CN102706701A - 一种伺服在线油液取样控制装置及方法 - Google Patents

一种伺服在线油液取样控制装置及方法 Download PDF

Info

Publication number
CN102706701A
CN102706701A CN2012101799648A CN201210179964A CN102706701A CN 102706701 A CN102706701 A CN 102706701A CN 2012101799648 A CN2012101799648 A CN 2012101799648A CN 201210179964 A CN201210179964 A CN 201210179964A CN 102706701 A CN102706701 A CN 102706701A
Authority
CN
China
Prior art keywords
water pump
chip
unit
arm chip
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012101799648A
Other languages
English (en)
Other versions
CN102706701B (zh
Inventor
贺石中
陶辉
陈闽杰
冯伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Mechanical Engineering Research Institute Co Ltd
Original Assignee
Guangzhou Mechanical Engineering Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Mechanical Engineering Research Institute Co Ltd filed Critical Guangzhou Mechanical Engineering Research Institute Co Ltd
Priority to CN201210179964.8A priority Critical patent/CN102706701B/zh
Publication of CN102706701A publication Critical patent/CN102706701A/zh
Application granted granted Critical
Publication of CN102706701B publication Critical patent/CN102706701B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Non-Positive-Displacement Pumps (AREA)

Abstract

本发明公开了一种伺服在线油液取样控制装置及方法。该装置包括水泵、直流电源接口、电源转换单元以及分别与电源转换单元相连的CAN通讯单元、ARM芯片、信息采集反馈单元、控制驱动单元和电磁阀,ARM芯片通过控制驱动单元、信号采集反馈单元实现对取样量、样品流速的双闭环控制;在检测时,电磁阀打开,油液在水泵作用下进入装置。该方法是:在水泵工作时,信息采集反馈单元实时采集水泵叶轮的旋转角度和速度并发送到ARM芯片,ARM芯片将反馈的信号值进行计算后和上位机给定的取样量、样品流速的期望值相比较,根据二者差值进一步调整水泵运行状态。本发明结构简单、运算速度快、通讯效率高,并具有扩展方便、电流闭环的自我保护功能。

Description

一种伺服在线油液取样控制装置及方法
技术领域
本发明涉及机械装备摩擦润滑系统状态监测与故障诊断技术领域,特别涉及一种伺服在线油液取样控制装置及方法。
背景技术
机械装备所用润滑油具有减少零件表面间摩擦阻力、降低表面材料磨损、保证装备安全可靠运行以及延长装备使用寿命等功能,是工业机械装备必备的工作介质。但润滑油在长期受剪切、摩擦热、污染等作用下其性能将发生衰变,直接影响到机器装备摩擦副的润滑性能,目前对在用润滑油性能评判主要是通过离线取样分析为主。
润滑油离线监测技术是对离线采集到的装备润滑油或工作介质样品,利用光、电、磁学等技术手段,分析其理化指标和所检测携带的各种颗粒信息,从而获取机器的润滑磨损状态,以便科学地采取措施,保障装备运行安全。离线油液监测分析过程中,首要的是润滑油定期取样,由于不可能及时送到各专业检测实验室分析评价,有可能延误对机械装备故障的判定;同时,为了满足大型连续作业装备、关键装备以及对安全性要求高的装备的实时现场监测与诊断需要,润滑油的在线监测技术使用显得尤为必要。油液在线监测是指在运行过程中对润滑油实时、连续的监测并及时动态地获取润滑磨损等状态信息,达到实时润滑磨损状态监测与故障诊断目的。润滑系统的在线监测消除了离线油液检测的人为不确定性因素,取样和检测几乎同时进行,并能及时为人员提供机械系统的润滑磨损实时状态,保障机械装备运行安全。
目前,根据在线监测传感器或集成仪器在润滑系统中的安装方式可分为两种:一种是直接安装在油路中,称嵌入式在线监测;另一种是安装在附加的旁路油路中,称在线监测。其中,因监测传感器或集成仪器,尤其是对磨损颗粒图像及浓度的在线监测传感器,对取样量、取样分析时的油液流速以及取样运行中不可控的一些干扰因素都很敏感,因此对于旁路安装的传感器或集成仪器,如何精确控制润滑油进入旁路时的油液流速是在线监测技术关键。
发明内容
本发明的主要目的在于克服现有技术的缺点与不足,提供一种伺服在线油液取样控制装置,该装置能够在实施机械设备润滑磨损在线监测时保持取样稳定,能精确闭环伺服控制润滑油取样量和取样流速,精确控制电磁阀开启时刻,并具有扩展方便、电流闭环的自我保护功能。
本发明的另一目的在于提供一种基于上述装置的伺服在线油液取样控制方法,该方法具有实现简单、运算速度快、通讯效率高的优点。
本发明一种伺服在线油液取样控制装置,包括水泵、直流电源接口、电源转换单元以及分别与电源转换单元相连的CAN通讯单元、ARM芯片、信息采集反馈单元、控制驱动单元和电磁阀,电源转换单元与直流电源接口连接,用于将外界电压转换成上述各部件的工作电压,所述ARM芯片通过CAN通讯单元与上位机信号连接,ARM芯片控制电磁阀的开闭,ARM芯片发出的控制信号通过控制驱动单元解调后发送到水泵,控制水泵的运转,信号采集反馈单元用于采集水泵的信息并将信息传递到ARM芯片,ARM芯片根据反馈信息调节水泵的即时工作状态;所述控制驱动单元与直流电源接口相连;电磁阀与外部油路相连;在检测时,电磁阀打开,油液在水泵作用下进入装置。
优选的,所述装置还包括自我保护单元,自我保护单元分别与电源转换单元、ARM芯片和控制驱动单元相连,控制驱动单元采集水泵的内电流信号,并将内电流信号发送到自我保护单元,自我保护单元将收到的信号与ARM芯片给定的内电流信号进行比对,一旦内电流超过限值,则自我保护单元将信号发送到控制驱动单元,控制驱动单元控制水泵停止运转。
更进一步的,所述自我保护单元将控制驱动单元传递来的水泵内电流信号实时地发送到ARM芯片上,ARM芯片上设有显示装置,显示装置实时地显示内电流信号。采用这种装置可以方便操作人员实时观察当前的水泵运行情况。
优选的,所述自我保护单元包括依次相连的第一运算放大器、第二运算放大器,第一运算放大器分别与ARM芯片、控制驱动单元相连,第二运算放大器与控制驱动单元相连,第二运算放大器通过电阻接地。
优选的,所述水泵为电机式无刷直流水泵。
优选的,所述电源转换单元包括15-36V的电源输入接口、第一电压转换芯片、第二电压转换芯片、第三电压转换芯片,电源输入接口与外界直流电源接口相连,第一电压转换芯片分别与控制驱动单元、自我保护单元连接,第二电压转换芯片分别与CAN通讯单元、信息采集反馈单元、自我保护单元连接,第三电压转换芯片分别与ARM芯片、电磁阀连接。
优选的,所述信息采集反馈单元包括滞回比较器和旋转变压器,旋转变压器一端通过联轴器和水泵泵轴连接,用于将采集到的水泵的取样量和取样速度信号发送到滞回比较器,滞回比较器将旋转变压器解调后的数字信号稳定后,发送到ARM芯片,滞回比较器还与电源转换单元相连。
优选的,所述控制驱动单元包括第一桥式驱动芯片、第二桥式驱动芯片以及四个场效应管Q1、Q2、Q3、Q4,第一桥式驱动芯片与场效应管Q1、Q2的栅极连接,第二桥式驱动芯片与场效应管Q3、Q4的栅极连接,场效应管Q1、Q3的源极分别与场效应管Q2、Q4的漏极连接,场效应管Q1、Q3的源极分别与第一桥式驱动芯片、第二桥式驱动芯片连接;第一桥式驱动芯片、第二桥式驱动芯片均分别与ARM芯片、自我保护单元相连,场效应管Q1、Q3的漏极分别与直流电源接口连接,场效应管Q1、Q3的源极分别与水泵的输入端连接,场效应管Q2、Q4的源极分别与自我保护单元连接。
本发明还提供了一种基于上述伺服在线油液取样控制装置的控制方法,ARM芯片控制电磁阀打开,并驱动水泵叶轮旋转,在水泵工作时,信息采集反馈单元实时采集水泵叶轮的旋转角度和速度并发送到ARM芯片,ARM芯片根据信号值进行计算,得到当前取样量和样品流速,然后跟上位机给定的取样量、样品流速的期望值相比较,根据二者差值进一步调整水泵运行状态。
优选的,所述旋转角度是指在一定时间内叶轮旋转过的角度,为叶轮旋转速度和时间的乘积,当前样品流速和叶轮旋转速度之间的关系是通过实验统计确定的,当前取样量为当前样品流速乘以时间。
具体包括以下步骤:
(1)开始取样:ARM芯片控制电磁阀打开,然后通过控制驱动单元开启水泵,油路中的油液进入装置;
(2)取样过程中,信息采集反馈单元实时地采集水泵叶轮的旋转角度和速度,然后传递到ARM芯片,上位机通过CAN通讯单元将给定的取样量、样品流速的期望值发送到ARM芯片,ARM芯片根据当前叶轮的旋转角度和速度计算出对应的取样量和样品流速,然后与给定的期望值进行比对,根据其差值发出反馈信号到控制驱动单元,控制驱动单元进行信号解调后控制水泵的运转,实现对水泵取样量、样品流速的双闭环控制;
(3)待达到要求的取样量,则ARM芯片先控制电磁阀关闭,水泵继续转动,开始抽空气,直到装置内部的油液也被输送到待取样的油池中,然后关闭水泵。
优选的,所述方法中还包括自我保护功能,控制驱动单元采集水泵的内电流信号,并将内电流信号发送到自我保护单元,自我保护单元将收到的信号与ARM芯片给定的内电流信号进行比对,一旦内电流超过限值,则自我保护单元将信号发送到控制驱动单元,控制驱动单元控制水泵停止运转。
本发明与现有技术相比,具有如下优点和有益效果:
1、本发明的核心处理器采用高速的ARM数字芯片,它继承了微控制器的特点,无论在运算速度和数据的处理能力上都可以满足运动控制的高实时性要求,为完成复杂的实时运动控制算法提供了可靠的平台。
2、本发明装置与上位机通讯部分采用CAN总线方式,CAN总线通讯具有多主机方式、传输距离远、传输速度快、抗干扰能力强、应用灵活等诸多优点,解决了传统控制器点对点数据传输方式中传输效率低、接口电路复杂等问题。
3、本发明还设有自我保护功能,实时检测水泵运行时的工作电流,将其转换为电压信号后与预设电压比对,一旦检测值高于预设电压则停止水泵动作,实现装置的自我保护。
附图说明
图1是本发明装置的结构原理图;
图2是图1中的电源转换单元的结构示意图;
图3是图1中的CAN通讯单元的结构示意图;
图4是图1中的信息采集反馈单元的结构示意图;
图5是图1中的控制驱动单元的结构示意图;
图6是图1中的自我保护单元的结构示意图;
图7是图1中的电磁阀的结构示意图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
本实施例中的一种伺服在线油液取样控制装置结构如图1所示,包括电源转换单元1、CAN通讯单元2、ARM芯片3、信息采集反馈单元4、电机式无刷直流水泵5、控制驱动单元6、自我保护单元7、电磁阀8、直流电源接口9。电源转换单元1分别与CAN通讯单元2、ARM芯片3、信息采集反馈单元4、控制驱动单元6、自我保护单元7、电磁阀8、直流电源接口9连接,ARM芯片3分别与CAN通讯单元2、信息采集反馈单元4、控制驱动单元6、自我保护单元7、电磁阀8连接,控制驱动单元6分别与自我保护单元7、电机式无刷直流水泵5、直流电源接口9连接,信息采集反馈单元4与电机式无刷直流水泵5轴连接。电源转换单元1与直流电源接口9连接,用于将外界电压转换成上述各部件的工作电压,所述ARM芯片3通过CAN通讯单元2与上位机信号连接,ARM芯片3控制电磁阀8的开闭,ARM芯片3发出的控制信号通过控制驱动单元6解调后发送到水泵5,控制水泵的运转,信号采集反馈单元4用于采集水泵5的信息并将信息传递到ARM芯片3,ARM芯片3内设数字PID反馈单元调节水泵的即时工作状态;电磁阀8与外部油路相连;在检测时,电磁阀8打开,油液在水泵5作用下进入装置。
电源转换单元1如图2所示,包括15-36V的电源输入接口、第一电压转换芯片10、第二电压转换芯片11、第三电压转换芯片12。第一电压转换芯片10的OUTPUT引脚与第二电压转换芯片11的INPUT引脚连接,第二电压转换芯片11的OUTPUT引脚与第三电压转换芯片12的IN引脚连接。第一电压转换芯片10的INPUT引脚与直流电源接口9连接,第一电压转换芯片10的OUTPUT引脚分别与控制驱动单元6、自我保护单元7连接,第二电压转换芯片11的OUTPUT引脚分别与CAN通讯单元2、信息采集反馈单元4、自我保护单元7连接,第三电压转换芯片12的OUT引脚分别与ARM芯片3、电磁阀8连接。
本实施例中输入电压为标准24V,第一电压转换芯片10的输出参数为正12V、500mA,第二电压转换芯片11的输出参数为正5V、250mA,第三电压转换芯片12的输出参数为正3.3V、100mA,第一电压转换芯片10的INPUT引脚与直流电源接口连接,第一电压转换芯片10的OUTPUT引脚分别与控制驱动单元、自我保护单元连接,第二电压转换芯片11的OUTPUT引脚分别与CAN通讯单元、信息采集反馈单元、自我保护单元连接,第三电压转换芯片12的OUT引脚分别与ARM芯片、电磁阀连接。
CAN通讯单元2如图3所示,包括CAN驱动芯片14、CAN总线连接器13。CAN驱动芯片14的CANH、CANL引脚分别与CAN总线连接器13连接,CAN驱动芯片14的TXD、RXD引脚分别与ARM芯片3的CANTX、CANRX引脚连接,CAN驱动芯片14的VCC引脚与电源转换单元1中的第二电压转换芯片11的OUTPUT引脚连接。
信息采集反馈单元4如图4所示,包括滞回比较器15、旋转变压器16。旋转变压器16的A、B相输出端分别与滞回比较器15的1A、2A引脚连接;旋转变压器16通过联轴器与电机式无刷直流水泵5轴连接,用于将采集到的水泵的取样量和取样速度信号发送到滞回比较器,滞回比较器15的1Y、2Y引脚分别与ARM芯片3的IOPA2、IOPA3引脚连接,滞回比较器用于将旋转变压器解调后的数字信号稳定后,发送到ARM芯片,滞回比较器15的VCC引脚与电源转换单元1中的第二电压转换芯片11的OUTPUT引脚连接。
控制驱动单元6如图5所示,包括第一桥式驱动芯片18、第二桥式驱动芯片17、场效应管Q1、Q2、Q3、Q4。第一桥式驱动芯片18的HO、LO引脚分别与场效应管Q1、Q2的栅极连接,第二桥式驱动芯片17的HO、LO引脚分别与场效应管Q3、Q4的栅极连接,场效应管Q1、Q3的源极分别与场效应管Q2、Q4的漏极连接,场效应管Q1、Q3的源极分别与第一桥式驱动芯片18、第二桥式驱动芯片17的Vs引脚连接。
第一桥式驱动芯片18的HIN、LIN引脚分别与ARM芯片3的PWM1、PWM2引脚连接,第二桥式驱动芯片17的HIN、LIN引脚分别与ARM芯片3的PWM3、PWM4引脚连接,第一桥式驱动芯片18、第二桥式驱动芯片17的SD引脚分别与自我保护单元7连接,第一桥式驱动芯片18、第二桥式驱动芯片17的VCC引脚分别与电源转换单元1中的第一电压转换芯片10的OUTPUT引脚连接,场效应管Q1、Q3的漏极分别与直流电源接口9连接,场效应管Q1、Q3的源极分别与电机式无刷直流水泵5的输入端连接,场效应管Q2、Q4的源极分别与自我保护单元7连接。
自我保护单元7分别与电源转换单元1、ARM芯片3和控制驱动单元6相连,控制驱动单元6采集水泵5的内电流信号,并将内电流信号发送到自我保护单元7,自我保护单元7将收到的信号与ARM芯片给定的内电流信号进行比对,一旦内电流超过限值,则自我保护单元7将信号发送到控制驱动单元6,控制驱动单元6控制水泵5停止运转。自我保护单元7硬件结构如图6所示,包括第一运算放大器19、第二运算放大器20。第一运算放大器19的InputA1、InputB1分别与第二运算放大器20的OUT引脚连接,第二运算放大器20的IN+引脚通过电阻R接地。
第二运算放大器20的IN+引脚与控制驱动单元6连接,第二运算放大器20的VCC引脚与电源转换单元1中的第二电压转换芯片11的OUTPUT引脚连接,第一运算放大器19的VCC、InputA2、InputB2引脚分别与电源转换单元1中的第一电压转换芯片10的OUTPUT引脚连接,第一运算放大器19的OutputA引脚分别与控制驱动单元6中的第一桥式驱动芯片18、第二桥式驱动芯片17的SD引脚连接,第一运算放大器19的OutputB引脚与ARM芯片3的IOPB2引脚连接。
另外本实施例中,所述自我保护单元7还可以将控制驱动单元传递来的水泵内电流信号实时地发送到ARM芯片上,ARM芯片上设有显示装置,显示装置实时地显示内电流信号。
电磁阀8如图7所示,电磁阀8的一端与ARM芯片3的I/O端口连接,另一端与电源转换单元1中的第三电压转换芯片12的OUT引脚连接。
本实施例中的伺服在线油液取样控制装置采用如下的控制方法:ARM芯片控制电磁阀打开,并驱动水泵叶轮旋转,在水泵工作时,信息采集反馈单元实时采集水泵叶轮的旋转角度和速度并发送到ARM芯片,ARM芯片根据信号值进行计算,得到当前取样量和样品流速,然后跟上位机给定的取样量、样品流速的期望值相比较,根据二者差值进一步调整水泵运行状态。
所述旋转角度是指在一定时间内叶轮旋转过的角度,为叶轮旋转速度和时间的乘积,当前样品流速和叶轮旋转速度之间的关系是通过实验统计确定的,当前取样量为当前样品流速乘以时间。本实施例中,当前样品流速和叶轮旋转速度之间的关系是采用如下公式:Q=26.73179*V-37.54063。
具体包括以下步骤:
(1)开始取样:ARM芯片控制电磁阀打开,然后通过控制驱动单元开启水泵,油路中的油液进入装置;
(2)取样过程中,信息采集反馈单元实时地采集水泵叶轮的旋转角度和速度,然后传递到ARM芯片,上位机通过CAN通讯单元将给定的取样量、样品流速的期望值发送到ARM芯片,ARM芯片根据当前叶轮的旋转角度和速度计算出对应的取样量和样品流速,然后与给定的期望值进行比对,根据其差值发出反馈信号到控制驱动单元,控制驱动单元进行信号解调后控制水泵的运转,实现对水泵取样量、样品流速的双闭环控制;
(3)待达到要求的取样量,则ARM芯片先控制电磁阀关闭,水泵继续转动,开始抽空气,直到装置内部的油液也被输送到待取样的油池中,然后关闭水泵。
因本实施例装置还包括自我保护单元,因此本方法中还具有如下自我保护过程:控制驱动单元采集水泵的内电流信号,并将内电流信号发送到自我保护单元,自我保护单元将收到的信号与ARM芯片给定的内电流信号进行比对,一旦内电流超过限值,则自我保护单元将信号发送到控制驱动单元,控制驱动单元控制水泵停止运转。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种伺服在线油液取样控制装置,其特征在于,包括水泵、直流电源接口、电源转换单元以及分别与电源转换单元相连的CAN通讯单元、ARM芯片、信息采集反馈单元、控制驱动单元和电磁阀,电源转换单元与直流电源接口连接,用于将外界电压转换成上述各部件的工作电压,所述ARM芯片通过CAN通讯单元与上位机信号连接,ARM芯片控制电磁阀的开闭,ARM芯片发出的控制信号通过控制驱动单元解调后发送到水泵,控制水泵的运转,信号采集反馈单元用于采集水泵的信息并将信息传递到ARM芯片,ARM芯片内设数字PID反馈单元调节水泵的即时工作状态;所述控制驱动单元与直流电源接口相连;电磁阀与外部油路相连;在检测时,电磁阀打开,油液在水泵作用下进入装置。
2.根据权利要求1所述的伺服在线油液取样控制装置,其特征在于,所述装置还包括自我保护单元,自我保护单元分别与电源转换单元、ARM芯片和控制驱动单元相连,控制驱动单元采集水泵的内电流信号,并将内电流信号发送到自我保护单元,自我保护单元将收到的信号与ARM芯片给定的内电流信号进行比对,一旦内电流超过限值,则自我保护单元将信号发送到控制驱动单元,控制驱动单元控制水泵停止运转。
3.根据权利要求2所述的伺服在线油液取样控制装置,其特征在于,所述自我保护单元将控制驱动单元传递来的水泵内电流信号实时地发送到ARM芯片上,ARM芯片上设有显示装置,显示装置实时地显示内电流信号。
4.根据权利要求3所述的伺服在线油液取样控制装置,其特征在于,所述自我保护单元包括依次相连的第一运算放大器、第二运算放大器,第一运算放大器分别与ARM芯片、控制驱动单元相连,第二运算放大器与控制驱动单元相连,第二运算放大器通过电阻接地;
所述控制驱动单元包括第一桥式驱动芯片、第二桥式驱动芯片以及四个场效应管Q1、Q2、Q3、Q4,第一桥式驱动芯片与场效应管Q1、Q2的栅极连接,第二桥式驱动芯片与场效应管Q3、Q4的栅极连接,场效应管Q1、Q3的源极分别与场效应管Q2、Q4的漏极连接,场效应管Q1、Q3的源极分别与第一桥式驱动芯片、第二桥式驱动芯片连接;第一桥式驱动芯片、第二桥式驱动芯片均分别与ARM芯片、自我保护单元相连,场效应管Q1、Q3的漏极分别与直流电源接口连接,场效应管Q1、Q3的源极分别与水泵的输入端连接,场效应管Q2、Q4的源极分别与自我保护单元连接;
所述水泵为电机式无刷直流水泵。
5.根据权利要求1所述的伺服在线油液取样控制装置,其特征在于,所述信息采集反馈单元包括滞回比较器和旋转变压器,旋转变压器一端通过联轴器和水泵泵轴连接,用于将采集到的水泵的取样量和取样速度信号发送到滞回比较器,滞回比较器将旋转变压器解调后的数字信号稳定后,发送到ARM芯片,滞回比较器还与电源转换单元相连。
6.根据权利要求1、2、5任一项所述的伺服在线油液取样控制装置,其特征在于,所述电源转换单元包括15—36V的电源输入接口、第一电压转换芯片、第二电压转换芯片、第三电压转换芯片,电源输入接口与外界直流电源接口相连,第一电压转换芯片分别与控制驱动单元、自我保护单元连接,第二电压转换芯片分别与CAN通讯单元、信息采集反馈单元、自我保护单元连接,第三电压转换芯片分别与ARM芯片、电磁阀连接。
7.根据权利要求1-6任一项所述的伺服在线油液取样控制方法,其特征在于,ARM芯片控制电磁阀打开,并驱动水泵叶轮旋转,在水泵工作时,信息采集反馈单元实时采集水泵叶轮的旋转角度和速度并发送到ARM芯片,ARM芯片根据信号值进行计算,得到当前取样量和样品流速,然后跟上位机给定的取样量、样品流速的期望值相比较,根据二者差值进一步调整水泵运行状态。
8.根据权利要求7所述的伺服在线油液取样控制方法,其特征在于,所述旋转角度是指在一定时间内叶轮旋转过的角度,为叶轮旋转速度和时间的乘积,当前样品流速和叶轮旋转速度之间的关系是通过实验统计确定的,当前取样量为当前样品流速乘以时间。
9.根据权利要求7所述的伺服在线油液取样控制方法,其特征在于,具体包括以下步骤:
(1)开始取样:ARM芯片控制电磁阀打开,然后通过控制驱动单元开启水泵,油路中的油液进入装置;
(2)取样过程中,信息采集反馈单元实时地采集水泵叶轮的旋转角度和速度,然后传递到ARM芯片,上位机通过CAN通讯单元将给定的取样量、样品流速的期望值发送到ARM芯片,ARM芯片根据当前叶轮的旋转角度和速度计算出对应的取样量和样品流速,然后与给定的期望值进行比对,根据其差值发出反馈信号到控制驱动单元,控制驱动单元进行信号解调后控制水泵的运转,实现对水泵取样量、样品流速的双闭环控制;
(3)待达到要求的取样量,则ARM芯片先控制电磁阀关闭,水泵继续转动,开始抽空气,直到装置内部的油液也被输送到待取样的油池中,然后关闭水泵。
10.根据权利要求9所述的伺服在线油液取样控制方法,其特征在于,所述方法中还包括自我保护功能,控制驱动单元采集水泵的内电流信号,并将内电流信号发送到自我保护单元,自我保护单元将收到的信号与ARM芯片给定的内电流信号进行比对,一旦内电流超过限值,则自我保护单元将信号发送到控制驱动单元,控制驱动单元控制水泵停止运转。
CN201210179964.8A 2012-06-01 2012-06-01 一种伺服在线油液取样控制装置及方法 Active CN102706701B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210179964.8A CN102706701B (zh) 2012-06-01 2012-06-01 一种伺服在线油液取样控制装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210179964.8A CN102706701B (zh) 2012-06-01 2012-06-01 一种伺服在线油液取样控制装置及方法

Publications (2)

Publication Number Publication Date
CN102706701A true CN102706701A (zh) 2012-10-03
CN102706701B CN102706701B (zh) 2014-04-16

Family

ID=46899644

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210179964.8A Active CN102706701B (zh) 2012-06-01 2012-06-01 一种伺服在线油液取样控制装置及方法

Country Status (1)

Country Link
CN (1) CN102706701B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103808763A (zh) * 2012-11-09 2014-05-21 中国石油化工股份有限公司 原油含水计量分析系统
CN104456040A (zh) * 2014-10-29 2015-03-25 广州机械科学研究院有限公司 一种可拓展模块化的在线油液监测系统及方法
CN111006278A (zh) * 2020-01-03 2020-04-14 宁波方太厨具有限公司 一种油烟净化装置及该油烟净化装置的油烟泄漏监测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4747315A (en) * 1980-10-29 1988-05-31 Padden Harvey F Fluid sampling
CN1043570A (zh) * 1989-12-09 1990-07-04 沈阳环境科学研究所 污染源水质、水量监测系统
WO1995023959A1 (en) * 1994-03-01 1995-09-08 Tru-Test Limited Proportional fluid sampler
CN202133662U (zh) * 2011-05-27 2012-02-01 宁夏天地奔牛实业集团有限公司 大功率减速器在线油液监测系统
CN102435462A (zh) * 2011-09-21 2012-05-02 东南大学 废水采样智能控制系统及其采样控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4747315A (en) * 1980-10-29 1988-05-31 Padden Harvey F Fluid sampling
CN1043570A (zh) * 1989-12-09 1990-07-04 沈阳环境科学研究所 污染源水质、水量监测系统
WO1995023959A1 (en) * 1994-03-01 1995-09-08 Tru-Test Limited Proportional fluid sampler
CN202133662U (zh) * 2011-05-27 2012-02-01 宁夏天地奔牛实业集团有限公司 大功率减速器在线油液监测系统
CN102435462A (zh) * 2011-09-21 2012-05-02 东南大学 废水采样智能控制系统及其采样控制方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103808763A (zh) * 2012-11-09 2014-05-21 中国石油化工股份有限公司 原油含水计量分析系统
CN103808763B (zh) * 2012-11-09 2017-08-11 中国石油化工股份有限公司 原油含水计量分析系统
CN104456040A (zh) * 2014-10-29 2015-03-25 广州机械科学研究院有限公司 一种可拓展模块化的在线油液监测系统及方法
CN111006278A (zh) * 2020-01-03 2020-04-14 宁波方太厨具有限公司 一种油烟净化装置及该油烟净化装置的油烟泄漏监测方法
CN111006278B (zh) * 2020-01-03 2021-08-20 宁波方太厨具有限公司 一种油烟净化装置及该油烟净化装置的油烟泄漏监测方法

Also Published As

Publication number Publication date
CN102706701B (zh) 2014-04-16

Similar Documents

Publication Publication Date Title
CN110107490B (zh) 一体式变频压裂泵送设备控制系统及控制方法
CN110830943A (zh) 一种基于边缘计算和大数据分析的设备状态监测系统
CN103115667B (zh) 一种基于传感器的振动监测装置
CN101997463B (zh) 一种点钞仪双直流无刷电机控制器及其控制方法
CN104793139A (zh) 一种电机故障诊断及处理方法
CN102706701B (zh) 一种伺服在线油液取样控制装置及方法
CN202185288U (zh) 乳化液浓度自动检测及自动配比装置
CN207636990U (zh) 一种水泵状态远程监测系统
CN105785203A (zh) 输电线路监测设备远程智能诊断装置
CN104989381A (zh) 一种游梁式抽油机冲程周期的软测量方法及装置
CN102520631A (zh) 一种旋转机械在线自动平衡控制器
CN205545054U (zh) 一种基于i2c总线的电机控制系统
CN205594104U (zh) 输电线路监测设备远程智能诊断装置
CN206904334U (zh) 一种变频控制式阀门执行器
CN204155140U (zh) 一种基于can总线设计的液压泵驱动电机在线监控系统
CN209539713U (zh) 液压油旁路过滤远程控制系统
CN103671060A (zh) 无传感恒流泵阀集成装置
CN103671054B (zh) 用于流体输配系统的无传感恒流变频方法及装置
CN202443111U (zh) 一种交流永磁同步伺服电机烤机老化智能监测装置
CN103138676A (zh) 一种电机复合控制系统及其控制方法
CN202016990U (zh) 油田原油脱水自控装置
CN110244618A (zh) 一种雨水回收利用系统在线监测平台及监测方法
CN104949893B (zh) 一种摩擦驱动单元的实时智能检测系统
CN204823090U (zh) 一种胶带机物联网智能化管控系统
CN204046475U (zh) 一种井下无刷直流电机驱动控制器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant