Ce掺杂浓度与分子式为Y3Al5O12:Ce的荧光材料中Ce的掺杂浓度相同的情况下进行的。
荧光材料层有多种制作方式,例如将第一荧光材料与有机透明胶体混合后均匀涂覆在一个基材表面,然后加热使该有机胶体固化形成荧光材料层。该荧光材料层可以从基材上剥离下来使用,也可以不剥离而直接使用。有机透明胶体包括但不限于硅胶、环氧树脂等材料。又例如将第一荧光材料与无机粘结剂混合后喷洒于基材表面,加热或静置干燥后无机粘结剂中的溶剂挥发形成荧光材料的片层。常用的无机粘结剂包括水玻璃等。还可以将第一荧光材料与玻璃材料混合后加热融化,成型后进行冷却而形成荧光片层;为了降低制作难度,该玻璃材料可以是低熔点玻璃材料。
在本实施例中,利用荧光材料层与激发光的周期性相对运动使荧光材料层保持在较低的工作温度,这样使得第一荧光材料工作于较高效率的工作状态,再进一步的利用第一荧光材料由于改性而形成的光谱向长波长的漂移而提高最终得到红光发光亮度的提升。在实际工作中,可能该包括为该波长转换装置散热的制冷装置,例如风扇或半导体制冷器,这属于现有技术,此处不赘述。
作为第二实施例,本发明还提出一种发光装置,如图5a所示。其中,发光装置510包括用于发射激发光537的激发光源532,和包括荧光材料层531a的波长转换装置531,该波长转换装置531用于接收激发光537并发射受激光或受激光与没有被吸收的剩余激发光的混合光539。
本实施例中的波长转换装置531中,还包括分光滤光片533,它透射激发光537同时反射荧光材料层发出的受激光,这样荧光材料层531a面向分光滤光片533发出的受激光就会被其反射回来而从另一表面出射。分光滤光片533由在透明衬底(例如玻璃)上镀光学薄膜制作而成,优选的,分光滤光片533的镀膜面面向荧光材料层531a。
本实施例的发光装置的波长转换装置531中还包括放置于荧光材料层光路后端的滤光片534,该滤光片534用于将荧光材料层发出的受激光中的绿光光谱成分和红光光谱成分分离。在本实施例中,滤光片534是吸收型滤光片,它透射红光光谱成分539,并吸收绿光光谱成分。实际上,滤光片534还可以是干涉滤光片,用于透射红光光谱成分539,并反射绿光光谱成分。
当滤光片534被设计成不能透过激发光时,光束539只包括受激光中的红光光谱成分,而当滤光片534被设计成可以透过激发光时,光束539则是受激光中的红光光谱成分和没有被吸收的剩余激发光的混合光。
在本领域中,红光光谱成分一般指的是波长大于600nm的可见光光谱成分,但在实际应用中可以根据不同的需要选取红光光谱成分的确切位置,例如也可以选取波长大于590nm的可见光光谱成分,与波长大于600nm的可见光光谱成分相比,这样的红光更偏橙色,但是亮度明显较高;因此在实际工作中可以根据颜色和亮度的折衷考虑来决定红光光谱成分的范围,进而决定滤光片534的滤光特性的选取和加工。这属于公知技术,此处不赘述。
如图5b所示的发光装置520是本发明第二实施例的第一个变形,与图5a所示的实施例不同的是,分光滤光片533和滤光片534分别与驱动装置521固定连接,并被驱动装置521带动与荧光材料层531一起运动。可以理解,发光装置520与发光装置510的发光效果是基本相同的。
为了防止荧光材料层531发出的光在分光滤光片533以及滤光片534的内部发生横向传播,优选的,荧光材料层531与分光滤光片533以及滤光片534之间分别存在空气隙。
如图5c所示的发光装置530是本发明第二实施例的第二个变形,与图5b所示的实施例不同的是,滤光片535不与驱动装置固定连接。在本实施例中,滤光片535为分光滤光片,它透射红光光谱成分同时反射绿光光谱成分。荧光材料层531发出的光538以约45度的入射角入射于滤光片535表面,红光光谱成分539a透射,绿光光谱成分539b反射。当然,可以理解的,只需改变滤光片535的透过谱线,就可以实现红光光谱成分反射,绿光光谱成分透射。
该发光装置530与图5a所示的发光装置510的区别在于,发光装置530在得到红光出射光539a的同时,还可以在另一个光路上利用绿光出射光539b,这有效的提高了系统的效率。
本发明的第三实施例如图6所示,与第二实施例不同的是,本实施例的发光装置600的波长转换装置631包括放置于荧光材料层631a的背向其接收激发光的表面一侧的反射镜633,该反射镜633表面镀有反射层。反射镜633与荧光材料层631a固定连接,并被驱动装置带动与荧光材料层631a一起运动。参考图5a和图5b所示的实施例的区别可以理解,在本实施例中反射镜633也可以不随荧光材料层631a一起运动。
在本实施例中,荧光材料层631a在面向反射镜633方向发出的光被反射镜633反射而从背向反射镜633的方向出射,形成出射光638。本实施例还包括放置于放置于荧光材料层631a光路后端的滤光片634,该滤光片634透射激发光和受激光中的绿光光谱成分同时反射受激光中的红光光谱成分,出射光638入射于滤光片634后红光光谱成分639被反射得以出射,绿光光谱成分(图中未画出)在则透过滤光片634。
优选的,反射镜633镀有反射层的一面面向荧光材料层631a。
在本实施例的发光装置的波长转换装置631中,荧光材料层631a还包括第二区段和第三区段,其正视图如图7所示。其中第一区段731a包括第一荧光材料,第二区段731b包括第二荧光材料,第二荧光材料的发光颜色与第一荧光材料的发光颜色不同。在本实施例中,第二荧光材料受激发射绿光。第三区段731c不包括荧光材料。
在本实施例中,如图7所示,三个区段并列放置,随着荧光装换层631a与蓝色激发光的周期性相对运动而依次被蓝色激发光照射,并在第一区段产生红光发光,在第二区段产生绿光发光,在第三区段出射蓝色激发光本身,进而实现了红、绿、蓝三基色的周期性分时输出。该发光装置可以作为投影显示的光源使用。
可以理解的是,在本实施例中的荧光装换层包括一个以上的区段,这种情况同样适用于本发明的第一实施例和第二实施例及其变形中。
本发明的第二和第三实施例中使用了不同的光学结构来实现最终受激光的输出;实际上还可以使用其它的光学结构。需要说明的是本发明中使用的光学结构的举例并不构成对本发明的限制,只要具有本发明的关键特征并得到相应的有益效果的实施例都属于本发明的专利保护范围。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (12)

1.一种波长转换装置,其特征在于,包括:
荧光材料层,该荧光材料层用于接收激发光并发射受激光;
与所述荧光材料层固定连接的驱动装置,用于驱动荧光材料层与所述激发光周期性相对运动;
其特征还在于:
所述荧光材料层至少包括第一区段,该第一区段上包括第一荧光材料,该第一荧光材料的分子式为(YLLumGdnTb3-L-m-n)Al5O12:Ce,或Y3(AlyGa5-y)O12:Ce,或(YLLumGdnTb3-L-m-n)(AlyGa5-y)O12:Ce,其中L、m、n、y都是大于等于0的实数,且满足L+m大于等于0且小于3,L+m+n大于等于0且小于等于3,y小于5;该第一荧光材料的发射光谱的主波长大于分子式为Y3Al5O12:Ce的荧光材料在相同的激发条件下的发射光谱的主波长;
所述激发光照射在所述荧光材料层上的光斑的直径与激发光在所述荧光材料层上的相对运动一个周期的轨迹长度的比例小于3%;
每一局部的第一荧光材料在一个周期内被激发的时间小于250微秒。
2.根据权利要求1所述的波长转换装置,其特征在于,所述激发光照射在所述荧光材料层上的光斑的直径与激发光在所述荧光材料层上的相对运动轨迹长度的比例小于1.5%。
3.根据权利要求1所述的波长转换装置,其特征在于,还包括放置于所述荧光材料层的背向其接收激发光的表面一侧的反射镜,该反射镜表面镀有反射层。
4.根据权利要求3所述的波长转换装置,其特征在于,所述反射镜镀有所述反射层的表面面向所述荧光材料层。
5.根据权利要求3所述的波长转换装置,其特征在于,所述反射镜与所述荧光材料层固定连接。
6.根据权利要求1所述的波长转换装置,其特征在于,还包括放置于所述荧光材料层接收激发光的一侧的分光滤光片,该分光滤光片表面镀有光学薄膜,该光学薄膜透射所述激发光并反射至少部分所述受激光。
7.根据权利要求6所述的波长转换装置,其特征在于,所述分光滤光片镀有光学薄膜的表面面向所述荧光材料层。
8.根据权利要求6所述的波长转换装置,其特征在于,所述荧光材料层与所述分光滤光片之间存在空气隙。
9.根据权利要求6所述的波长转换装置,其特征在于,所述分光滤光片与所述驱动装置固定连接,并被驱动装置带动与荧光材料层一起运动,荧光材料层与分光滤光片之间存在空气隙。
10.根据权利要求1至9中的任意一项所述的波长转换装置,其特征在于,还包括放置于所述荧光材料层光路后端的滤光片,该滤光片用于将受激光中的绿光光谱成分和红光光谱成分分离。
11.根据权利要求1至9中的任意一项所述的波长转换装置,其特征在于,所述荧光材料层还包括第二区段,该第二区段包括第二荧光材料或不包括荧光材料;该第二区段与第一区段并列放置,两者随着荧光材料层与所述激发光的周期性相对运动依次被该激发光照射。
12.一种发光装置,其特征在于,包括:
用于发射激发光的激发光源;
根据权利要求1至11中任意一项所述的波长转换装置,用于接收所述激发光并发射受激光或受激光与没有被吸收的剩余激发光的混合光。
CN201210038232.7A 2011-12-31 2012-02-20 波长转换装置和发光装置 Active CN102723422B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201210038232.7A CN102723422B (zh) 2011-12-31 2012-02-20 波长转换装置和发光装置
CN201510249990.7A CN105042517A (zh) 2012-02-20 2012-02-20 波长转换装置和发光装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201110459898 2011-12-31
CN201110459898.5 2011-12-31
CN201210038232.7A CN102723422B (zh) 2011-12-31 2012-02-20 波长转换装置和发光装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201510249990.7A Division CN105042517A (zh) 2012-02-20 2012-02-20 波长转换装置和发光装置

Publications (2)

Publication Number Publication Date
CN102723422A CN102723422A (zh) 2012-10-10
CN102723422B true CN102723422B (zh) 2015-04-29

Family

ID=46949134

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210038232.7A Active CN102723422B (zh) 2011-12-31 2012-02-20 波长转换装置和发光装置

Country Status (1)

Country Link
CN (1) CN102723422B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8475683B2 (en) 2006-10-20 2013-07-02 Intematix Corporation Yellow-green to yellow-emitting phosphors based on halogenated-aluminates
US9120975B2 (en) 2006-10-20 2015-09-01 Intematix Corporation Yellow-green to yellow-emitting phosphors based on terbium-containing aluminates
US8529791B2 (en) 2006-10-20 2013-09-10 Intematix Corporation Green-emitting, garnet-based phosphors in general and backlighting applications
US8133461B2 (en) 2006-10-20 2012-03-13 Intematix Corporation Nano-YAG:Ce phosphor compositions and their methods of preparation
KR20150100724A (ko) * 2012-12-28 2015-09-02 인터매틱스 코포레이션 터븀 함유 알루미네이트에 기초한 황록색 내지 황색 방출 인광체
CN104101975B (zh) * 2013-04-02 2017-08-29 台达电子工业股份有限公司 荧光剂装置及其所适用的光源系统
DE102013215981A1 (de) * 2013-08-13 2015-02-19 Osram Gmbh Lichtmodul und Verfahren zum Erzeugen von wellenlängenkonvertiertem Licht im roten Spektralbereich sowie Verfahren zum Bereitstellen eines Wellenlängenkonversionselements
CN106635016A (zh) * 2016-12-28 2017-05-10 诚善材料科技(盐城)有限公司 一种荧光粉及其制备方法和发光装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1327706A (zh) * 1999-07-23 2001-12-19 奥斯兰姆奥普托半导体股份有限两合公司 荧光装置,波长转换的浇注料和光源
CN101498415A (zh) * 2008-01-30 2009-08-05 绎立锐光科技开发(深圳)有限公司 基于荧光粉提高混合光出射效率的光源及其方法
CN101893204A (zh) * 2009-05-20 2010-11-24 绎立锐光科技开发(深圳)有限公司 光源及其光转换方法、光转换装置及该光源的应用系统
CN102193296A (zh) * 2010-03-18 2011-09-21 精工爱普生株式会社 照明装置及投影机
CN102289140A (zh) * 2010-06-16 2011-12-21 索尼公司 照明器件和图像显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1327706A (zh) * 1999-07-23 2001-12-19 奥斯兰姆奥普托半导体股份有限两合公司 荧光装置,波长转换的浇注料和光源
CN101498415A (zh) * 2008-01-30 2009-08-05 绎立锐光科技开发(深圳)有限公司 基于荧光粉提高混合光出射效率的光源及其方法
CN101893204A (zh) * 2009-05-20 2010-11-24 绎立锐光科技开发(深圳)有限公司 光源及其光转换方法、光转换装置及该光源的应用系统
CN102193296A (zh) * 2010-03-18 2011-09-21 精工爱普生株式会社 照明装置及投影机
CN102289140A (zh) * 2010-06-16 2011-12-21 索尼公司 照明器件和图像显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAG黄色荧光粉的合成与性能研究;何南玲;<<中国优秀硕士学位论文全文数据库>>;20070131;第51页-第56页 *

Also Published As

Publication number Publication date
CN102723422A (zh) 2012-10-10

Similar Documents

Publication Publication Date Title
CN102723422B (zh) 波长转换装置和发光装置
Shang et al. How to produce white light in a single-phase host?
JP6427721B1 (ja) 積層ルミネッセンス集光器
Wang et al. Considerable photoluminescence enhancement of LiEu (MoO4) 2 red phosphors via Bi and/or Si doping for white LEDs
EP4038312B1 (en) High-intensity color tunable white laser light source using green phosphor
CN104804738B (zh) 一种近紫外激发白光led荧光粉及其制备方法
JP2012530383A (ja) オキシフッ化物蛍光体および固体照明用途のためのオキシフッ化物蛍光体を含む白色発光ダイオード
KR20190013977A (ko) 형광분말, 이의 제조방법 및 이를 구비하는 발광소자
CN104238249B (zh) 一种发光装置及相关投影系统
Luo et al. Preparation and luminescence properties of Ce3+ and Tb3+ co-doped glasses and glass ceramics containing SrF2 nanocrystals
JP2018514895A (ja) 温度に対して安定な光束出力を有する白色蛍光体変換led
Yang et al. Recent progress on garnet phosphor ceramics for high power solid-state lighting
KR20190013976A (ko) 루테튬 질화물계 형광분말 및 이를 구비하는 발광소자
CN102585831B (zh) 一种铕离子激活的氟钼酸盐红色荧光粉、制备方法及应用
CN103774222A (zh) 一种用于白光LED的Eu3 +/Dy3 +掺杂NaYF4单晶体及其制备方法
CN107502354B (zh) 一种暖白光led用荧光粉及其制备方法
CN107629791B (zh) 一种Mn4+离子掺杂的红色荧光粉、制备方法及应用
JP2023530637A (ja) Y2o3:reナノ粒子
CN105042517A (zh) 波长转换装置和发光装置
CN102373062B (zh) 一种适于白光led应用的氟硅酸盐红色荧光粉及其制备方法
TW201641666A (zh) 螢光粉、其製備方法及包含其發光裝置與背光模組
CN106947472B (zh) 一种氟硅酸盐基红色荧光陶瓷材料、制备方法和应用
CN104164236B (zh) 一种自激活型钒酸盐荧光粉及其制备方法与应用
Chengaiah et al. Eu3+–Dy3+ co-doped Na3Gd (PO4) 2 phosphors for white light luminescence
CN102618266A (zh) 一种蓝紫光激发的黄光荧光材料及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 518000 20-22, 20-22 headquarters building, 63 high tech Zone, Xuefu Road, Nanshan District, Guangdong Province, Guangdong.

Patentee after: APPOTRONICS Corp.,Ltd.

Address before: 518000 Nanshan District, Shenzhen, Guangdong, Guangdong Province, Guangdong Road, 63 Xuefu Road, high-tech zone, 21 headquarters building, 22 floor.

Patentee before: SHENZHEN GUANGFENG TECHNOLOGY Co.,Ltd.

Address after: 518000 Nanshan District, Shenzhen, Guangdong, Guangdong Province, Guangdong Road, 63 Xuefu Road, high-tech zone, 21 headquarters building, 22 floor.

Patentee after: SHENZHEN GUANGFENG TECHNOLOGY Co.,Ltd.

Address before: 518057 Guangfeng Photoelectric Technology Co., Ltd. on the third floor of Fangda Building, Nanshan Science Park, Shenzhen City, Guangdong Province

Patentee before: APPOTRONICS Corp.,Ltd.