CN102707176B - Failure predication method for static security analysis of three-winding transformer - Google Patents

Failure predication method for static security analysis of three-winding transformer Download PDF

Info

Publication number
CN102707176B
CN102707176B CN201210194962.6A CN201210194962A CN102707176B CN 102707176 B CN102707176 B CN 102707176B CN 201210194962 A CN201210194962 A CN 201210194962A CN 102707176 B CN102707176 B CN 102707176B
Authority
CN
China
Prior art keywords
partiald
node
theta
power
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210194962.6A
Other languages
Chinese (zh)
Other versions
CN102707176A (en
Inventor
蔡帜
戴赛
周京阳
潘毅
李强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
China Electric Power Research Institute Co Ltd CEPRI
Original Assignee
State Grid Corp of China SGCC
China Electric Power Research Institute Co Ltd CEPRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, China Electric Power Research Institute Co Ltd CEPRI filed Critical State Grid Corp of China SGCC
Priority to CN201210194962.6A priority Critical patent/CN102707176B/en
Publication of CN102707176A publication Critical patent/CN102707176A/en
Application granted granted Critical
Publication of CN102707176B publication Critical patent/CN102707176B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

The invention provides a failure predication method for static security analysis of three-winding transformers, belonging to the technical field of electric system analysis. In the invention, transformers are sorted aiming at connection modes mainly adopted by the three-winding transformers in an electric grid, and the computing mode of the on-off sensitivity of different wire connection modes is deduced. The invention is suitable for the computation of the sensitivity of load flows of most faulty three-winding transformers in the electric grid, solves the problem that the conventional sensitivity algorithm can not be applied due to local electric power shutdown caused by the failure of the three-winding transformers and can meet the requirement of the on-line real-time second grade analysis and computation of the large-scale electric grid in both accuracy and speed by acquiring comprehensive accurate operating data of power flows and reactive power flows of a system, voltage amplitudes value and voltage phases of a bus, and the like.

Description

一种用于静态安全分析的三绕组变压器故障判断方法A Three-Winding Transformer Fault Judgment Method for Static Safety Analysis

技术领域 technical field

本发明属于电力系统分析技术领域,具体涉及一种用于静态安全分析的三绕组变压器故障判断方法。The invention belongs to the technical field of power system analysis, and in particular relates to a three-winding transformer fault judgment method for static safety analysis.

背景技术 Background technique

静态安全分析是电力系统安全分析的重要组成部分,目前,静态安全分析N-1一般采用灵敏度法、直流潮流法与补偿法等方法,其中,直流潮流法不能够计算无功和电压,而现代电力系统在要求检查支路潮流功率、断面潮流功率是否越限的同时还需要检查母线电压是否越限;补偿法如果迭代次数不够,其电压和无功潮流的误差也较大;灵敏度法将支路开断视为正常运行情况的一种扰动,以节点注入功率的增量模拟支路开断的影响,能够提供包括有功、无功、节点电压、相角的全面的系统运行指标,具有很高的计算精度和速度,有明显优势。Static security analysis is an important part of power system security analysis. At present, static security analysis N-1 generally uses methods such as sensitivity method, DC power flow method and compensation method. Among them, DC power flow method cannot calculate reactive power and voltage, while modern The power system needs to check whether the branch flow power and cross-section power flow exceed the limit, and also needs to check whether the bus voltage exceeds the limit; if the compensation method does not have enough iterations, the error of the voltage and reactive power flow will be large; the sensitivity method will support The circuit breaking is regarded as a disturbance of normal operation, and the influence of branch circuit breaking is simulated by the increment of node injected power, which can provide comprehensive system operation indicators including active power, reactive power, node voltage, and phase angle, which has great advantages. High calculation accuracy and speed have obvious advantages.

在电力系统规模不断扩大的形势下,智能电网调度技术支持系统对静态安全分析N-1的计算精度和速度有了更高的要求,不仅需要扫描线路和机组,还需要扫描变压器和母线等元件。其中,三绕组变压器故障涉及多支路开断,同时中低压侧经常单独连接注入元件或等值负荷而导致故障后局部失电,使得常规灵敏度算法不适用于故障后电力系统局部失电的情况,而重新形成矩阵和因子表进行计算需要耗费大量机时,不能满足大电网秒级实时计算的速度要求。In the situation of continuous expansion of power system scale, the smart grid dispatching technical support system has higher requirements for the calculation accuracy and speed of static security analysis N-1, not only need to scan lines and units, but also need to scan components such as transformers and buses . Among them, the failure of three-winding transformers involves the disconnection of multiple branches, and at the same time, the medium and low voltage sides are often connected separately with injection components or equivalent loads, resulting in partial power loss after the fault, making the conventional sensitivity algorithm unsuitable for the local power loss of the power system after the fault. , and re-forming the matrix and factor table for calculation requires a lot of computer time, which cannot meet the speed requirements of second-level real-time calculation for large power grids.

发明内容 Contents of the invention

为了克服上述现有技术的不足,本发明提供一种用于静态安全分析的三绕组变压器故障判断方法;In order to overcome the above-mentioned deficiencies in the prior art, the present invention provides a three-winding transformer fault judgment method for static safety analysis;

为了实现上述发明目的,本发明采取如下技术方案:In order to realize the above-mentioned purpose of the invention, the present invention takes the following technical solutions:

一种用于静态安全分析的三绕组变压器故障判断方法,所述方法包括以下步骤:A three-winding transformer fault judgment method for static safety analysis, said method comprising the following steps:

步骤1:进行基态潮流计算,得到雅可比矩阵J0、相应的灵敏度矩阵S0和由节点电压和相角组成的电网初始状态变量X0Step 1: Calculate the ground state power flow to obtain the Jacobian matrix J 0 , the corresponding sensitivity matrix S 0 and the grid initial state variable X 0 composed of node voltage and phase angle;

步骤2:判断发生故障三绕组变压器的接线方式;Step 2: Determine the wiring mode of the faulty three-winding transformer;

步骤3:根据接线方式计算电网状态变量和潮流功率;Step 3: Calculate grid state variables and power flow power according to the connection mode;

步骤4:判断电力系统是否存在越限现象,若是,则将发生的故障定义为有害故障。Step 4: Determine whether there is an over-limit phenomenon in the power system, and if so, define the fault as a harmful fault.

所述步骤2中,接线方式包括开断不会引起解列或失电的接线方式、低压侧单独接注入元件和中压侧连接主网的连接方式、低/中压侧各自单独接注入元件的连接方式以及低/中压侧接孤岛的接线方式。In the above step 2, the wiring method includes the connection method that disconnection will not cause disconnection or power loss, the low-voltage side is connected to the injection element separately and the medium-voltage side is connected to the main network, and the low-voltage/medium-voltage side is separately connected to the injection element. The connection method and the connection method of the low/medium voltage side to the island.

所述步骤3中,对于开断不会引起解列或失电的接线方式计算电网状态变量X1过程如下:In the step 3, the process of calculating the grid state variable X1 for the connection mode that disconnection will not cause de-loading or power loss is as follows:

设三绕组变压器高压侧、中压侧和低压侧三侧节点分别为节点h、节点m和节点l,中性节点为节点o,节点o、节点m和节点l的开断等效注入功率增量为:Assuming that the nodes on the high voltage side, medium voltage side and low voltage side of the three-winding transformer are node h, node m and node l respectively, the neutral node is node o, and the breaking equivalent injection power of node o, node m and node l increases The amount is:

ΔΔ PP oo ΔΔ QQ oo ΔΔ PP mm ΔΔ QQ mm ΔΔ PP ll ΔΔ QQ ll == Hh -- 11 PP omom ++ PP olol QQ omom ++ QQ olol PP momo QQ momo PP lolo QQ lolo

式中,ΔP0、ΔPm和ΔPl分别为开断不会引起解列或失电的接线方式中支路开断后节点o、节点m和节点l的等效注入有功功率增量,ΔQo、ΔQm和ΔQl分别为支路开断后节点o、节点m和节点l的等效注入无功功率增量,Pom和Qom分别为节点o到节点m方向的基态潮流有功功率和节点o到节点m方向的基态潮流无功功率,Pol和Qol分别为节点o到节点l方向的基态潮流有功功率和节点o到节点l方向的基态潮流无功功率,Pmo和Qmo分别为节点m到节点o方向的基态潮流有功功率和节点m到节点o方向的基态潮流无功功率,Plo和Qlo分别为节点l到节点o方向的基态潮流有功功率和节点l到节点o方向的基态潮流无功功率;In the formula, ΔP 0 , ΔP m and ΔP l are the equivalent injected active power increments of node o, node m and node l after the branch circuit is disconnected in the connection mode that disconnection will not cause disconnection or power loss, respectively, ΔQ o , ΔQ m and ΔQ l are the equivalent injected reactive power increments of node o, node m and node l after branch disconnection, P om and Q om are the ground state power flow active power and node The ground state power flow reactive power in the direction from node o to node m, P ol and Q ol are respectively the ground state power flow active power in the direction from node o to node l and the ground state power flow reactive power in the direction from node o to node l, P mo and Q mo are respectively is the ground state power flow active power from node m to node o and the ground state power flow reactive power from node m to node o, P lo and Q lo are the ground state power flow active power from node l to node o and the ground state power flow from node l to node o The ground state power flow reactive power in the direction;

矩阵H=I+LS,其中H、I、L和S均为6×6阶矩阵,I为单位阵;Matrix H=I+LS, wherein H, I, L and S are 6*6 order matrixes, and I is a unit matrix;

矩阵L表达式如下:The expression of matrix L is as follows:

LL == Hh omom ++ Hh olol -- 22 PP omom -- 22 PP olol ++ NN omom ++ NN olol -- Hh omom -- NN omom -- Hh olol -- NN olol Mm omom ++ Mm olol -- 22 QQ omom -- 22 QQ olol ++ LL omom ++ LL olol -- Mm omom -- LL omom -- Mm olol -- LL olol -- Hh momo -- NN momo Hh momo -- 22 PP momo ++ NN nono -- Mm momo -- LL momo Mm momo -- 22 QQ momo ++ LL momo -- Hh lolo -- NN lolo Hh lolo -- 22 PP lolo ++ NN lolo -- Mm lolo -- LL lolo Mm lolo -- 22 QQ lolo ++ LL lolo

式中,Hom、Mom、Nom、Lom、Hmo、Mmo、Nmo、Lmo、Hol、Mol、Nol、Lol、Hlo、Mlo、Nlo和Llo均为雅可比矩阵J0元素;In the formula, H om , M om , N om , L om , H mo , M mo , N mo , L mo , H ol , M ol , N ol , L ol , H lo , M lo , N lo and L lo are Jacobian matrix J 0 elements;

矩阵S的表达式如下:The expression of matrix S is as follows:

SS == ∂∂ θθ oo ∂∂ PP oo ∂∂ θθ oo ∂∂ QQ oo ∂∂ θθ oo ∂∂ PP mm ∂∂ θθ oo ∂∂ PP mm ∂∂ θθ oo ∂∂ PP ll ∂∂ θθ oo ∂∂ QQ ll ∂∂ Uu oo Uu oo ∂∂ PP oo ∂∂ Uu oo Uu oo ∂∂ QQ oo ∂∂ Uu oo Uu oo ∂∂ PP mm ∂∂ Uu oo Uu oo ∂∂ QQ mm ∂∂ Uu oo Uu oo ∂∂ PP ll ∂∂ Uu oo Uu oo ∂∂ QQ ll ∂∂ θθ mm ∂∂ PP oo ∂∂ θθ mm ∂∂ QQ oo ∂∂ θθ mm ∂∂ PP mm ∂∂ θθ mm ∂∂ QQ mm ∂∂ θθ mm ∂∂ PP ll ∂∂ θθ mm ∂∂ QQ ll ∂∂ Uu mm Uu mm ∂∂ PP oo ∂∂ Uu mm Uu mm ∂∂ QQ oo ∂∂ Uu mm Uu mm ∂∂ PP mm ∂∂ Uu mm Uu mm ∂∂ QQ mm ∂∂ Uu mm Uu mm ∂∂ PP ll ∂∂ Uu mm Uu mm ∂∂ QQ ll ∂∂ θθ ll ∂∂ PP oo ∂∂ θθ ll ∂∂ QQ oo ∂∂ θθ ll ∂∂ PP mm ∂∂ θθ ll ∂∂ QQ mm ∂∂ θθ ll ∂∂ PP ll ∂∂ θθ ll ∂∂ QQ ll ∂∂ Uu ll Uu ll ∂∂ PP oo ∂∂ Uu ll Uu ll ∂∂ QQ oo ∂∂ Uu ll Uu ll ∂∂ PP mm ∂∂ Uu ll Uu ll ∂∂ QQ mm ∂∂ Uu ll Uu ll ∂∂ PP ll ∂∂ Uu ll Uu ll ∂∂ QQ ll

式中,Uo、Um和Ul分别为节点o、节点m和节点l的电压,θo、θm和θl分别为节点o、节点m和节点l的相角;Po和Qo分别为节点o的有功功率和无功功率,Pm和Qm分别为节点m的有功功率和无功功率、Pl和Ql分别为节点l的有功功率和无功功率;In the formula, U o , U m and U l are the voltages of node o, node m and node l respectively; θ o , θ m and θ l are the phase angles of node o, node m and node l respectively; P o and Q o are active power and reactive power of node o respectively, P m and Q m are active power and reactive power of node m respectively, P l and Q l are active power and reactive power of node l respectively;

电网状态变量X1为:The grid state variable X1 is:

X1=X0+S0[0,…,0,ΔPo,ΔQo,ΔPm,ΔQm,ΔPl,ΔQl,0,…,0]TX 1 =X 0 +S 0 [0,...,0,ΔP o ,ΔQ o ,ΔP m ,ΔQ m ,ΔP l ,ΔQ l ,0,...,0] T .

所述步骤3中,对于低压侧单独接注入元件和中压侧连接主网的连接方式,计算电网状态变量X2过程如下:In the step 3, for the connection mode in which the low-voltage side is separately connected to the injection element and the medium-voltage side is connected to the main grid, the process of calculating the grid state variable X2 is as follows:

计算中压侧支路mo开断等效注入功率增量:Calculate the equivalent injection power increment of the medium-voltage side branch mo breaking:

ΔΔ PP oo ′′ ΔΔ QQ oo ′′ ΔΔ PP mm ′′ ΔΔ QQ mm ′′ == Hh ′′ -- 11 PP momo QQ momo PP omom QQ omom

式中:ΔP′o和ΔP′m分别为低压侧单独接注入元件和中压侧连接主网的连接方式中支路开断后节点o和节点m的等效注入有功功率增量,ΔQ′o和ΔQ′m分别为低压侧单独接注入元件和中压侧连接主网的连接方式中支路开断后节点o和节点m的等效注入无功功率增量;In the formula: ΔP′ o and ΔP′ m are the equivalent injected active power increments of node o and node m after the branch circuit is disconnected in the connection mode where the low-voltage side is connected to the injection element alone and the medium-voltage side is connected to the main network, respectively, ΔQ′ o and ΔQ′ m are the equivalent injected reactive power increments of node o and node m after the branch circuit is disconnected in the connection mode where the low-voltage side is connected to the injection element alone and the medium-voltage side is connected to the main network, respectively;

矩阵H′=I′+L′S′,H′、I′、L′和S′均为4×4阶矩阵,I′为单位阵;Matrix H'=I'+L'S', H', I', L' and S' are all 4×4 matrix, and I' is a unit matrix;

矩阵L′的表达式为The expression of the matrix L' is

LL ′′ == Hh omom -- 22 PP omom ++ NN omom -- Hh omom -- NN omom Mm omom -- 22 QQ omom ++ LL omom -- Mm omom -- LL omom -- Hh momo -- NN momo Hh momo -- 22 PP momo ++ NN momo -- Mm momo -- LL momo Mm momo -- 22 QQ momo ++ LL momo

矩阵S′的表达式如下:The expression of the matrix S' is as follows:

SS ′′ == ∂∂ θθ oo ∂∂ PP oo ∂∂ θθ oo ∂∂ QQ oo ∂∂ θθ oo ∂∂ PP mm ∂∂ θθ oo ∂∂ QQ mm ∂∂ Uu oo Uu oo ∂∂ PP oo ∂∂ Uu oo Uu oo ∂∂ QQ oo ∂∂ Uu oo Uu oo ∂∂ PP mm ∂∂ Uu oo Uu oo ∂∂ QQ mm ∂∂ θθ mm ∂∂ PP oo ∂∂ θθ mm ∂∂ QQ oo ∂∂ θθ mm ∂∂ PP mm ∂∂ θθ mm θθ QQ mm ∂∂ Uu mm Uu mm ∂∂ PP oo ∂∂ Uu mm Uu mm ∂∂ QQ oo ∂∂ Uu mm Uu mm ∂∂ PP mm ∂∂ Uu mm Uu mm ∂∂ QQ mm ;;

电网状态变量X2为:The grid state variable X 2 is:

X2=X0+S0[0,…,0,ΔP′o,ΔQ′o,ΔP′m,ΔQ′m,-Plo,Qlo,0,…,0]TX 2 =X 0 +S 0 [0,...,0,ΔP' o ,ΔQ' o ,ΔP' m ,ΔQ' m ,-P lo ,Q lo ,0,...,0] T .

Hom、Nom、Mom、Lom、Hmo、Nmo、Mmo、Lmo、Hol、Nol、Mol、Lol、Hlo、Nlo、Mlo和Llo的表达式分别为:Expressions of H om , N om , M om , L om , H mo , N mo , M mo , L mo , H ol , N ol , M ol , L ol , H lo , N lo , M lo , and L lo They are:

Hom=UoUm(Gomsinθom-Bomcosθom);H om =U o U m (G om sinθ om -B om cosθ om );

Nom=UoUm(Gomcosθom+Bomsinθom);N om = U o U m (G om cosθ om +B om sinθ om );

Mom=-NomM om = -N om ;

Lom=HomL om = H om ;

Hmo=UoUm(Gomsinθmo-Bomcosθmo);H mo =U o U m (G om sinθ mo -B om cosθ mo );

Nmo=UoUm(Gomcosθmo+Bomsinθmo);N mo =U o U m (G om cosθ mo +B om sinθ mo );

Mmo=-NmoM mo = -N mo ;

Lmo=HmoL mo = H mo ;

Hol=UoUl(Golsinθol-Bomcosθol);H ol =U o U l (G ol sinθ ol -B om cosθ ol );

Nol=UoUl(Gomcosθol+Bomsinθol);N ol =U o U l (G om cosθ ol +B om sinθ ol );

Mol=-NolM ol = -N ol ;

Lol=HolL ol = H ol ;

Hlo=UoUl(Golsinθlo-Bomcosθlo);H lo =U o U l (G ol sinθ lo -B om cosθ lo );

Nlo=UoUl(Gomcosθlo+Bomsinθlo);N lo =U o U l (G om cosθ lo +B om sinθ lo );

Mlo=-NloM lo =-N lo ;

Llo=HloL lo = H lo ;

式中,θom为节点o和节点m的相角差,θmo=-θom,θol为节点o和节点l的相角差,θlo=-θol,Gom和Gol分别为支路mo和支路lo的电导,Bom和Bol分别为支路om和支路ol的电纳。In the formula, θ om is the phase angle difference between node o and node m, θ mo = -θ om , θ ol is the phase angle difference between node o and node l, θ lo = -θ ol , G om and G ol are respectively The conductance of branch mo and branch lo, B om and B ol are the susceptance of branch om and branch ol respectively.

所述步骤3中,对于低/中压侧各自单独接注入元件的连接方式,电网状态变量X3表达式为:In the step 3, for the connection mode of the low/medium voltage side separately connected to the injection element, the expression of the grid state variable X3 is:

X3=X0+S0[0,…,0,-Pmo,-Qmo,-Plo,-Qlo,0,…,0]TX 3 =X 0 +S 0 [0,...,0,-P mo ,-Q mo ,-P lo ,-Q lo ,0,...,0] T .

所述步骤3中,对于低/中压侧接孤岛的接线方式,通过修正网络拓扑和雅可比矩阵J0,进行交流潮流迭代计算,得到电网状态变量和潮流功率。In the step 3, for the connection mode of the low/medium voltage side connected to the island, by correcting the network topology and the Jacobian matrix J 0 , the iterative calculation of the AC power flow is performed to obtain the grid state variable and power flow power.

所述步骤3中,计算支路ij的潮流功率的过程如下:In the step 3, the process of calculating the power flow of the branch ij is as follows:

PP ijij // == -- Uu ii Uu jj (( GG ijij coscos θθ ijij ++ BB ijij sinsin θθ ijij )) ++ tt ijij GG ijij Uu ii 22 QQ ijij // == -- Uu ii Uu jj (( GG ijij sinsin θθ ijij -- BB ijij coscos θθ ijij )) -- tt ijij BB ijij Uu ii 22 ++ bb ijij Uu ii 22

式中:P'ij和Q′ij分别为支路ij的潮流有功功率和潮流无功功率,tij为支路ij变比标幺值,bij为支路ij容纳的一半,Gij为支路ij的电导,Bij为支路ij的电纳,Ui和Uj分别为节点i的和节点j的电压,θij为节点i和节点j的相角差。In the formula: P' ij and Q' ij are the power flow active power and power flow reactive power of the branch ij respectively, t ij is the per unit value of the transformation ratio of the branch ij, b ij is half of the capacity of the branch ij, G ij is The conductance of branch ij, B ij is the susceptance of branch ij, U i and U j are the voltages of node i and node j respectively, θ ij is the phase angle difference between node i and node j.

与现有技术相比,本发明的有益效果在于:Compared with prior art, the beneficial effect of the present invention is:

1.本发明对三绕组变压器在电网中主要连接方式进行分类,使得灵敏度计算方式能够适用于多种类型三绕组变压器故障后潮流计算,计算速度快,满足现代智能电网对静态安全分析模块秒级计算速度的要求;1. The present invention classifies the main connection modes of three-winding transformers in the power grid, so that the sensitivity calculation method can be applied to power flow calculations after failures of various types of three-winding transformers, and the calculation speed is fast, which meets the requirements of modern smart grids for static security analysis modules at the second level Computing speed requirements;

2.本发明提出的分类计算方式能够得到三绕组变压器故障后精确的系统有功、无功功率潮流以及母线电压幅值、相位等全面的运行数据,不仅能够精确判断电力系统中线路和变压器的功率越限情况,而且能够判断母线电压越限情况,具有很高的实用价值;2. The classification calculation method proposed by the present invention can obtain accurate system active and reactive power flow and bus voltage amplitude, phase and other comprehensive operating data after the fault of the three-winding transformer, and can not only accurately judge the power of the line and transformer in the power system Over-limit situation, and can judge the bus voltage over-limit situation, which has high practical value;

3.本发明适用于电网中绝大部分三绕组变压器故障后潮流的灵敏度计算,解决了三绕组变压器故障容易导致局部失电使得常规灵敏度算法不能应用的问题。3. The present invention is applicable to the sensitivity calculation of the power flow after the failure of most three-winding transformers in the power grid, and solves the problem that the failure of the three-winding transformer easily leads to local power loss, so that the conventional sensitivity algorithm cannot be applied.

附图说明 Description of drawings

图1是本发明实施例中静态安全分析的三绕组变压器故障判断方法流程图;Fig. 1 is the three-winding transformer fault judging method flowchart of static security analysis in the embodiment of the present invention;

图2是本发明实施例中开断不会引起解列或失电的接线方式示意图;Fig. 2 is a schematic diagram of a wiring mode in which disconnection will not cause disassembly or power loss in an embodiment of the present invention;

图3是本发明实施例中低压侧单独接注入元件和中压侧连接主网的连接方式示意图;Fig. 3 is a schematic diagram of the connection mode in which the low-voltage side is separately connected to the injection element and the medium-voltage side is connected to the main network in the embodiment of the present invention;

图4是本发明实施例中低/中压侧各自单独接注入元件的连接方式示意图;Fig. 4 is a schematic diagram of the connection mode of the low/medium voltage side respectively receiving injection elements in the embodiment of the present invention;

图5是三绕组变压器中故障前支路潮流示意图。Fig. 5 is a schematic diagram of branch power flow before a fault in a three-winding transformer.

具体实施方式 Detailed ways

下面结合附图对本发明作进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings.

如图1,一种用于静态安全分析的三绕组变压器故障判断方法,所述方法包括以下步骤:As shown in Fig. 1, a kind of three-winding transformer fault judgment method for static safety analysis, described method comprises the following steps:

步骤1:进行基态潮流计算,得到雅可比矩阵J0、相应的灵敏度矩阵S0和由节点电压和相角组成的电网初始状态变量X0Step 1: Calculate the ground state power flow to obtain the Jacobian matrix J 0 , the corresponding sensitivity matrix S 0 and the grid initial state variable X 0 composed of node voltage and phase angle;

步骤2:判断发生故障三绕组变压器的接线方式;Step 2: Determine the wiring mode of the faulty three-winding transformer;

步骤3:根据接线方式计算电网状态变量和潮流功率;Step 3: Calculate grid state variables and power flow power according to the connection mode;

步骤4:判断电力系统是否存在越限现象,若是,则将发生的故障定义为有害故障。Step 4: Determine whether there is an over-limit phenomenon in the power system, and if so, define the fault as a harmful fault.

所述步骤2中,接线方式包括开断不会引起解列或失电的接线方式、低压侧单独接注入元件和中压侧连接主网的连接方式、低/中压侧各自单独接注入元件的连接方式以及低/中压侧接孤岛的接线方式。In the above step 2, the wiring method includes the connection method that disconnection will not cause disconnection or power loss, the low-voltage side is connected to the injection element separately and the medium-voltage side is connected to the main network, and the low-voltage/medium-voltage side is separately connected to the injection element. The connection method and the connection method of the low/medium voltage side to the island.

如图2,对于开断不会引起解列或失电的接线方式计算电网状态变量X1过程如下:As shown in Figure 2, the process of calculating the power grid state variable X1 for the connection mode that disconnection will not cause de-loading or power loss is as follows:

设三绕组变压器高压侧、中压侧和低压侧三侧节点分别为节点h、节点m和节点l,中性节点为节点o,节点o、节点m和节点l的开断等效注入功率增量为:Assuming that the nodes on the high voltage side, medium voltage side and low voltage side of the three-winding transformer are node h, node m and node l respectively, the neutral node is node o, and the breaking equivalent injection power of node o, node m and node l increases The amount is:

ΔΔ PP oo ΔΔ QQ oo ΔΔ PP mm ΔΔ QQ mm ΔΔ PP ll ΔΔ QQ ll == Hh -- 11 PP omom ++ PP olol QQ omom ++ QQ olol PP momo QQ momo PP lolo QQ lolo

式中,ΔPo、ΔPm和ΔPl分别为开断不会引起解列或失电的接线方式中支路开断后节点o、节点m和节点l的等效注入有功功率增量,ΔQo、ΔQm和ΔQl分别为支路开断后节点o、节点m和节点l的等效注入无功功率增量,Pom和Qom分别为节点o到节点m方向的基态潮流有功功率和节点o到节点m方向的基态潮流无功功率,Pol和Qol分别为节点o到节点l方向的基态潮流有功功率和节点o到节点l方向的基态潮流无功功率,Pmo和Qmo分别为节点m到节点o方向的基态潮流有功功率和节点m到节点o方向的基态潮流无功功率,Plo和Qlo分别为节点l到节点o方向的基态潮流有功功率和节点l到节点o方向的基态潮流无功功率;In the formula, ΔP o , ΔP m and ΔP l are the equivalent injected active power increments of node o, node m and node l after the branch circuit is disconnected in the connection mode that disconnection will not cause disconnection or power loss, respectively, and ΔQ o , ΔQ m and ΔQ l are the equivalent injected reactive power increments of node o, node m and node l after branch disconnection, P om and Q om are the ground state power flow active power and node The ground state power flow reactive power in the direction from node o to node m, P ol and Q ol are respectively the ground state power flow active power in the direction from node o to node l and the ground state power flow reactive power in the direction from node o to node l, P mo and Q mo are respectively is the ground state power flow active power from node m to node o and the ground state power flow reactive power from node m to node o, P lo and Q lo are the ground state power flow active power from node l to node o and the ground state power flow from node l to node o The ground state power flow reactive power in the direction;

矩阵H=I+LS,其中H、I、L和S均为6×6阶矩阵,I为单位阵;Matrix H=I+LS, wherein H, I, L and S are 6*6 order matrixes, and I is a unit matrix;

矩阵L表达式如下:The expression of matrix L is as follows:

LL == Hh omom ++ Hh olol -- 22 PP omom -- 22 PP olol ++ NN omom ++ NN olol -- Hh omom -- NN omom -- Hh olol -- NN olol Mm omom ++ Mm olol -- 22 QQ omom -- 22 QQ olol ++ LL omom ++ LL olol -- Mm omom -- LL omom -- Mm olol -- LL olol -- Hh momo -- NN momo Hh momo -- 22 PP momo ++ NN nono -- Mm momo -- LL momo Mm momo -- 22 QQ momo ++ LL momo -- Hh lolo -- NN lolo Hh lolo -- 22 PP lolo ++ NN lolo -- Mm lolo -- LL lolo Mm lolo -- 22 QQ lolo ++ LL lolo

式中,Hom、Mom、Nom、Lom、Hmo、Mmo、Nmo、Lmo、Hol、Mol、Nol、Lol、Hlo、Mlo、Nlo和Llo均为雅可比矩阵J0元素;In the formula, H om , M om , N om , L om , H mo , M mo , N mo , L mo , H ol , M ol , N ol , L ol , H lo , M lo , N lo and L lo are Jacobian matrix J 0 elements;

矩阵S的表达式如下:The expression of matrix S is as follows:

SS == ∂∂ θθ oo ∂∂ PP oo ∂∂ θθ oo ∂∂ QQ oo ∂∂ θθ oo ∂∂ PP mm ∂∂ θθ oo ∂∂ PP mm ∂∂ θθ oo ∂∂ PP ll ∂∂ θθ oo ∂∂ QQ ll ∂∂ Uu oo Uu oo ∂∂ PP oo ∂∂ Uu oo Uu oo ∂∂ QQ oo ∂∂ Uu oo Uu oo ∂∂ PP mm ∂∂ Uu oo Uu oo ∂∂ QQ mm ∂∂ Uu oo Uu oo ∂∂ PP ll ∂∂ Uu oo Uu oo ∂∂ QQ ll ∂∂ θθ mm ∂∂ PP oo ∂∂ θθ mm ∂∂ QQ oo ∂∂ θθ mm ∂∂ PP mm ∂∂ θθ mm ∂∂ QQ mm ∂∂ θθ mm ∂∂ PP ll ∂∂ θθ mm ∂∂ QQ ll ∂∂ Uu mm Uu mm ∂∂ PP oo ∂∂ Uu mm Uu mm ∂∂ QQ oo ∂∂ Uu mm Uu mm ∂∂ PP mm ∂∂ Uu mm Uu mm ∂∂ QQ mm ∂∂ Uu mm Uu mm ∂∂ PP ll ∂∂ Uu mm Uu mm ∂∂ QQ ll ∂∂ θθ ll ∂∂ PP oo ∂∂ θθ ll ∂∂ QQ oo ∂∂ θθ ll ∂∂ PP mm ∂∂ θθ ll ∂∂ QQ mm ∂∂ θθ ll ∂∂ PP ll ∂∂ θθ ll ∂∂ QQ ll ∂∂ Uu ll Uu ll ∂∂ PP oo ∂∂ Uu ll Uu ll ∂∂ QQ oo ∂∂ Uu ll Uu ll ∂∂ PP mm ∂∂ Uu ll Uu ll ∂∂ QQ mm ∂∂ Uu ll Uu ll ∂∂ PP ll ∂∂ Uu ll Uu ll ∂∂ QQ ll

式中,Uo、Um和Ul分别为节点o、节点m和节点l的电压,θo、θm和θl分别为节点o、节点m和节点l的相角;Po和Qo分别为节点o的有功功率和无功功率,Pm和Qm分别为节点m的有功功率和无功功率、Pl和Ql分别为节点l的有功功率和无功功率;In the formula, U o , U m and U l are the voltages of node o, node m and node l respectively; θ o , θ m and θ l are the phase angles of node o, node m and node l respectively; P o and Q o are active power and reactive power of node o respectively, P m and Q m are active power and reactive power of node m respectively, P l and Q l are active power and reactive power of node l respectively;

电网状态变量X1为:The grid state variable X1 is:

X1=X0+S0[0,…,0,ΔPo,ΔQo,ΔPm,ΔQm,ΔPl,ΔQl,0,…,0]TX 1 =X 0 +S 0 [0,...,0,ΔP o ,ΔQ o ,ΔP m ,ΔQ m ,ΔP l ,ΔQ l ,0,...,0] T .

如图3,对于低压侧单独接注入元件和中压侧连接主网的连接方式,计算电网状态变量X2过程如下:As shown in Figure 3, for the connection mode in which the low-voltage side is connected to the injection element alone and the medium-voltage side is connected to the main grid, the process of calculating the grid state variable X2 is as follows:

计算中压侧支路mo开断等效注入功率增量:Calculate the equivalent injection power increment of the medium-voltage side branch mo breaking:

ΔΔ PP oo ′′ ΔΔ QQ oo ′′ ΔΔ PP mm ′′ ΔΔ QQ mm ′′ == Hh ′′ -- 11 PP momo QQ momo PP omom QQ omom

式中:ΔP′o和ΔP′m分别为低压侧单独接注入元件和中压侧连接主网的连接方式中支路开断后节点o和节点m的等效注入有功功率增量,ΔQ′o和ΔQ′m分别为低压侧单独接注入元件和中压侧连接主网的连接方式中支路开断后节点o和节点m的等效注入无功功率增量;In the formula: ΔP′ o and ΔP′ m are the equivalent injected active power increments of node o and node m after the branch circuit is disconnected in the connection mode where the low-voltage side is connected to the injection element alone and the medium-voltage side is connected to the main network, respectively, ΔQ′ o and ΔQ′ m are the equivalent injected reactive power increments of node o and node m after the branch circuit is disconnected in the connection mode where the low-voltage side is connected to the injection element alone and the medium-voltage side is connected to the main network, respectively;

矩阵H′=I′+L′S′,H′、I′、L′和S′均为4×4阶矩阵,I′为单位阵;Matrix H'=I'+L'S', H', I', L' and S' are all 4×4 matrix, and I' is a unit matrix;

矩阵L′的表达式为The expression of the matrix L' is

LL ′′ == Hh omom -- 22 PP omom ++ NN omom -- Hh omom -- NN omom Mm omom -- 22 QQ omom ++ LL omom -- Mm omom -- LL omom -- Hh momo -- NN momo Hh momo -- 22 PP momo ++ NN momo -- Mm momo -- LL momo Mm momo -- 22 QQ momo ++ LL momo

矩阵S′的表达式如下:The expression of the matrix S' is as follows:

SS ′′ == ∂∂ θθ oo ∂∂ PP oo ∂∂ θθ oo ∂∂ QQ oo ∂∂ θθ oo ∂∂ PP mm ∂∂ θθ oo ∂∂ QQ mm ∂∂ Uu oo Uu oo ∂∂ PP oo ∂∂ Uu oo Uu oo ∂∂ QQ oo ∂∂ Uu oo Uu oo ∂∂ PP mm ∂∂ Uu oo Uu oo ∂∂ QQ mm ∂∂ θθ mm ∂∂ PP oo ∂∂ θθ mm ∂∂ QQ oo ∂∂ θθ mm ∂∂ PP mm ∂∂ θθ mm θθ QQ mm ∂∂ Uu mm Uu mm ∂∂ PP oo ∂∂ Uu mm Uu mm ∂∂ QQ oo ∂∂ Uu mm Uu mm ∂∂ PP mm ∂∂ Uu mm Uu mm ∂∂ QQ mm ;;

电网状态变量X2为:The grid state variable X 2 is:

X2=X0+S0[0,…,0,ΔP′o,ΔQ′o,ΔP′m,ΔQ′m,-Plo,-Qlo,0,…,0]TX 2 =X 0 +S 0 [0,...,0,ΔP' o ,ΔQ' o ,ΔP' m ,ΔQ' m ,-P lo ,-Q lo ,0,...,0] T .

Hom、Nom、Mom、Lom、Hmo、Nmo、Mmo、Lmo、Hol、Nol、Mol、Lol、Hlo、Nlo、Mlo和Llo的表达式分别为:Expressions of H om , N om , M om , L om , H mo , N mo , M mo , L mo , H ol , N ol , M ol , L ol , H lo , N lo , M lo , and L lo They are:

Hom=UoUm(Gomsinθom-Bomcosθom);H om =U o U m (G om sinθ om -B om cosθ om );

Nom=UoUm(Gomcosθom+Bomsinθom);N om = U o U m (G om cosθ om +B om sinθ om );

Mom=-NomM om = -N om ;

Lom=HomL om = H om ;

Hmo=UoUm(Gomsinθmo-Bomcosθmo);H mo =U o U m (G om sinθ mo -B om cosθ mo );

Nmo=UoUm(Gomcosθmo+Bomsinθmo);N mo =U o U m (G om cosθ mo +B om sinθ mo );

Mmo=-NmoM mo = -N mo ;

Lmo=HmoL mo = H mo ;

Hol=UoUl(Golsinθol-Bomcosθol);H ol =U o U l (G ol sinθ ol -B om cosθ ol );

Nol=UoUl(Gomcosθol+Bomsinθol);N ol =U o U l (G om cosθ ol +B om sinθ ol );

Mol=-NolM ol = -N ol ;

Lol=HolL ol = H ol ;

Hlo=UoUl(Golsinθlo-Bomcosθlo);H lo =U o U l (G ol sinθ lo -B om cosθ lo );

Nlo=UoUl(Gomcosθlo+Bomsinθlo);N lo =U o U l (G om cosθ lo +B om sinθ lo );

Mlo=-NloM lo =-N lo ;

Llo=HloL lo = H lo ;

式中,θom为节点o和节点m的相角差,θmo=-θom,θol为节点o和节点l的相角差,θlo=-θol,Gom和Gol分别为支路mo和支路lo的电导,Bom和Bol分别为支路om和支路ol的电纳。In the formula, θ om is the phase angle difference between node o and node m, θ mo = -θ om , θ ol is the phase angle difference between node o and node l, θ lo = -θ ol , G om and G ol are respectively The conductance of branch mo and branch lo, B om and B ol are the susceptance of branch om and branch ol respectively.

如图4,对于低/中压侧各自单独接注入元件的连接方式,电网状态变量X3表达式为:As shown in Figure 4, for the connection mode of the low/medium voltage side with separate injection components, the expression of the grid state variable X3 is:

X3=X0+S0[0,…,0,-Pmo,-Qmo,-Plo,-Qlo,0,…,0]TX 3 =X 0 +S 0 [0,...,0,-P mo ,-Q mo ,-P lo ,-Q lo ,0,...,0] T .

所述步骤3中,对于低/中压侧接孤岛的接线方式,通过修正网络拓扑和雅可比矩阵J0,进行交流潮流迭代计算,得到电网状态变量和潮流功率。In the step 3, for the connection mode of the low/medium voltage side connected to the island, by correcting the network topology and the Jacobian matrix J 0 , the iterative calculation of the AC power flow is performed to obtain the grid state variable and power flow power.

所述步骤3中,计算支路ij的潮流功率的过程如下:In the step 3, the process of calculating the power flow of the branch ij is as follows:

PP ijij // == -- Uu ii Uu jj (( GG ijij coscos θθ ijij ++ BB ijij sinsin θθ ijij )) ++ tt ijij GG ijij Uu ii 22 QQ ijij // == -- Uu ii Uu jj (( GG ijij sinsin θθ ijij -- BB ijij coscos θθ ijij )) -- tt ijij BB ijij Uu ii 22 ++ bb ijij Uu ii 22

式中:P'ij和Q′ij分别为支路ij的潮流有功功率和潮流无功功率,tij为支路ij变比标幺值,bij为支路ij容纳的一半,Gij为支路ij的电导,Bij为支路ij的电纳,Ui和Uj分别为节点i的和节点j的电压,θij为节点i和节点j的相角差。In the formula: P' ij and Q' ij are the power flow active power and power flow reactive power of the branch ij respectively, t ij is the per unit value of the transformation ratio of the branch ij, b ij is half of the capacity of the branch ij, G ij is The conductance of branch ij, B ij is the susceptance of branch ij, U i and U j are the voltages of node i and node j respectively, θ ij is the phase angle difference between node i and node j.

图5为三绕组变压器故障前支路潮流示意图。Fig. 5 is a schematic diagram of branch power flow before a three-winding transformer fault.

本发明对三绕组变压器在电网中主要连接方式进行分类,使得灵敏度计算方式能够适用于多种类型三绕组变压器故障后潮流计算,计算速度快,以国家电网调度中心智能电网调度技术支持平台的华中电网和华北电网系统为例,满足现代智能电网对静态安全分析模块秒级计算速度的要求,具体计算时间如表1所示。The invention classifies the main connection modes of three-winding transformers in the power grid, so that the sensitivity calculation method can be applied to power flow calculation after failure of various types of three-winding transformers, and the calculation speed is fast. The power grid and the North China power grid system are taken as examples to meet the second-level calculation speed requirements of the modern smart grid for the static security analysis module. The specific calculation time is shown in Table 1.

表1Table 1

本发明提出的分类计算方式能够得到三绕组变压器故障后精确的系统有功、无功功率潮流以及母线电压幅值、相位等全面的运行数据,不仅能够精确判断电力系统中线路和变压器的功率越限情况,而且能够判断母线电压越限情况,具有很高的实用价值。The classification calculation method proposed by the present invention can obtain comprehensive operating data such as accurate system active power and reactive power flow, bus voltage amplitude and phase after the fault of the three-winding transformer, and can not only accurately judge the power limit of the line and transformer in the power system situation, and it can judge the bus voltage over-limit situation, which has high practical value.

最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求范围当中。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention and not to limit them. Although the present invention has been described in detail with reference to the above embodiments, those of ordinary skill in the art should understand that: the present invention can still be Any modification or equivalent replacement that does not depart from the spirit and scope of the present invention shall be covered by the scope of the claims of the present invention.

Claims (7)

1.一种用于静态安全分析的三绕组变压器故障判断方法,其特征在于:所述方法包括以下步骤:1. A three-winding transformer fault judgment method for static safety analysis, characterized in that: the method may further comprise the steps: 步骤1:进行基态潮流计算,得到雅可比矩阵J0、相应的灵敏度矩阵S0和由节点电压和相角组成的电网初始状态变量X0Step 1: Calculate the ground state power flow to obtain the Jacobian matrix J 0 , the corresponding sensitivity matrix S 0 and the grid initial state variable X 0 composed of node voltage and phase angle; 步骤2:判断发生故障三绕组变压器的接线方式;Step 2: Determine the wiring mode of the faulty three-winding transformer; 步骤3:根据接线方式计算电网状态变量,并按照下述方式计算支路ij潮流功率:Step 3: Calculate the state variables of the grid according to the connection mode, and calculate the power flow of the branch ij in the following way: PP ijij // == -- Uu ii Uu jj (( GG ijij coscos θθ ijij ++ BB ijij sinsin θθ ijij )) ++ tt ijij GG ijij Uu ii 22 QQ ijij // == -- Uu ii Uu jj (( GG ijij sinsin θθ ijij -- BB ijij coscos θθ ijij )) -- tt ijij BB ijij Uu ii 22 ++ bb ijij Uu ii 22 式中:P'ij和Q'ij分别为支路ij的潮流有功功率和潮流无功功率,tij为支路ij变比标幺值,bij为支路ij容纳的一半,Gij为支路ij的电导,Bij为支路ij的电纳,Ui和Uj分别为节点i的和节点j的电压,θij为节点i和节点j的相角差;In the formula: P' ij and Q' ij are respectively the power flow active power and the power flow reactive power of the branch ij, t ij is the per unit value of the transformation ratio of the branch ij, b ij is half of the capacity of the branch ij, G ij is The conductance of branch ij, B ij is the susceptance of branch ij, U i and U j are the voltages of node i and node j respectively, θ ij is the phase angle difference between node i and node j; 步骤4:判断电力系统是否存在越限现象,若是,则将发生的故障定义为有害故障。Step 4: Determine whether there is an over-limit phenomenon in the power system, and if so, define the fault as a harmful fault. 2.根据权利要求1所述的用于静态安全分析的三绕组变压器故障判断方法,其特征在于:所述步骤2中,接线方式包括开断不会引起解列或失电的接线方式、低压侧单独接注入元件和中压侧连接主网的连接方式、低/中压侧各自单独接注入元件的连接方式以及低/中压侧接孤岛的接线方式。2. The three-winding transformer fault judging method for static safety analysis according to claim 1, characterized in that: in said step 2, the wiring mode includes a wiring mode in which disconnection or power loss will not be caused, low voltage The connection mode of connecting injection components on the side alone and the main network on the medium voltage side, the connection mode of separately connecting injection components on the low/medium voltage side, and the connection mode of connecting the low/medium voltage side to the island. 3.根据权利要求2所述的用于静态安全分析的三绕组变压器故障判断方法,其特征在于:所述步骤3中,对于开断不会引起解列或失电的接线方式计算电网状态变量X1过程如下:3. The three-winding transformer fault judgment method for static safety analysis according to claim 2, characterized in that: in said step 3, the power grid state variable is calculated for the connection mode that disconnection will not cause decoupling or power loss The X1 process is as follows: 设三绕组变压器高压侧、中压侧和低压侧三侧节点分别为节点h、节点m和节点l,中性节点为节点o,节点o、节点m和节点l的开断等效注入功率增量为:Assuming that the nodes on the high voltage side, medium voltage side and low voltage side of the three-winding transformer are node h, node m and node l respectively, the neutral node is node o, and the breaking equivalent injection power of node o, node m and node l increases The amount is: ΔΔ PP oo ΔΔ QQ oo ΔΔ PP mm ΔΔ QQ mm ΔΔ PP ll ΔΔ QQ ll == Hh -- 11 PP omom ++ PP olol QQ omom ++ QQ olol PP momo QQ momo PP lolo QQ lolo 式中,ΔPo、ΔPm和ΔPl分别为开断不会引起解列或失电的接线方式中支路开断后节点o、节点m和节点l的等效注入有功功率增量,ΔQo、ΔQm和ΔQl分别为支路开断后节点o、节点m和节点l的等效注入无功功率增量,Pom和Qom分别为节点o到节点m方向的基态潮流有功功率和节点o到节点m方向的基态潮流无功功率,Pol和Qol分别为节点o到节点l方向的基态潮流有功功率和节点o到节点l方向的基态潮流无功功率,Pmo和Qmo分别为节点m到节点o方向的基态潮流有功功率和节点m到节点o方向的基态潮流无功功率,Plo和Qlo分别为节点l到节点o方向的基态潮流有功功率和节点l到节点o方向的基态潮流无功功率;In the formula, ΔP o , ΔP m and ΔP l are the equivalent injected active power increments of node o, node m and node l after the branch circuit is disconnected in the connection mode that disconnection will not cause disconnection or power loss, respectively, and ΔQ o , ΔQ m and ΔQ l are the equivalent injected reactive power increments of node o, node m and node l after branch disconnection, P om and Q om are the ground state power flow active power and node The ground state power flow reactive power in the direction from node o to node m, P ol and Q ol are respectively the ground state power flow active power in the direction from node o to node l and the ground state power flow reactive power in the direction from node o to node l, P mo and Q mo are respectively is the ground state power flow active power from node m to node o and the ground state power flow reactive power from node m to node o, P lo and Q lo are the ground state power flow active power from node l to node o and the ground state power flow from node l to node o The ground state power flow reactive power in the direction; 矩阵H=I+LS,其中H、I、L和S均为6×6阶矩阵,I为单位阵;Matrix H=I+LS, wherein H, I, L and S are 6*6 order matrixes, and I is a unit matrix; 矩阵L表达式如下:The expression of matrix L is as follows: LL == Hh omom ++ Hh olol -- 22 PP omom -- 22 PP olol ++ NN omom ++ NN olol -- Hh omom -- NN omom -- Hh olol -- NN olol Mm omom ++ Mm olol -- 22 QQ omom -- 22 QQ olol ++ LL omom ++ LL olol -- Mm omom -- LL omom -- Mm olol -- LL olol -- Hh momo -- NN momo Hh momo -- 22 PP momo ++ NN momo -- Mm momo -- LL momo Mm momo -- 22 QQ momo ++ LL momo -- Hh lolo -- NN lolo Hh lolo -- 22 PP lolo ++ NN lolo -- Mm lolo -- LL lolo Mm lolo -- 22 QQ lolo ++ LL lolo 式中,Hom、Mom、Nom、Lom、Hmo、Mmo、Nmo、Lmo、Hol、Mol、Nol、Lol、Hlo、Mlo、Nlo和Llo均为雅可比矩阵J0元素;In the formula, H om , M om , N om , L om , H mo , M mo , N mo , L mo , H ol , M ol , N ol , L ol , H lo , M lo , N lo and L lo are Jacobian matrix J 0 elements; 矩阵S的表达式如下:The expression of matrix S is as follows: SS == ∂∂ θθ oo ∂∂ PP oo ∂∂ θθ oo ∂∂ QQ oo ∂∂ θθ oo ∂∂ PP mm ∂∂ θθ oo ∂∂ QQ mm ∂∂ θθ oo ∂∂ PP ll ∂∂ θθ oo ∂∂ QQ ll ∂∂ Uu oo Uu oo ∂∂ PP oo ∂∂ Uu oo Uu oo ∂∂ QQ oo ∂∂ Uu oo Uu oo ∂∂ PP mm ∂∂ Uu oo Uu oo ∂∂ QQ mm ∂∂ Uu oo Uu oo ∂∂ PP ll ∂∂ Uu oo Uu oo ∂∂ QQ ll ∂∂ θθ mm ∂∂ PP oo ∂∂ θθ mm ∂∂ QQ oo ∂∂ θθ mm ∂∂ PP mm ∂∂ θθ mm ∂∂ QQ mm ∂∂ θθ mm ∂∂ PP ll ∂∂ θθ mm ∂∂ QQ ll ∂∂ Uu mm Uu mm ∂∂ PP oo ∂∂ Uu mm Uu mm ∂∂ QQ oo ∂∂ Uu mm Uu mm ∂∂ PP mm ∂∂ Uu mm Uu mm ∂∂ QQ mm ∂∂ Uu mm Uu mm ∂∂ PP ll ∂∂ Uu mm Uu mm ∂∂ QQ ll ∂∂ θθ ll ∂∂ PP oo ∂∂ θθ ll ∂∂ QQ oo ∂∂ θθ ll ∂∂ PP mm ∂∂ θθ ll ∂∂ QQ mm ∂∂ θθ ll ∂∂ PP ll ∂∂ θθ ll ∂∂ QQ ll ∂∂ Uu ll Uu ll ∂∂ PP oo ∂∂ Uu ll Uu ll ∂∂ QQ oo ∂∂ Uu ll Uu ll ∂∂ PP mm ∂∂ Uu ll Uu ll ∂∂ QQ mm ∂∂ Uu ll Uu ll ∂∂ PP ll ∂∂ Uu ll Uu ll ∂∂ QQ ll 式中,Uo、Um和Ul分别为节点o、节点m和节点l的电压,θo、θm和θl分别为节点o、节点m和节点l的相角;Po和Qo分别为节点o的有功功率和无功功率,Pm和Qm分别为节点m的有功功率和无功功率、Pl和Ql分别为节点l的有功功率和无功功率;In the formula, U o , U m and U l are the voltages of node o, node m and node l respectively; θ o , θ m and θ l are the phase angles of node o, node m and node l respectively; P o and Q o are active power and reactive power of node o respectively, P m and Q m are active power and reactive power of node m respectively, P l and Q l are active power and reactive power of node l respectively; 电网状态变量X1为:The grid state variable X1 is: X1=X0+S0[0,…,0,ΔPo,ΔQo,ΔPm,ΔQm,ΔPl,ΔQl,0,…,0]TX 1 =X 0 +S 0 [0,...,0,ΔP o ,ΔQ o ,ΔP m ,ΔQ m ,ΔP l ,ΔQ l ,0,...,0] T . 4.根据权利要求3所述的用于静态安全分析的三绕组变压器故障判断方法,其特征在于:所述步骤3中,对于低压侧单独接注入元件和中压侧连接主网的连接方式,计算电网状态变量X2过程如下:4. The three-winding transformer fault judgment method for static safety analysis according to claim 3, characterized in that: in said step 3, for the connection mode in which the low-voltage side is separately connected to the injection element and the medium-voltage side is connected to the main network, The process of calculating the grid state variable X2 is as follows: 计算中压侧支路mo开断等效注入功率增量:Calculate the equivalent injection power increment of the medium-voltage side branch mo breaking: ΔPΔP oo ′′ ΔΔ QQ oo ′′ ΔΔ PP mm ′′ ΔΔ QQ mm ′′ == Hh ′′ -- 11 PP momo QQ momo PP omom QQ omom 式中:ΔP′o和ΔP′m分别为低压侧单独接注入元件和中压侧连接主网的连接方式中支路开断后节点o和节点m的等效注入有功功率增量,ΔQ′o和ΔQ′m分别为低压侧单独接注入元件和中压侧连接主网的连接方式中支路开断后节点o和节点m的等效注入无功功率增量;In the formula: ΔP′ o and ΔP′ m are the equivalent injected active power increments of node o and node m after the branch circuit is disconnected in the connection mode where the low-voltage side is connected to the injection element alone and the medium-voltage side is connected to the main network, respectively, ΔQ′ o and ΔQ′ m are the equivalent injected reactive power increments of node o and node m after the branch circuit is disconnected in the connection mode where the low-voltage side is connected to the injection element alone and the medium-voltage side is connected to the main network, respectively; 矩阵H′=I′+L′S′,H′、I′、L′和S′均为4×4阶矩阵,I′为单位阵;Matrix H'=I'+L'S', H', I', L' and S' are all 4×4 order matrix, I' is unit matrix; 矩阵L′的表达式为The expression of the matrix L' is LL ′′ == Hh omom -- 22 PP omom -- Hh omom -- NN omom Mm omom -- 22 QQ omom ++ LL omom -- Mm omom -- NN omom -- Hh omom -- NN omom Hh omom -- 22 PP omom ++ NN omom -- Mm momo -- LL omom Mm omom -- 22 QQ omom ++ LL omom 矩阵S′的表达式如下:The expression of the matrix S' is as follows: SS ′′ == ∂∂ θθ oo ∂∂ PP oo ∂∂ θθ oo ∂∂ QQ oo ∂∂ θθ oo ∂∂ PP mm ∂∂ θθ oo ∂∂ QQ mm ∂∂ Uu oo Uu oo ∂∂ PP oo ∂∂ Uu oo Uu oo ∂∂ QQ oo ∂∂ Uu oo Uu oo ∂∂ PP mm ∂∂ Uu oo Uu oo ∂∂ QQ mm ∂∂ θθ mm ∂∂ PP oo ∂∂ θθ mm ∂∂ QQ oo ∂∂ θθ mm ∂∂ Uu mm ∂∂ θθ mm ∂∂ QQ mm ∂∂ Uu mm Uu mm ∂∂ PP oo ∂∂ Uu mm Uu mm ∂∂ QQ oo ∂∂ Uu mm Uu mm ∂∂ PP mm ∂∂ Uu mm Uu mm ∂∂ QQ mm ;; 电网状态变量X2为:The grid state variable X 2 is: X2=X0+S0[0,…,0,ΔP′o,ΔQ′o,ΔP′m,ΔQ′m,-Plo,-Qlo,0,…,0]TX 2 =X 0 +S 0 [0,...,0,ΔP' o ,ΔQ' o ,ΔP' m ,ΔQ' m ,-P lo ,-Q lo ,0,...,0] T . 5.根据权利要求3或4所述的用于静态安全分析的三绕组变压器故障判断方法,其特征在于:Hom、Nom、Mom、Lom、Hmo、Nmo、Mmo、Lmo、Hol、Nol、Mol、Lol、Hlo、Nlo、Mlo和Llo的表达式分别为:5. The three-winding transformer fault judgment method for static safety analysis according to claim 3 or 4, characterized in that: H om , N om , M om , L om , H mo , N mo , M mo , L The expressions of mo , H ol , N ol , M ol , L ol , H lo , N lo , M lo and L lo are: Hom=UoUm(Gomsinθom-Bomcosθom);H om =U o U m (G om sinθ om -B om cosθ om ); Nom=UoUm(Gomcosθom+Bomsinθom);N om = U o U m (G om cosθ om +B om sinθ om ); Mom=-NomM om = -N om ; Lom=HomL om = H om ; Hmo=UoUm(Gomsinθmo-Bomcosθmo);H mo =U o U m (G om sinθ mo -B om cosθ mo ); Nmo=UoUm(Gomcosθmo+Bomsinθmo);N mo =U o U m (G om cosθ mo +B om sinθ mo ); Mmo=-NmoM mo = -N mo ; Lmo=HmoL mo = H mo ; Hol=UoUl(Golsinθol-Bomcosθol);H ol =U o U l (G ol sinθ ol -B om cosθ ol ); Nol=UoUl(Gomcosθol+Bomsinθol);N ol =U o U l (G om cosθ ol +B om sinθ ol ); Mol=-NolM ol = -N ol ; Lol=HolL ol = H ol ; Hlo=UoUl(Golsinθlo-Bomcosθlo);H lo =U o U l (G ol sinθ lo -B om cosθ lo ); Nlo=UoUl(Gomcosθlo+Bomsinθlo);N lo =U o U l (G om cosθ lo +B om sinθ lo ); Mlo=-NloM lo =-N lo ; Llo=HloL lo = H lo ; 式中,θom为节点o和节点m的相角差,θmo=-θom,θol为节点o和节点l的相角差,θlo=-θol,Gom和Gol分别为支路mo和支路lo的电导,Bom和Bol分别为支路om和支路ol的电纳。In the formula, θ om is the phase angle difference between node o and node m, θ mo = -θ om , θ ol is the phase angle difference between node o and node l, θ lo = -θ ol , G om and G ol are respectively The conductance of branch mo and branch lo, B om and B ol are the susceptance of branch om and branch ol respectively. 6.根据权利要求4所述的用于静态安全分析的三绕组变压器故障判断方法,其特征在于:所述步骤3中,对于低/中压侧各自单独接注入元件的连接方式,电网状态变量X3表达式为:6. The three-winding transformer fault judging method for static safety analysis according to claim 4, characterized in that: in the step 3, for the connection mode in which the low/medium voltage side is separately connected to the injection element, the grid state variable The expression of X3 is: X3=X0+S0[0,…,0,-Pmo,-Qmo,-Plo,-Qlo,0,…,0]TX 3 =X 0 +S 0 [0,...,0,-P mo ,-Q mo ,-P lo ,-Q lo ,0,...,0] T . 7.根据权利要求1所述的用于静态安全分析的三绕组变压器故障判断方法,其特征在于:所述步骤3中,对于低/中压侧接孤岛的接线方式,通过修正网络拓扑和雅可比矩阵J0,进行交流潮流迭代计算,得到电网状态变量和潮流功率。7. The three-winding transformer fault judgment method for static safety analysis according to claim 1, characterized in that: in the step 3, for the connection mode of the low/medium voltage side connected to the island, by correcting the network topology and elegant Comparable matrix J 0 is used for iterative calculation of AC power flow to obtain grid state variables and power flow.
CN201210194962.6A 2012-06-13 2012-06-13 Failure predication method for static security analysis of three-winding transformer Active CN102707176B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210194962.6A CN102707176B (en) 2012-06-13 2012-06-13 Failure predication method for static security analysis of three-winding transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210194962.6A CN102707176B (en) 2012-06-13 2012-06-13 Failure predication method for static security analysis of three-winding transformer

Publications (2)

Publication Number Publication Date
CN102707176A CN102707176A (en) 2012-10-03
CN102707176B true CN102707176B (en) 2014-09-10

Family

ID=46900108

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210194962.6A Active CN102707176B (en) 2012-06-13 2012-06-13 Failure predication method for static security analysis of three-winding transformer

Country Status (1)

Country Link
CN (1) CN102707176B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110542791B (en) * 2019-09-06 2021-10-22 福建工程学院 Calculation method of limit power of initial faulty branch during grid cascading trip

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101281229A (en) * 2008-05-22 2008-10-08 重庆大学 Distribution Network Distribution Line Fault Location System
CN101413981A (en) * 2008-11-27 2009-04-22 上海交通大学 Electric power system operation standby reliability testing system
CN102331547A (en) * 2011-07-12 2012-01-25 江苏镇安电力设备有限公司 Transformer winding vibration on-line monitoring and fault diagnosis method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101281229A (en) * 2008-05-22 2008-10-08 重庆大学 Distribution Network Distribution Line Fault Location System
CN101413981A (en) * 2008-11-27 2009-04-22 上海交通大学 Electric power system operation standby reliability testing system
CN102331547A (en) * 2011-07-12 2012-01-25 江苏镇安电力设备有限公司 Transformer winding vibration on-line monitoring and fault diagnosis method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
基于支持向量机和DGA的变压器状态评估方法;朱永利 等;《电力系统及其自动化学报》;20081231;第20卷(第6期);全文 *
朱永利 等.基于支持向量机和DGA的变压器状态评估方法.《电力系统及其自动化学报》.2008,第20卷(第6期),第111-115页.
赵晋泉 等.连续潮流的在线静态稳定综合评估方法.《电力系统自动化》.2010,第34卷(第4期),第18-22,28页.
连续潮流的在线静态稳定综合评估方法;赵晋泉 等;《电力系统自动化》;20100225;第34卷(第4期);全文 *

Also Published As

Publication number Publication date
CN102707176A (en) 2012-10-03

Similar Documents

Publication Publication Date Title
CN103036230B (en) A kind of Dynamic Equivalence of the alternating current-direct current series-parallel connection bulk power grid based on engineer applied
CN103094905B (en) Selection method of dynamic reactive power compensation configuration point
CN109217302B (en) A method for evaluating the strength of the traditional DC receiving end power grid in a hybrid multi-infeed system
CN103401232B (en) Transient Security for Power Systems stablizes the PC cluster method of online emergency control policy
CN101957872A (en) Hybrid real-time simulation method for alternating current-direct current power system
CN105305438B (en) New energy power station model verification method based on impedance and controlled AC voltage source
CN101557106A (en) Method for computing the reliability of UHVDC transmission system
CN103326392B (en) Reliability calculation method for extra-high voltage direct current transmission converter valve set system
CN109256970A (en) MMC-MTDC transmission system monopolar grounding fault current calculation method
CN102445638A (en) Time domain fault positioning method for multi-branch direct current line of multi-terminal direct current power transmission system
CN107679289A (en) A kind of dynamic passive compensation collocation method for reducing multi-infeed HVDC commutation failure risk
CN104104251B (en) A kind of robust control method of the combining inverter based on SSR-KDF
CN105095590B (en) A kind of modeling method of the electromechanical transient simulation system based on three sequence equivalent impedances
CN106410862B (en) Based on the active wind power plant single machine equivalence method for restoring slope correction
CN104283208B (en) Decomposition coordination calculation method for probabilistic available power transmission capacity of large power grid
CN102723711B (en) Cable power distribution network estimation method based on credibility
CN111639841A (en) Lightning trip-out risk comprehensive evaluation method for high-voltage transmission line
CN102707176B (en) Failure predication method for static security analysis of three-winding transformer
CN104505866B (en) Equivalent decoupling method for simulating multi-feed-in direct current fault recovery characteristics
CN106229970A (en) Micro-capacitance sensor method for estimating state based on converter Control characteristic
CN103199566A (en) Cascading failure analytical method of alternating current and direct current multiple-series electric system
Chen Cascaded stalling of induction motors in fault-induced delayed voltage recovery (FIDVR)
CN107196307A (en) A kind of method that electric network active trend is quickly estimated after transformer fault
CN103997041A (en) On-line voltage stability determination system of alternating current and direct current mixing connection system
CN106503887A (en) Transformer self-adaptive load factor computational methods in a kind of grid monitoring system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: STATE ELECTRIC NET CROP.

Effective date: 20130424

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20130424

Address after: 100192 Beijing city Haidian District Qinghe small Camp Road No. 15

Applicant after: China Electric Power Research Institute

Applicant after: State Grid Corporation of China

Address before: 100192 Beijing city Haidian District Qinghe small Camp Road No. 15

Applicant before: China Electric Power Research Institute

C14 Grant of patent or utility model
GR01 Patent grant