CN102713559B - 确定熔体弹性的方法和设备 - Google Patents

确定熔体弹性的方法和设备 Download PDF

Info

Publication number
CN102713559B
CN102713559B CN200980163308.5A CN200980163308A CN102713559B CN 102713559 B CN102713559 B CN 102713559B CN 200980163308 A CN200980163308 A CN 200980163308A CN 102713559 B CN102713559 B CN 102713559B
Authority
CN
China
Prior art keywords
thermoplastic polymer
line material
speed
millimeters
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200980163308.5A
Other languages
English (en)
Other versions
CN102713559A (zh
Inventor
M.阿尔彼得
M.曼格努斯
C.奇塔姆
M.纽文休伊兹
J.波特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Global Technologies LLC
Original Assignee
Dow Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies LLC filed Critical Dow Global Technologies LLC
Publication of CN102713559A publication Critical patent/CN102713559A/zh
Application granted granted Critical
Publication of CN102713559B publication Critical patent/CN102713559B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/18Performing tests at high or low temperatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0092Visco-elasticity, solidification, curing, cross-linking degree, vulcanisation or strength properties of semi-solid materials
    • G01N2203/0094Visco-elasticity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/0278Thin specimens
    • G01N2203/028One dimensional, e.g. filaments, wires, ropes or cables

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

测定热塑性聚合物的标准化熔体弹性(sME)力的设备和方法需要拉伸熔融聚合物的线料,该拉伸速度比熔融聚合物的物件在来自不受阻碍的固定负载活塞的恒定应力下形成线料的速度快,是它的约33倍。

Description

确定熔体弹性的方法和设备
相关申请的交叉引用
本申请要求2008年9月3日提交的美国临时申请61/190,850(代理案号67401US)的优先权。针对美国专利实践的目的,该申请的内容通过参考完全并入本申请。
背景技术
本发明处于用于测量熔融热塑性聚合物的粘弹性性质的方法和设备的领域。更具体地,本发明涉及测定熔体弹性的方法和设备。
如陈述于Wagner and Bernnat,J.Rheol.42(4),July/August1998,p917-928中的,聚合物熔体的熔体弹性对于很多聚合物工艺是非常重要的,例如纤维纺丝,膜吹制,吹塑,高速涂布,和片材铸造。熔体弹性的测量可以使用"延伸图表"进行,其中伸长熔融聚合物的挤出线料所需的牵伸力作为增加的牵伸速度的函数测量。针对该目的,开发了拉伸检测器,即所谓的"Rheotens"(例如,参见Meissner,Rheol.Acta10,1971,p230-242)。Rheotens试验容易进行,显示优越的再现性,并模拟工业聚合物工艺例如纤维纺丝或膜流延。因此,已经发现Rheotens试验具有广泛应用。
在Rheotens试验中,通过聚合物熔体粘度计挤出的聚合物熔体线料在旋转轮的作用下伸长,当轮的速度大于线料的输出速度时,旋转轮夹紧熔体线料。通常,使轮加速直至线料断裂或达到轮的最大旋转速度。不可以将张力/牵伸速度图表直接转化为伸长粘合和伸长速率之间的关系。但是,发现用于热流变学简单的聚合物熔体(Wagner等人,Polym.Eng.Sci.36,1996,p925-935)的“Rheotens主曲线”导致了恒定力延伸的分析相当简化。Rheotens主曲线提供了直接和定量比较聚合物熔体在加工条件下的弹性的基础。
出乎意料地,甚至对于在不同挤出压力(本领域称为挤出“应力”)进行的Rheotens实验,如果按Wagner等人所报告地适当改变地力和拉伸比的比例,那么可以发现Rheotens主曲线。这样的主曲线(其表示主曲线的主曲线)称为"Rheotens超级主曲线"。Wagner和Bernnat表明,Rheotens主曲线的概念可以归纳至具有挤出模头和不同长度纺纱线的实验,并且关于聚合物熔体的伸长粘度的信息可以通过使用分析流变学模型从Rheotens主曲线求取。
进行Rheotens试验的仪器可商购自GoettfertInc.,ParkwayRockHill,SouthCarolina。但是,进行Rheotens试验的可商购仪器相对昂贵,因为其使用聚合物粘度计以产生熔体线料。而且,在本领域中,认为这样的仪器更适用于研究型实验室中,而不是聚合物生产设备的品质控制实验室中,这是因为仪器的费用和操作仪器所需技术人员的程度。因此,需要开发较便宜和较易操作的仪器用于测定热塑性聚合物的熔体弹性。
发明内容
本申请提供与现有技术的Rheotens试验和仪器相比,较便宜地和较容易操作地测定热塑性聚合物的标准化熔体弹性值的方法和设备。更具体地,本发明是测定热塑性聚合物的标准化熔体弹性值的方法,包括以下步骤:(a)加热所述热塑性聚合物以使该热塑性聚合物熔融;(b)使熔融的热塑性聚合物经受选择的恒定应力,使得该熔融的热塑性聚合物流动通过通道以形成以速度V0离开通道的熔融的热塑性聚合物的线料,所选择的恒定应力和熔融的聚合物温度的范围使得V0大于1.27毫米每秒,所述通道的直径为约2.1毫米和长度为约8毫米;和(c)通过施加力至熔融的热塑性聚合物的线料拉伸熔融的热塑性聚合物的线料,以制得以约33V0的速度移动的热塑性聚合物的拉伸线料,所述热塑性聚合物的标准化熔体弹性值等于该力。
本发明也涉及测定热塑性聚合物的标准化熔体弹性值的设备,包括:(a)框架;(b)物件,其限定该物件内从物件顶部开始的圆柱筒形状的凹陷,该物件限定在物件底部的通道,所述通道与所述圆柱筒形状的凹陷连通,该物件与所述框架相连;(c)与所述物件热连通的加热器,其用于加热该物件;(d)固定负载的圆柱活塞,该圆柱活塞的尺寸适合所述圆柱筒形状的凹陷;(e)位置传感器,其用于感知所述固定负载的圆柱活塞在所述圆柱筒形状的凹陷中的动态垂直位置;(f)张力辊;(g)测力计,所述张力辊连接至所述测力计,所述测力计连接于所述框架;(h)连接于所述框架的导向辊;(i)连接于所述框架的电控制速度的发动机;(j)由所述发动机驱动的牵引辊,由此当热塑性聚合物放置在所述圆柱筒形状的凹陷中然后放置所述固定负载的活塞时,该聚合物熔融并通过在所述熔融聚合物上的所述固定负载的活塞的恒定应力的力作用下流动经过所述通道,从而形成熔融聚合物的线料,该线料以速度V0离开该通道,该速度是由通道的尺寸和活塞运动的速率确定,所述固定负载的活塞的重量和所述熔融聚合物的温度的范围使得V0大于1.27毫米每秒,使得聚合物的线料可以在所述张力辊之下穿过、经过所述导向辊并到达所述牵引辊,所述牵引辊的驱动速率使得熔融热塑性聚合物的线料拉伸形成速度为约33V0的热塑性聚合物的线料,由此所述热塑性聚合物的熔体弹性值可以标准化为等于通过所述测力计测量的拉伸力。
本发明包括以下实施方式:
实施方式1.测定热塑性聚合物的标准化熔体弹性值的方法,包括以下步骤:(a)加热所述热塑性聚合物以使该热塑性聚合物熔融;(b)使熔融的热塑性聚合物经受选择的恒定应力,使得该熔融的热塑性聚合物流动通过通道以形成以速度V0离开通道的熔融的热塑性聚合物的线料,所选择的恒定应力使得V0大于1.27毫米每秒,所述通道的直径为约2.1毫米和长度为约8毫米;和(c)通过施加力至熔融的热塑性聚合物的线料而拉伸熔融的热塑性聚合物的线料,以制得以约33V0的速度移动的热塑性聚合物的拉伸线料,所述热塑性聚合物的标准化熔体弹性值等于该力。
实施方式2.实施方式1的方法,其中所述通道的直径为2.095±0.0051毫米和长度为8.000±0.025毫米,并且其中热塑性聚合物的拉伸线料是以速度32.6V0-33.6V0移动的热塑性聚合物的凝固拉伸线料。
实施方式3.实施方式1的方法,其中热塑性聚合物的拉伸线料是在约1分钟的期间内速度由约25V0线性增加至约40V0的热塑性聚合物的凝固线料,当凝固热塑性聚合物的拉伸线料的速度为约33V0时,所述热塑性聚合物的标准化熔体弹性值等于该力。
实施方式4.实施方式2的方法,其中热塑性聚合物的凝固拉伸线料的速度在约1分钟的时间段内速度由约25V0线性增加至约40V0,当热塑性聚合物的凝固拉伸线料的速度为约32.6V0-33.6V0时,所述热塑性聚合物的标准化熔体弹性值等于该力。
实施方式5.实施方式1的方法,其中步骤(a)的温度为125-390°C。
实施方式6.实施方式3的方法,其中步骤(a)的温度为125-390°C。
实施方式7.实施方式4的方法,其中步骤(a)的温度为125-390°C。
实施方式8.实施方式1的方法,其中步骤(a)的持续时间和温度为约7分钟和约190°C。
实施方式9.实施方式3的方法,其中步骤(a)的持续时间和温度为约7分钟和约190°C。
实施方式10.实施方式4的方法,其中步骤(a)的持续时间和温度为约7分钟和约190°C。
实施方式11.测定热塑性聚合物的标准化熔体弹性值的设备,包括:(a)框架;(b)物件,其限定该物件内从物件顶部开始的圆柱筒形状的凹陷,该物件限定在物件底部的通道,所述通道与所述圆柱筒形状的凹陷连通,该物件与所述框架相连;(c)与所述物件热连通的加热器,其用于加热该物件;(d)固定负载的圆柱活塞,该圆柱活塞的尺寸适合所述圆柱筒形状的凹陷;(e)位置传感器,其用于感知所述固定负载的圆柱活塞在所述圆柱筒形状的凹陷中的动态垂直位置;(f)张力辊;(g)测力计,所述张力辊连接至所述测力计,所述测力计连接于所述框架;(h)连接于所述框架的导向辊;(i)连接于所述框架的电发动机;(j)由所述发动机驱动的牵引辊,由此当热塑性聚合物放置在所述圆柱筒形状的凹陷中然后放置所述固定负载的活塞时,该聚合物熔融并通过在所述熔融聚合物上的所述固定负载的活塞的恒定应力的力作用下流动经过所述通道,从而形成熔融聚合物的线料,该线料以速度V0离开该通道,该速度是由通道的尺寸和活塞运动的速率确定,其中在所述固定负载的活塞的重量和所述熔融聚合物的温度范围使得V0大于1.27毫米每秒,使得聚合物的线料可以在所述张力辊之下穿过、经过所述导向辊并到达所述牵引辊,所述牵引辊的驱动速率使得熔融热塑性聚合物的线料拉伸形成速度为约33V0的热塑性聚合物的线料,由此所述热塑性聚合物的熔体弹性值可以标准化为等于通过所述测力计测量的力。
实施方式12.实施方式11的设备,其中所述通道的直径为约2.1毫米和长度为约8毫米。
实施方式13.实施方式11的设备,其中所述通道的直径为2.095±0.0051毫米和长度为8.000±0.025毫米。
实施方式14.实施方式13的设备,其中所述牵引辊的形状为截锥形。
实施方式15.实施方式14的设备,其中所述截锥形牵引辊在其较大端的周长为约125毫米,宽度为约50毫米和斜率为约0.5度,并且其中所述张力辊的直径为约25毫米并具有圆周凹槽。
附图说明
图1是本申请设备的正视图,部分是完整图,部分是横截面;
图2是本申请工具的完整俯视图;
图3是本申请具有把手的重物的完整透视图;
图4是本申请重物导向装置的侧向横截面图;
图5是用于最初安装和装配图1所示设备的熔体线料长度调整量表的侧视图;
图6是用于装配图1所示设备的激光导向工具的部分完整和部分隐藏的侧视图;
图7是用于确认图1所示设备的加热物件的温度恢复响应的工具的完整透视图;和
图8是用于设置图1所示设备的活塞位置传感器的水平位置的工具的完整透视图。
具体实施方式
参照图1,其中描述了根据本发明用于测定热塑性聚合物的标准化熔体弹性值的设备10。设备10基于框架,该框架具有上顶部部分11a,下顶部部分11b,底部12,滑动基板12a,左侧13,右侧14和背部15。上顶部部分11a通过调平螺钉11c连接于下顶部部分11b并使用顶部两个空间气泡瞄准件11d调平。限定圆柱筒形状的凹陷17的电加热物件16连接于上顶部部分11a。物件16的操作温度优选为125-390°C,如通过ASTM测试方法D1238-4基于各聚合物类型的具体熔点指定。尽管每种聚合物类型都可以使用不同的物件温度(例如,对于聚乙烯为190°C),但是熔体流动速率方法对于所有聚合物类型规定7分钟±30秒的恒定预加热时间,从而使降解和交联对测量结果的影响最小化。但是,本领域技术人员理解,可能需要不同的预加热时间以进行非标准化熔体流动试验,或者对于对热影响或多或少敏感的聚合物需要不同的预加热时间。
物件16包括模头19,模头19在物件16的底部21限定直径为2.095±0.0051毫米和长度为8.000±0.025毫米的通道20,通道20与圆柱筒形状的凹陷17连通。使加载有不受阻碍的固定负载23和连杆24的活塞22的尺寸适合进入圆柱筒形状的凹陷17。不受阻碍的固定负载23可以可替换地按图3所示地成形以包括连接于重物60的把手61和62。把手61和62可以用于促进活塞22的运动从而预先确定标准化熔体弹性和熔体流动速率两种方法的机筒起始位置。用于经由触杆26感知活塞22相对于模头19的顶部的动态垂直位置的位置传感器25通过支柱27支撑在上顶部部分11a上。图8显示工具100的透视图,该工具由不锈钢制成并用于位置传感器25的水平位置,这是通过代替重物23将工具100设置在活塞22的顶端进行。由于元件16-27可作为Tinius Olsen(Horsham,PA)型号MP600塑度计商购,这些元件设计为符合ASTM测试方法D1238-04的要求,熔融聚合物39的熔体流动速率可以在测定标准化熔体弹性之后测定。
参照图1,张力辊28经由托台30连接于平台29。平台29重约175克并且连接于测力计32a(例如,MettlerToledo(Columbus,OH)型号XS203S电子天平),其具有搁置在滑动基板12a中相应凹陷的半球端调平螺钉32b,由此测力计32a可以使用两个空间瞄准件32c调平。张力辊28结合进低摩擦仪器等级滚球轴承31。张力辊28由阳极化铝制成,直径为25毫米,厚度为3毫米并且具有周长为1毫米的深v-形凹槽。导向辊33经由托台34连接于基板12a。导向辊33由阳极化铝制成,直径为25毫米,厚度为3毫米并且具有周长为1毫米的深v-形凹槽。导向辊33结合进低摩擦仪器等级滚球轴承35。使用仪器等级滚球轴承31和35和仔细对准托台30和34使得最终方法结果中任何摩擦误差降低至最小。电发动机36(例如,OrientalMotor(Torrance,CA)型号RK564AA-T7.2)经由托台37连接于基板12a。牵引辊38由发动机36驱动。牵引辊38的形状为截锥形,该截锥形在其较大端的周长为约125毫米,宽度为约50毫米和斜率为约0.5度,由此凝固拉伸线料41以单层缠绕在牵引辊38上。
参照图1,当将热塑性聚合物放进圆柱筒形状的凹陷17然后固定负载的活塞22时,聚合物熔融形成熔融的聚合物39,熔融的聚合物39流动通过在所述熔融聚合物39上的所述固定负载的活塞22的恒定应力的力作用下通过通道20,从而形成熔融聚合物的线料40,该线料40以速度V0离开该通道20,该速度是由通道20的尺寸和在所述固定负载的活塞22的重量下活塞22运动的速率确定,固定负载的活塞22的重量和熔融聚合物39的温度的范围使得V0大于1.27毫米每秒。熔融的聚合物的线料冷却,同时拉伸形成凝固的拉伸聚合物41,使该聚合物41通过张力辊28之下,经过导向辊33并到达牵引辊38。牵引辊38的驱动速率使得熔融热塑性聚合物的线料40拉伸形成速度为约32.6-33.6V0的凝固拉伸的聚合物的线料41,由此热塑性聚合物的熔体弹性值可以标准化为等于以厘牛(cN)计的经由通过测力计32进行的克-力的绝对值(转化因子为0.980665厘牛每克)测量的牵伸力。优选地,热塑性聚合物的拉伸线料的速度在约1分钟的时间段内由约25V0线性增加至约40V0,当热塑性聚合物的凝固拉伸线料的速度为32.6-33.6V0时,热塑性聚合物的标准化熔体弹性等于牵伸力。这样的梯度过程促进分析,甚至当聚合物样品的熔体流动速率与其预期值之间存在些许偏差时也是如此。
参照图1,调节调平螺杆44以在水平位置在支柱42上支撑底部12,通过一体式二维气泡瞄准件43测定。调节螺杆45用于调节可滑动的基板12a,由此当物件6处于其操作温度时,张力辊28的v-形凹槽处于通道20的正下方,使用与凹陷17的纵轴仔细对准的激光孔观测器系统(laser bore scopesystem),由此导向通过通道20的激光束刚好达到张力辊28的v-形凹槽。图6显示适当的激光孔观测器系统90,其由不锈钢热量接收器93、由TORLON牌工程聚合物(Parkway Products Inc.,Florence KY)制成的耐热性聚酰胺-酰亚胺聚合物套筒92、和激光孔观测器91组成。套筒92保护激光孔观测器91,当激光孔观测器系统90插进凹陷17时使激光孔观测器91免于过热。调节激光孔观测器91,使得激光束从激光孔观测器91定位于中心穿过孔95并通过调节激光孔观测器91的对准螺杆94穿过通道20的中心。激光孔观测器91可商购自Midway USA,Columbia,MO。图1中未显示的是横跨设备10的前端定位的树脂玻璃防护物,由此漂浮的气流不影响分析。
参照图5,物件21的底部和平台29之间的距离优选仔细调节为445毫米,使得物件21的底部和轴承31的水平中心线之间的距离优选为424毫米,从而进一步标准化设备并促进聚合物在与张力辊28接触之前的凝固,这是通过将熔体线料长度调整量表80插进空的凹陷17并调平螺钉11c直至测力计32a刚好显示平台29是凹陷的。图5所示的熔体线料调整量表80,其由在其一端具有黄铜把手81和在另一端具有25毫米长半圆部分85的不锈钢杆84组成。不锈钢套筒82通过调节螺杆83保持在杆84上。半圆部分85允许工具80向下滑动经过张力辊28,而不会垂直偏离。图7显示实心黄铜温度恢复标准物110,其尺寸适合凹陷17用于限定和确认控制参数,该控制参数通过图1的电加热物件16操控温度恢复速率。
图2显示工具50的完整俯视图,该工具50可以用于当该工具50从图1的电加热物件16移开用于按照标准化熔体弹性和熔体流动速率的测量方法清洁时安全保护热模头19。工具50具有改良的夹头尖端51和52,特别将它们设计为安全持握热模头19,其中暴露上表面和下表面以及通道20的入口和出口。工具50通过改良可商购的止血钳(Lakeside Scissor Sales,Sacramento,CA)制造并无需使用耐热手套而直接处理热模头19同时移除分析之间的残留样品物质。
图4显示与以上公开的Tinius Olsen塑度计一起使用的改良的双重重量管理约束系统(dual weight management restraint system)70的横截面侧视图。各托架71、72和73代替位于自动重物升降平台77的初始导向杆。改良的双重重量管理约束系统70包括图3中未显示的第四个相同的托架,其对称地直接位于托架73前面。空间74的尺寸可盛放较小的重物,而空间75的尺寸可盛放较大的重物,当重物升降平台77足够降低时,该较大的重物可以与较小的重物组合。
参照图1,构成设备10的所有电部件优选地使用配置有4个串行端口、512MB的RAM、3.4GHZ处理器和80GB硬盘的通用目的数字计算机(Dell型号GX520)编程以控制以上公开的参数。而且,设备10明显地比进行Rheotens试验的设备便宜,主要是因为Rheotens试验仪器中所需的聚合物粘度计远比元件16-27昂贵。
实施例
使用ASTM D1238,条件190°C/2.16kg测试的熔体流动速率(MFR)为约0.7至约8.7dg/min的商业等级低密度聚乙烯的原始六个不同样品(样品1-6)用于按表1所述验证设备10的性能。
表1
其中TDCC是The Dow Chemical Company
使用图1中所示的设备10在描述于表2中的具体条件下,分析样品1-6的标准化熔体弹性和熔体流动速率。
表2
各样品以厘牛[cN]计的标准化熔体弹性(sME)的分析精确度由10次重复试验测定并在下表3中给出。
表3

Claims (14)

1.测定热塑性聚合物的标准化熔体弹性值的方法,包括以下步骤:(a)加热所述热塑性聚合物以使该热塑性聚合物熔融;(b)使熔融的热塑性聚合物经受选择的恒定应力,使得该熔融的热塑性聚合物流动通过通道以形成以速度V0离开通道的熔融的热塑性聚合物的线料,所选择的恒定应力使得V0大于1.27毫米每秒,所述通道的直径为2.095±0.0051毫米和长度为8.000±0.025毫米;和(c)通过施加力至熔融的热塑性聚合物的线料而拉伸熔融的热塑性聚合物的线料,以制得以32.6V0-33.6V0的速度移动的热塑性聚合物的拉伸线料,所述热塑性聚合物的标准化熔体弹性值等于该力。
2.权利要求1的方法,其中热塑性聚合物的拉伸线料是在1分钟的期间内速度由25V0线性增加至40V0的热塑性聚合物的凝固线料,当凝固热塑性聚合物的拉伸线料的速度为33V0时,所述热塑性聚合物的标准化熔体弹性值等于该力。
3.权利要求1的方法,其中热塑性聚合物的拉伸线料是在1分钟的时间段内速度由25V0线性增加至40V0的热塑性聚合物的凝固线料,当热塑性聚合物的凝固拉伸线料的速度为32.6V0-33.6V0时,所述热塑性聚合物的标准化熔体弹性值等于该力。
4.权利要求1的方法,其中步骤(a)的温度为125-390℃。
5.权利要求2的方法,其中步骤(a)的温度为125-390℃。
6.权利要求3的方法,其中步骤(a)的温度为125-390℃。
7.权利要求1的方法,其中步骤(a)的持续时间和温度为7分钟和190℃。
8.权利要求2的方法,其中步骤(a)的持续时间和温度为7分钟和190℃。
9.权利要求3的方法,其中步骤(a)的持续时间和温度为7分钟和190℃。
10.测定热塑性聚合物的标准化熔体弹性值的设备,包括:(a)框架;(b)物件,其限定该物件内从物件顶部开始的圆柱筒形状的凹陷,该物件限定在物件底部的通道,所述通道与所述圆柱筒形状的凹陷连通,该物件与所述框架相连;(c)与所述物件热连通的加热器,其用于加热该物件;(d)固定负载的圆柱活塞,该圆柱活塞的尺寸适合所述圆柱筒形状的凹陷;(e)位置传感器,其用于感知所述固定负载的圆柱活塞在所述圆柱筒形状的凹陷中的动态垂直位置;(f)张力辊;(g)测力计,所述张力辊连接至所述测力计,所述测力计连接于所述框架;(h)连接于所述框架的导向辊;(i)连接于所述框架的电发动机;(j)由所述发动机驱动的牵引辊,由此当热塑性聚合物放置在所述圆柱筒形状的凹陷中然后放置所述固定负载的活塞时,该热塑性聚合物熔融并通过在所述熔融热塑性聚合物上的所述固定负载的活塞的恒定应力的力作用下流动经过所述通道,从而形成熔融热塑性聚合物的线料,该线料以速度V0离开该通道,该速度是由通道的尺寸和活塞运动的速率确定,其中在所述固定负载的活塞的重量和所述熔融热塑性聚合物的温度范围使得V0大于1.27毫米每秒,使得聚合物的线料在所述张力辊之下穿过、经过所述导向辊并到达所述牵引辊,所述牵引辊的驱动速率使得熔融热塑性聚合物的线料拉伸形成速度为33V0的热塑性聚合物的线料,由此所述热塑性聚合物的熔体弹性值可以标准化为等于通过所述测力计测量的力。
11.权利要求10的设备,其中所述通道的直径为2.1毫米和长度为8毫米。
12.权利要求10的设备,其中所述通道的直径为2.095±0.0051毫米和长度为8.000±0.025毫米。
13.权利要求12的设备,其中所述牵引辊的形状为截锥形。
14.权利要求13的设备,其中所述截锥形牵引辊在其较大端的周长为125毫米,宽度为50毫米和斜率为0.5度,并且其中所述张力辊的直径为25毫米并具有圆周凹槽。
CN200980163308.5A 2009-11-24 2009-11-24 确定熔体弹性的方法和设备 Active CN102713559B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2009/055804 WO2011065932A2 (en) 2009-11-24 2009-11-24 Method and apparatus for determining melt elasticity

Publications (2)

Publication Number Publication Date
CN102713559A CN102713559A (zh) 2012-10-03
CN102713559B true CN102713559B (zh) 2014-10-22

Family

ID=44067152

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980163308.5A Active CN102713559B (zh) 2009-11-24 2009-11-24 确定熔体弹性的方法和设备

Country Status (6)

Country Link
EP (1) EP2504683B1 (zh)
JP (1) JP2013512433A (zh)
CN (1) CN102713559B (zh)
BR (1) BR112012011057B1 (zh)
ES (1) ES2642895T3 (zh)
WO (1) WO2011065932A2 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106153500A (zh) * 2015-04-03 2016-11-23 中塑联新材料科技湖北有限公司 一种用于塑料熔体流动速率测定仪
CN108844808B (zh) * 2018-05-23 2021-01-26 江苏省纺织产品质量监督检验研究院 一种动态测试面料质量的装置和方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0210689A1 (fr) * 1985-07-18 1987-02-04 SOLVAY & Cie (Société Anonyme) Appareillage pour la détermination rapide des propriétés rhéologiques de matières thermoplastiques
CN101430267A (zh) * 2008-12-12 2009-05-13 湖南工业大学 一种聚合物复合材料流变特性的测试方法及装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2544323B2 (ja) 1984-05-26 1996-10-16 ソニー株式会社 再生映像信号補正回路
JPH0521006Y2 (zh) * 1985-03-12 1993-05-31
JP2583321B2 (ja) * 1988-12-27 1997-02-19 古河電気工業株式会社 光ファイバ母材の延伸溶融粘度測定方法
US5209107A (en) * 1991-04-04 1993-05-11 Dynisco, Inc. Capillary rheometer plunger pressure transducer and measurement technique
US5347851A (en) * 1991-04-04 1994-09-20 Dynisco, Inc. Capillary rheometer plunger pressure transducer and measurement technique
DE19505250C1 (de) * 1995-02-16 1996-08-22 Goettfert Werkstoff Pruefmasch Verfahren und Vorrichtung zum Ermitteln von dehnelastischen Eigenschaften an Meßproben
EP1174261A1 (en) * 2000-07-20 2002-01-23 Borcalis GmbH Single and multilayer polyolefin foam pipes
MXPA03000200A (es) * 2000-07-24 2003-09-22 Dow Global Technologies Inc Composiciones de mezclas de polimeros superabsorbentes termoplasticos y su preparacion.
JP2004138601A (ja) * 2002-09-25 2004-05-13 Du Pont Mitsui Polychem Co Ltd ポリマーの一軸伸長粘度の簡易測定方法および装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0210689A1 (fr) * 1985-07-18 1987-02-04 SOLVAY & Cie (Société Anonyme) Appareillage pour la détermination rapide des propriétés rhéologiques de matières thermoplastiques
CN101430267A (zh) * 2008-12-12 2009-05-13 湖南工业大学 一种聚合物复合材料流变特性的测试方法及装置

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BRYCE MAXWELL.The Application of Melt Elasticity Measurements to Polymer Processing.《POLYMER ENGINEERING AND SCIENCE》.1986,第26卷(第20期),1405-1409.
M. H. WAGNER et al..Rheotens-Mastercurves and Drawability of Polymer Melts.《POLYMER ENGINEERING AND SCIENCE》.1996,第36卷(第7期),925-935.
Rheotens-Mastercurves and Drawability of Polymer Melts;M. H. WAGNER et al.;《POLYMER ENGINEERING AND SCIENCE》;19960430;第36卷(第7期);925-935 *
The Application of Melt Elasticity Measurements to Polymer Processing;BRYCE MAXWELL;《POLYMER ENGINEERING AND SCIENCE》;19861130;第26卷(第20期);1405-1409 *
梁基照.聚合物熔体注模流变学 Ⅳ.熔体的弹性及其表征.《高分子通报》.1990,(第2期),111-115.
聚合物熔体注模流变学 Ⅳ.熔体的弹性及其表征;梁基照;《高分子通报》;19901231(第2期);111-115 *

Also Published As

Publication number Publication date
WO2011065932A2 (en) 2011-06-03
WO2011065932A3 (en) 2011-10-06
BR112012011057A2 (pt) 2020-12-29
ES2642895T3 (es) 2017-11-20
BR112012011057B1 (pt) 2021-11-03
EP2504683B1 (en) 2017-08-30
JP2013512433A (ja) 2013-04-11
CN102713559A (zh) 2012-10-03
EP2504683A2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
CN108593429A (zh) 材料高速拉伸应力应变测试设备及方法
Tan et al. Novel approach to tensile testing of micro-and nanoscale fibers
Kompella et al. Micromechanical characterization of cellulose fibers
CN105651598A (zh) 基于线阵相机的高速应变测试装置及方法
CN102713559B (zh) 确定熔体弹性的方法和设备
CN205910190U (zh) 沥青隔离剂隔离性能评价试验装置
US8334362B2 (en) Method and apparatus for determining melt elasticity
CN103063484A (zh) 一种基于丝印装置的样条标定方法
CA2033600A1 (en) Method and apparatus for using flow behavior index to control polymer rheology and physical properties
Barroso et al. Sources of error and other difficulties in extensional rheometry revisited: commenting and complementing a recent paper by T. Schweizer
DE2812275C3 (de) Anordnung zum Bestimmen des deformationsmechanischen Verhaltens von viskoelastischen Stoffen im schmelzflüssigen Zustand
CN102323186A (zh) 毛细管中流体剪切应力的测量方法及装置
CN217738184U (zh) 一种持久蠕变试验用伸长量即时测量器
DE60333006D1 (de) Verfahren und Vorrichtung zur Temperaturüberwachung einer physikalischen Struktur
CN210375972U (zh) 粗纱张力测试装置
FR3090450B1 (fr) Materiau fibreux impregne de polymere thermoplastique de masse moleculaire et de viscosite optimum et son procede de preparation
Barrès et al. Recent developments in shear rheometry of uncured rubber compounds: I. Design, construction and validation of a sliding cylinder rheometer
Eteläaho et al. Phenol‐modified polypropylenes as adhesion promoters in glass fiber–reinforced polypropylene composites
JP2004138601A (ja) ポリマーの一軸伸長粘度の簡易測定方法および装置
CN216449321U (zh) 一种立式高速拉伸试验机
Sen et al. Real time development of stress and birefringence in pet during uniaxial stretching as detected by spectral birefringence technique.
KR100947718B1 (ko) 용융수지의 다이팽창비 측정방법 및 장치
JPH0754842Y2 (ja) 材料試験用荷重負荷装置
CN213209770U (zh) 一种定伸应力测试仪
CN212780268U (zh) 一种电机绕线件强度测试装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant