CN102706028A - Magnetic cold storage device for magnetic refrigerator - Google Patents
Magnetic cold storage device for magnetic refrigerator Download PDFInfo
- Publication number
- CN102706028A CN102706028A CN2012101559447A CN201210155944A CN102706028A CN 102706028 A CN102706028 A CN 102706028A CN 2012101559447 A CN2012101559447 A CN 2012101559447A CN 201210155944 A CN201210155944 A CN 201210155944A CN 102706028 A CN102706028 A CN 102706028A
- Authority
- CN
- China
- Prior art keywords
- magnetic
- heat
- regenerator
- thermal
- thermal switch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003860 storage Methods 0.000 title claims abstract description 36
- 239000007788 liquid Substances 0.000 claims abstract description 11
- 239000000463 material Substances 0.000 claims abstract description 11
- 239000007787 solid Substances 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 19
- 230000008569 process Effects 0.000 claims description 15
- 230000003416 augmentation Effects 0.000 claims 2
- 238000010276 construction Methods 0.000 claims 1
- 239000000126 substance Substances 0.000 claims 1
- 238000005057 refrigeration Methods 0.000 abstract description 31
- 239000012530 fluid Substances 0.000 abstract description 22
- 230000007246 mechanism Effects 0.000 abstract description 10
- 230000005347 demagnetization Effects 0.000 abstract description 9
- 230000008859 change Effects 0.000 abstract description 8
- 238000010168 coupling process Methods 0.000 abstract description 7
- 230000009471 action Effects 0.000 abstract description 6
- 230000008878 coupling Effects 0.000 abstract description 6
- 238000005859 coupling reaction Methods 0.000 abstract description 6
- 230000005415 magnetization Effects 0.000 abstract description 5
- 230000000694 effects Effects 0.000 description 13
- 238000001704 evaporation Methods 0.000 description 11
- 239000000696 magnetic material Substances 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 230000005494 condensation Effects 0.000 description 8
- 238000009833 condensation Methods 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 230000008020 evaporation Effects 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 229910001220 stainless steel Inorganic materials 0.000 description 6
- 239000010935 stainless steel Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical group N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 230000000737 periodic effect Effects 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 230000005484 gravity Effects 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000005288 electromagnetic effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000013529 heat transfer fluid Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 201000009240 nasopharyngitis Diseases 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000007723 transport mechanism Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- -1 wire mesh Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
Landscapes
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
本发明公开了一种用于磁制冷机的热开关磁蓄冷装置,用于设置在一可控磁场源中,该装置包括构成传热回路的磁蓄冷器和传热组件,传热组件包括至少一个热开关单元,磁蓄冷器为装有磁性工质的容器,热开关单元的一部分设置于磁蓄冷器内部与磁性工质接触,在磁场变化过程中有效地使磁性工质与外界进行热输运。热开关是热二极管、超导开关、磁热开关或其它形式的热量传递控制装置,磁性工质是固体、液体或其它形式的磁热材料。在可控磁场的作用下,实现磁性工质在充磁阶段向热源放热与在去磁阶段向冷源吸热,以达到制冷目的。该装置具有极好的热输运方向性和高效的磁热耦合机制,具有效率高、结构紧凑、运行稳定和经济性好等优点。
The invention discloses a thermal switch magnetic cold storage device for a magnetic refrigerator, which is used to be arranged in a controllable magnetic field source. The device includes a magnetic cold storage and a heat transfer assembly constituting a heat transfer circuit. The heat transfer assembly includes at least A thermal switch unit, the magnetic regenerator is a container containing magnetic working fluid, and a part of the thermal switch unit is arranged inside the magnetic regenerator in contact with the magnetic working medium, so that the magnetic working medium can effectively transmit heat to the outside during the change of the magnetic field transport. Thermal switches are thermal diodes, superconducting switches, magnetothermal switches or other forms of heat transfer control devices, and magnetic working fluids are solid, liquid or other forms of magnetocaloric materials. Under the action of the controllable magnetic field, the magnetic working medium releases heat to the heat source in the magnetization stage and absorbs heat to the cold source in the demagnetization stage, so as to achieve the purpose of refrigeration. The device has excellent heat transport directionality and efficient magneto-thermal coupling mechanism, and has the advantages of high efficiency, compact structure, stable operation and good economy.
Description
技术领域 technical field
本发明属于洁净能源磁制冷技术应用领域,具体涉及一种用于磁制冷机的磁蓄冷装置,它能够提高电磁能与热能能量转换效率、可靠性、经济性与实用性。The invention belongs to the application field of clean energy magnetic refrigeration technology, and specifically relates to a magnetic cold storage device for a magnetic refrigerator, which can improve the energy conversion efficiency, reliability, economy and practicability of electromagnetic energy and thermal energy.
背景技术 Background technique
磁制冷是基于磁性材料的磁热效应(MCE)在制冷领域的应用。磁热效应是磁性材料物质的一种固有特性。磁性材料在受到外磁场的作用被磁化时,系统的磁有序度加强(磁熵减小),对外界放热;当外磁场撤去退磁时,磁有序度下降(磁熵增大),则从外界吸热。将励磁、吸热、去磁、放热等过程组成一个封闭的热力循环,通过外磁场变化,控制磁熵,基于磁热效应的能量转换,达到连续不断地从一端放热,从另一端吸热的制冷目的。Magnetic refrigeration is based on the application of the magnetocaloric effect (MCE) of magnetic materials in the field of refrigeration. The magnetocaloric effect is an inherent characteristic of magnetic materials. When the magnetic material is magnetized by the external magnetic field, the magnetic order of the system is strengthened (the magnetic entropy decreases), and it releases heat to the outside world; when the external magnetic field is removed and demagnetized, the magnetic order decreases (the magnetic entropy increases), absorb heat from the outside. The processes of excitation, heat absorption, demagnetization, and heat release form a closed thermodynamic cycle. Through the change of the external magnetic field, the magnetic entropy is controlled, and the energy conversion based on the magnetocaloric effect can continuously release heat from one end and absorb heat from the other end. for refrigeration purposes.
磁制冷技术是一种高效绿色环保的制冷技术。与现有一般传统的依靠气体压缩与膨胀的制冷技术相比,具有显著的优点:Magnetic refrigeration technology is an efficient and green refrigeration technology. Compared with the existing general traditional refrigeration technology relying on gas compression and expansion, it has significant advantages:
1.磁制冷循环效率可以达到卡诺循环的30%~60%,而依靠气体的压缩与膨胀的制冷循环一般只能达到5%~10%。1. The efficiency of the magnetic refrigeration cycle can reach 30% to 60% of the Carnot cycle, while the refrigeration cycle relying on the compression and expansion of gas can only reach 5% to 10%.
2.磁制冷采用磁性材料作为制冷工质,对大气和臭氧层无污染破坏。2. Magnetic refrigeration uses magnetic materials as the refrigerant, which has no pollution to the atmosphere and the ozone layer.
3.磁性工质材料的熵密度远大于气体的熵密度,因此制冷装置可以做的更紧凑。3. The entropy density of the magnetic working fluid material is much greater than that of the gas, so the refrigeration device can be made more compact.
4.磁制冷可以用电磁体或超导磁体以及永磁体等提供所需的外加磁场,无需压缩机,没有运动部件的机械磨损问题。因此具有机械振动及噪声小,工作可靠性高,使用寿命长等特点。4. Magnetic refrigeration can use electromagnets, superconducting magnets, and permanent magnets to provide the required external magnetic field, without a compressor, and without mechanical wear of moving parts. Therefore, it has the characteristics of low mechanical vibration and noise, high working reliability and long service life.
磁制冷机技术虽具有显著的技术优点,但在实际设计与制造上存在着若干关键技术和技术难题。Although magnetic refrigerator technology has significant technical advantages, there are some key technical and technical difficulties in actual design and manufacture.
当温度在20K以上,特别是近室温附近,磁性离子系统热运动大大加强,磁性材料的晶格熵增大到不能忽视的程度,磁制冷系统的部分制冷能力将消耗于冷却晶格热负荷,从而系统的制冷能力下降。When the temperature is above 20K, especially near room temperature, the thermal motion of the magnetic ion system is greatly enhanced, and the lattice entropy of the magnetic material increases to a level that cannot be ignored, and part of the cooling capacity of the magnetic refrigeration system will be consumed for cooling the heat load of the lattice. As a result, the cooling capacity of the system is reduced.
在系统中增加磁蓄冷器可以在循环的某一阶段将晶格系统释放的热量储存,而在另一个阶段再返还到晶格系统中,这样磁制冷系统中用于冷却晶格热负荷的那部分制冷能力将得到更有效的利用,有效熵变增加,温跨增大。Adding a magnetic regenerator in the system can store the heat released by the lattice system in a certain stage of the cycle, and return it to the lattice system in another stage, so that the part of the magnetic refrigeration system used to cool the heat load of the lattice Part of the refrigeration capacity will be used more effectively, the effective entropy change will increase, and the temperature span will increase.
磁制冷技术的主要科学问题是电磁能与热能的耦合机理和有效热输运机制。从提高磁制冷机的热效率来看,必须使MCE产生的冷量在制冷循环的周期内尽快尽多地带走,这样除了采用高效的传热机制外,减少热量回流、保证热量传递的方向性就显得尤为重要。The main scientific issues of magnetic refrigeration technology are the coupling mechanism of electromagnetic energy and thermal energy and the effective heat transport mechanism. From the point of view of improving the thermal efficiency of the magnetic refrigerator, it is necessary to make the cold generated by the MCE take away as much as possible within the cycle of the refrigeration cycle. In this way, in addition to adopting an efficient heat transfer mechanism, it is necessary to reduce heat return and ensure the directionality of heat transfer. appears to be particularly important.
相对于现有的用阀门控制热量传递方向的磁制冷机,采用热开关(如热二极管)的磁制冷机不仅结构简单、运行可靠,而且它能更加快速、直接、有效地控制磁蓄冷装置中的热量传递,因而采用热开关磁蓄冷装置的磁制冷机能够很大程度地减少循环中的不可逆损失,使实际得到的磁制冷循环更加接近逆向卡诺循环,从而使磁制冷机能够获得更高的热效率。Compared with the existing magnetic refrigerators that use valves to control the direction of heat transfer, magnetic refrigerators that use thermal switches (such as thermal diodes) not only have simple structure and reliable operation, but also can more quickly, directly and effectively control the temperature of the magnetic storage device. Therefore, the magnetic refrigerator using the thermal switch magnetic cold storage device can greatly reduce the irreversible loss in the cycle, so that the actual magnetic refrigeration cycle is closer to the reverse Carnot cycle, so that the magnetic refrigerator can obtain higher thermal efficiency.
2004年4月7日公开的CN 2610281Y的中国专利文献“一种磁热量的传热装置”,该装置采用热管传递磁热效应产生的热量,具有简洁高效的特点。但不足的是该专利文献只单一作为一种传热装置。The Chinese patent document of CN 2610281Y published on April 7, 2004 "a heat transfer device for magneto-calorie" uses a heat pipe to transfer the heat generated by the magneto-caloric effect, and has the characteristics of simplicity and high efficiency. But the deficiency is that this patent document only serves as a kind of heat transfer device.
2008年1月30日公开的CN 101115962A的中国发明专利公开说明书公开了一种制造用于活性磁制冷机的磁蓄冷器的方法,活性磁蓄冷器中磁性材料既是磁性工质又是蓄冷材料。但对蓄冷器在逆向热力循环中的一些主要问题没有涉及。总的来说,目前国内外这方面报道甚少。The Chinese invention patent publication CN 101115962A disclosed on January 30, 2008 discloses a method for manufacturing a magnetic regenerator for an active magnetic refrigerator. The magnetic material in the active magnetic regenerator is both a magnetic working fluid and a cold storage material. But some main problems of cold storage in the reverse thermodynamic cycle are not involved. Generally speaking, there are very few reports in this area at home and abroad.
磁制冷技术是电磁能和热能的转换,研究磁热耦合机制是突破磁制冷技术应用主要的理论基础和关键技术。在晶格系统电磁输运与热输运的耦合,既具有瞬态时序性,又具有严格热流方向性。对解决热流的方向性研究未见报道。Magnetic refrigeration technology is the conversion of electromagnetic energy and thermal energy. The study of magnetothermal coupling mechanism is the main theoretical basis and key technology for breakthroughs in the application of magnetic refrigeration technology. The coupling of electromagnetic transport and thermal transport in the lattice system has both transient timing and strict heat flow directionality. Directional studies addressing heat flow have not been reported.
发明内容 Contents of the invention
本发明是基于磁热效应能量转换的机制,提供一种用于磁制冷机的磁蓄冷装置,该磁蓄冷装置具有效率高、结构紧凑、运行稳定和经济性好的特点。The invention is based on the energy conversion mechanism of the magnetocaloric effect, and provides a magnetic cold storage device for a magnetic refrigerator. The magnetic cold storage device has the characteristics of high efficiency, compact structure, stable operation and good economy.
本发明提供的一种用于磁制冷机的磁蓄冷装置,用于设置在一可控磁场源中,其特征在于,该装置包括构成传热回路的磁蓄冷器和传热组件,该传热组件包括至少一个热开关单元,磁蓄冷器为装有磁性工质的容器,热开关单元的一部分设置于磁蓄冷器内部与磁性工质接触,在磁场变化过程中有效地使磁性工质与外界进行热输运。The invention provides a magnetic cold storage device for a magnetic refrigerator, which is used to be installed in a controllable magnetic field source. The assembly includes at least one thermal switch unit. The magnetic regenerator is a container containing a magnetic working medium. A part of the thermal switch unit is arranged inside the magnetic regenerator to contact the magnetic working medium. During the change of the magnetic field, the magnetic working medium is effectively separated from the outside world. heat transport.
作为上述技术方案的改进,所述传热组件中只包括一个热开关单元时,该热开关单元用于磁蓄冷器的放热或吸热过程,磁蓄冷器的吸热或放热过程由磁蓄冷器与阀门、泵、管道及换热器连接构成流通回路来完成。As an improvement of the above technical solution, when only one thermal switch unit is included in the heat transfer assembly, the thermal switch unit is used for the heat release or heat absorption process of the magnetic regenerator, and the heat absorption or heat release process of the magnetic regenerator is controlled by the magnetic The cold storage is connected with valves, pumps, pipelines and heat exchangers to form a circulation circuit to complete.
作为上述技术方案的进一步改进,传热组件包括至少二个热开关单元,用于同一热流方向时,各个热开关单元保持传热方向的一致性。As a further improvement of the above technical solution, the heat transfer assembly includes at least two thermal switch units, and when used in the same heat flow direction, each thermal switch unit maintains the consistency of the heat transfer direction.
磁热效应是电磁能和热能的转换,这是一个基于复杂的磁热耦合机制的能量转换,迅速而又高效率地进行自旋系统和热源之间的能量转换,在磁场变化和电磁效应作用下,本发明的磁蓄冷装置中的热输运特征,既具有瞬态时序性,又具有严格热流方向性。The magnetocaloric effect is the conversion of electromagnetic energy and thermal energy. This is an energy conversion based on a complex magneto-thermal coupling mechanism. It quickly and efficiently converts energy between the spin system and the heat source. Under the action of magnetic field changes and electromagnetic effects , the heat transport characteristics in the magnetic cold storage device of the present invention have both transient time sequence and strict heat flow directionality.
在磁热耦合过程中,磁性材料的磁化/去磁时间(即磁制冷循环的周期)越长,所得到的制冷量会越大,但这会损失磁制冷装置的效率。本发明采用热开关来控制在磁场变化下磁蓄冷器中的热输运,不仅可以高效稳定地控制热运输的方向,实现在有限的制冷循环时间内尽可能地传输热量,极大的减少热量损失,使整个装置的制冷循环过程更加接近逆向卡诺循环,而且在机构上可以紧凑高效,从而提高整个磁制冷机的转换效率。In the magneto-thermal coupling process, the longer the magnetization/demagnetization time of the magnetic material (that is, the period of the magnetic refrigeration cycle), the greater the cooling capacity obtained, but this will lose the efficiency of the magnetic refrigeration device. The invention uses a thermal switch to control the heat transport in the magnetic regenerator under the change of the magnetic field, which can not only efficiently and stably control the direction of heat transport, but also realize the transmission of heat as much as possible within the limited refrigeration cycle time, and greatly reduce the heat The loss makes the refrigeration cycle process of the whole device closer to the reverse Carnot cycle, and the mechanism can be compact and efficient, thereby improving the conversion efficiency of the entire magnetic refrigerator.
采用本发明解决了普通蓄冷装置由于流动死容积影响传热,和阀门开关时管路流体回流损失制冷量,与避免管道、阀门等结构复杂、及难以微型化、经济性低等问题。同时它还解决了单一使用热管作为传热装置无法有效利用磁性材料的磁热效应,而建立高效磁制冷机的机制,实现磁制冷机热开关磁蓄冷器利用MCE高效制冷的目的。其实质是,整个磁制冷系统的实际效率主要取决于两个方面,一是科学的电磁输运和热输运的耦合与转换机制,二是蓄冷器和热输运性能的完善与优化及尽量减少传输过程的热损失。该磁蓄冷装置具有效率高、结构紧凑、运行稳定和经济性好等优点。The invention solves the problems of common cold storage devices, such as flow dead volume affecting heat transfer, and pipeline fluid backflow loss of cooling capacity when valves are switched on and off, avoiding complex structures of pipelines and valves, difficulty in miniaturization, and low economic efficiency. At the same time, it also solves the problem that the single use of heat pipes as heat transfer devices cannot effectively utilize the magneto-caloric effect of magnetic materials, and establishes a mechanism for high-efficiency magnetic refrigerators to achieve the purpose of using MCE for high-efficiency refrigeration in magnetic refrigerators with thermal switches and magnetic regenerators. The essence is that the actual efficiency of the entire magnetic refrigeration system mainly depends on two aspects, one is the scientific coupling and conversion mechanism of electromagnetic transport and heat transport, and the other is the improvement and optimization of the cold storage and heat transport performance and as far as possible Reduce heat loss during transmission. The magnetic cold storage device has the advantages of high efficiency, compact structure, stable operation and good economy.
附图说明 Description of drawings
图1为本发明的原理的示意图;Fig. 1 is the schematic diagram of principle of the present invention;
图2为使用多个热开关结构的磁蓄冷器装置结构示意图,其中,(a)为整体结构原理图,(b)为俯视剖面图;Fig. 2 is a structural schematic diagram of a magnetic cold storage device using multiple thermal switch structures, wherein (a) is a schematic diagram of the overall structure, and (b) is a top sectional view;
图3为本发明的实施例1的示意图;Fig. 3 is the schematic diagram of
图4为本发明的实施例2的示意图;Fig. 4 is the schematic diagram of
图5为本发明采用的一种热开关的的示意图。Fig. 5 is a schematic diagram of a thermal switch used in the present invention.
具体实施方式 Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
如图1和图2所示,本发明提供的磁制冷机热开关磁蓄冷装置,设置在一可控磁场源中,包括磁蓄冷器和至少一个热开关单元,完成在磁场变化过程中磁蓄冷器内的磁性工质与外界进行热输运。磁蓄冷器为装有磁性工质的容器,热开关单元的一部分设置于磁蓄冷器内部与工质接触。As shown in Figure 1 and Figure 2, the thermal switch magnetic cold storage device of the magnetic refrigerator provided by the present invention is set in a controllable magnetic field source, including a magnetic cold storage and at least one thermal switch unit, to complete the magnetic cold storage during the change of the magnetic field The magnetic working medium in the device conducts heat transport with the outside world. The magnetic regenerator is a container containing magnetic working fluid, and a part of the thermal switch unit is arranged inside the magnetic regenerator to be in contact with the working fluid.
所述磁性工质可以是固体(如金属Gd)、液体(如液态磁性纳米合成物)或其它形式的磁热材料。蓄冷工质可以是磁性工质本身,也可以是组合其它传热工质。当磁性工质为固体时,可以在磁蓄冷器中充填液态或气态的热交换介质。The magnetic working medium can be solid (such as metal Gd), liquid (such as liquid magnetic nanocomposite) or other forms of magnetocaloric materials. The cold storage working fluid can be the magnetic working fluid itself, or it can be combined with other heat transfer working fluids. When the magnetic working medium is solid, the magnetic cold storage can be filled with liquid or gaseous heat exchange medium.
该磁制冷机热开关磁蓄冷装置结合管道、阀门等流动组件使用时,采用的热交换介质可以是液体、气体或其它形式的流体。热开关单元可以是热二极管、超导开关、磁热开关或其它形式的热量传递控制装置。当在磁蓄冷器腔和管口之间设置网和密封件时,可以防止磁性工质和蓄冷工质的泄漏。在磁蓄冷器外壁、热开关单元外壁、管道外壁及其它组件外设置绝热结构以减少漏热损失。When the thermal switch magnetic cold storage device of the magnetic refrigerator is used in combination with flow components such as pipes and valves, the heat exchange medium used may be liquid, gas or other forms of fluid. The thermal switch unit may be a thermal diode, a superconducting switch, a magnetothermal switch or other forms of heat transfer control devices. When a net and a seal are arranged between the cavity of the magnetic cold accumulator and the nozzle, the leakage of the magnetic working medium and the cold storage working medium can be prevented. A thermal insulation structure is provided outside the outer wall of the magnetic cold storage, the outer wall of the thermal switch unit, the outer wall of the pipeline and other components to reduce the loss of heat leakage.
传热组件中只包括一个热开关单元时,该热开关单元用于磁蓄冷器的放热或吸热过程,磁蓄冷器的吸热或放热过程由磁蓄冷器与阀门、泵、管道及换热器连接构成流通回路来完成。When only one thermal switch unit is included in the heat transfer component, the thermal switch unit is used for the heat release or heat absorption process of the magnetic regenerator. The heat exchangers are connected to form a circulation loop to complete.
当传热组件包括多个热开关单元时,位于磁蓄冷器两端的热开关单元的数量可以相等或不等,使用多个热开关单元,用于同一热流方向时需保持传热方向的一致性。When the heat transfer component includes multiple thermal switch units, the number of thermal switch units located at both ends of the magnetic regenerator can be equal or different, and multiple thermal switch units are used to maintain the consistency of the heat transfer direction when used in the same heat flow direction .
在磁制冷机热开关磁蓄冷装置中热开关单元包括其上增设强化传热组件,强化传热组件可以采用翅片等结构。In the thermal switch magnetic cold storage device of the magnetic refrigerator, the thermal switch unit includes an enhanced heat transfer component added thereon, and the enhanced heat transfer component can adopt structures such as fins.
实施例1Example 1
本发明的磁制冷机热开关磁蓄冷装置的实施方式之一为:采用热二极管作为热开关单元,如图3所示。它是由磁蓄冷器3置于可控磁场源5提供的周期性磁场中,磁蓄冷器3的上下两端分别连接一热二极管4a、4b,其中热二极管4a的蒸发段置于磁蓄冷器3内部,冷凝段设在磁蓄冷器3上部与热源7接触;热二极管4b的冷凝段置于磁蓄冷器3内部,蒸发段设在磁蓄冷器3下部与冷源6接触,同时,磁蓄冷器3的外壁以及热二极管4的绝热段外壁均设有绝热结构减少热量损失。One of the embodiments of the thermal switch magnetic cold storage device of the magnetic refrigerator of the present invention is that a thermal diode is used as the thermal switch unit, as shown in FIG. 3 . It is placed in the periodic magnetic field provided by the controllable
该磁蓄冷器装的磁性工质1为Gd,为颗粒状填充物,热交换介质2采用流体如水溶液。本发明也可使用其它具有磁热效应的磁性材料及相应的热交换介质。磁蓄冷器3外壁使用不锈钢或其它材料,磁蓄冷器3与热二极管4采用焊接或其它连接方式。热二极管4的管壁材料用不锈钢,管内工作流体为液氨,也可选用其它管壁材料及相容工作流体。在热二极管两端外壁为强化传热的翅片结构。可控磁场源5可以是电磁体、超导磁体或永磁体,通过磁体静止式的充磁/消磁或磁体与磁蓄冷器4的相对运动为磁蓄冷器4提供周期性的磁场。The magnetic working
其工作原理为,通过可控磁场源5的作用,加磁场过程,磁蓄冷器4中的磁性工质1被磁化时,由于磁热效应,磁性工质1的温度升高将热量传给热交换介质2,使磁蓄冷器3内部温度比热源7温度高,通过热二极管4a将热量传给热源7;在撤去磁场过程,磁蓄冷器4中的磁性工质1由于去磁而温度降低,并向热交换介质2吸热,使磁蓄冷器3内部温度比冷源6温度低,热量通过热二极管4b从冷源6传给磁蓄冷器3,这样冷源6的温度降低,达到了制冷效果。重复上述循环便可完成制冷过程。Its working principle is that through the action of the controllable
本发明实现了基于完善由磁化的放热过程和去磁的吸热过程构成的逆向热力循环,高效的利用磁性工质受磁场励磁/退磁过程磁熵发生变化,产生温变进行放热/吸热,严格控制传热方向的热开关,及高传热效率的传热机制,实现高效而结构紧凑地利用磁性工质的磁热效应进行制冷。The invention realizes the reverse thermodynamic cycle based on perfecting the exothermic process of magnetization and the heat absorption process of demagnetization, and efficiently uses the magnetic working medium to undergo magnetic field excitation/demagnetization process to change the magnetic entropy and generate temperature change for heat release/absorption Heat, the thermal switch that strictly controls the heat transfer direction, and the heat transfer mechanism with high heat transfer efficiency, realize the efficient and compact use of the magnetocaloric effect of the magnetic working medium for refrigeration.
实施例2Example 2
本发明的磁制冷机热开关磁蓄冷器的实施例二如图4所示,磁蓄冷器一端采用热二极管式热开关,另一端接管道、阀门、泵以及换热器等构成流通回路。它由磁蓄冷器3置于可控磁场源5提供的周期性磁场中,磁蓄冷器3下端连接热二极管4,其中热二极管4的冷凝段位于磁蓄冷器3内部,其蒸发段设在磁蓄冷器3下部与冷源6接触;磁蓄冷器3上端连接管道11,与阀门10、泵9以及换热器8构成一流通回路,其中换热器8为蓄冷器向系统外界散热。
上述流通回路可以是全闭式结构如图4中所示,也可采用混合式连接。在混合式连接中,即热交换介质2由管道流入磁蓄冷器3,热交换介质2与磁性工质1直接接触换热后,再由相应管道流出磁蓄冷器。The above circulation circuit can be a fully closed structure as shown in FIG. 4 , or a hybrid connection can be used. In the hybrid connection, the
磁蓄冷器3的外壁、热二极管4的绝热段外壁以及管道11的外壁均设有绝热结构减少漏热损失。The outer wall of the
该磁蓄冷器装的磁性工质1为Gd,为颗粒状填充物,热交换介质2采用流体如水溶液。本发明也可使用其它具有磁热效应的磁性材料及相应的热交换介质,热交换介质可以是液体、气体以及其它状态的介质。The magnetic working
磁蓄冷器3外壁使用不锈钢或其它材料,磁蓄冷器3与热二极管4采用焊接或其它连接方式。热二极管4使用单向导热的热管,管壁材料用金属材料如不锈钢,管内选用与管壁材料相容的工作流体如液氨。The outer wall of the
热二极管两端外壁为强化传热的翅片结构。可控磁场源5可以是电磁体、超导磁体或永磁体,通过磁体静止式的充磁/消磁或磁体与磁蓄冷器4的相对运动为磁蓄冷器4提供周期性的磁场。The outer walls at both ends of the thermal diode are fin structures that enhance heat transfer. The controllable
工作原理为,通过可控磁场源5的作用,加磁场时,磁蓄冷器4中的磁性工质1被磁化时,由于磁热效应,磁性工质1的温度升高将热量传给热交换介质2,使磁蓄冷器3内部温度比热源7温度高,同时打开阀门10,通过泵9的作用使传热流体由蓄冷器3流向换热器8,将蓄冷器3中的热量传给热源7;然后撤去磁场,同时关闭阀门10,磁蓄冷器4中的磁性工质1由于去磁而温度降低,并向热交换介质2吸热,使磁蓄冷器3内部温度比冷源6温度低,热量通过热二极管4b从冷源6传给磁蓄冷器3,这样冷源6的温度降低。重复上述循环过程则实现制冷目的。The working principle is that, through the action of the controllable
实施例3Example 3
下面举例说明本发明装置所采用的一种热开关单元的结构,如图5所示。它是一细长中空的封闭式金属管,内部装有工作流体,图5热二极管管内壁为光管结构,同时其上下端外壁为增强传热的翅片结构。在热管管内并可设置毛细芯结构。The structure of a thermal switch unit used in the device of the present invention is illustrated below with an example, as shown in FIG. 5 . It is a slender and hollow closed metal tube with a working fluid inside. The inner wall of the thermal diode tube in Figure 5 is a light tube structure, and the upper and lower ends of the outer wall are fin structures to enhance heat transfer. A capillary wick structure can also be arranged inside the heat pipe.
该热管管壁用不锈钢或铜等金属材料加工而成,管内的工作介质可选用水、丙酮、氨、液氮等流体。工作流体的选择应根据热管使用的温度范围,在此前提下还要求工作流体与热管的管壁、毛细芯间相容性稳定,具有良好的热稳定性、高的潜热和导热性能,以及较低的粘度。为保证高的毛细管力,工作流体的表面张力应足够高。毛细芯通常有铜、镍、不锈钢、钛等制成,有带筋管,也有粉末、丝网、纤维毡等多孔介质材料。The tube wall of the heat pipe is made of metal materials such as stainless steel or copper, and the working medium in the tube can be fluids such as water, acetone, ammonia, and liquid nitrogen. The choice of working fluid should be based on the temperature range used by the heat pipe. On this premise, the compatibility between the working fluid and the tube wall and capillary core of the heat pipe should be stable, and it should have good thermal stability, high latent heat and thermal conductivity, and relatively low viscosity. To ensure high capillary force, the surface tension of the working fluid should be sufficiently high. Capillary cores are usually made of copper, nickel, stainless steel, titanium, etc., and there are ribbed tubes, as well as porous media materials such as powder, wire mesh, and fiber felt.
热二极管的工作原理,是通过工质2在蒸发段1受热蒸发汽化,蒸发后的气体聚集在蒸发部分的中空管内,同时向热管的冷凝段3流动。当汽体到达温度较低的冷凝段时便开始冷凝,同时冷凝段3向外放热。这些冷凝后的液体因毛细作用或重力作用又流回蒸发部分,如此循环流动使热量从蒸发段1传到冷凝段3。The working principle of the thermal diode is that the working
当热二极管的蒸发段1所处的温度高于冷凝段3所处的温度时,热二极管正常工作,相当于热开关闭合;当蒸发段1所处的温度低于冷凝段3所处的温度时,管内蒸发的汽体不能冷凝成液体,此时热二极管无法传递热量,即热开关断开,热流断路。When the temperature of the evaporating
热管管内壁为光管结构时,当冷凝液从冷凝段返回蒸发段是依靠重力作用实现的,则重力型热二极管的蒸发段必须置于冷凝段下方。When the inner wall of the heat pipe tube is a light pipe structure, when the condensate returns from the condensation section to the evaporation section, it is realized by gravity, and the evaporation section of the gravity type thermal diode must be placed under the condensation section.
本发明可以采用其它结构的热二极管,如水平式热二极管,本发明也可以采用其它形式的热开关,如具有热流通断可控超导热开关、电磁热开关、气体热开关、机械热开关等。The present invention can adopt thermal diodes of other structures, such as horizontal thermal diodes, and the present invention can also adopt other forms of thermal switches, such as superconducting thermal switches, electromagnetic thermal switches, gas thermal switches, mechanical thermal switches, etc. wait.
当需要的制冷功率大时,可以采用大容量的磁蓄冷器,并增加热开关的数量;也可以在可控磁场源中并排设置多套磁制冷机热开关磁蓄冷装置;还可以提供可控磁场源的强度。When the required refrigeration power is large, a large-capacity magnetic cold storage device can be used, and the number of thermal switches can be increased; multiple sets of magnetic refrigerator thermal switch magnetic cold storage devices can also be arranged side by side in the controllable magnetic field source; controllable magnetic cold storage devices can also be provided. The strength of the magnetic field source.
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。It is easy for those skilled in the art to understand that the above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention, All should be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101559447A CN102706028A (en) | 2012-05-18 | 2012-05-18 | Magnetic cold storage device for magnetic refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101559447A CN102706028A (en) | 2012-05-18 | 2012-05-18 | Magnetic cold storage device for magnetic refrigerator |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102706028A true CN102706028A (en) | 2012-10-03 |
Family
ID=46898989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012101559447A Pending CN102706028A (en) | 2012-05-18 | 2012-05-18 | Magnetic cold storage device for magnetic refrigerator |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102706028A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105307457A (en) * | 2015-09-14 | 2016-02-03 | 联想(北京)有限公司 | Stirling-magnetocaloric united heat dissipation system and electronic device |
CN105890222A (en) * | 2016-06-05 | 2016-08-24 | 山东商业职业技术学院 | Non-contact electromagnetic quick cold storage system based on magnetic rotation enhanced heat transfer |
CN106369723A (en) * | 2016-11-10 | 2017-02-01 | 海南省蓝波新能源科技有限公司 | Air conditioner |
CN107238229A (en) * | 2017-05-11 | 2017-10-10 | 上海卫星装备研究所 | A kind of monopole and multistage magnetic refrigeration apparatus based on gravity assisted heat pipe |
CN110542153A (en) * | 2019-09-25 | 2019-12-06 | 珠海格力电器股份有限公司 | Heat dissipation device adopting magnetic working medium for heat dissipation, outdoor unit and air conditioning unit |
CN112203367A (en) * | 2020-09-25 | 2021-01-08 | 中国科学院宁波材料技术与工程研究所 | Thermal switch and temperature control device having the same |
CN112629059A (en) * | 2020-12-31 | 2021-04-09 | 包头稀土研究院 | Method for evaluating refrigerating capacity of room-temperature magnetic refrigerating material and heat exchange device |
CN113446753A (en) * | 2021-06-25 | 2021-09-28 | 华南理工大学 | Room-temperature magnetic refrigeration device and refrigeration method of coupling gravity heat pipe |
CN113921852A (en) * | 2021-09-22 | 2022-01-11 | 中国三峡新能源(集团)股份有限公司 | Fuel cell cold start system based on liquid magnetic heat flow and control method |
CN114909817A (en) * | 2022-04-13 | 2022-08-16 | 西安交通大学 | Regenerative thermomagnetic-magnetocaloric coupling refrigeration system and method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2610281Y (en) * | 2003-04-18 | 2004-04-07 | 财团法人工业技术研究院 | Magnetic heat transfer device |
CN101115962A (en) * | 2005-01-12 | 2008-01-30 | 丹麦理工大学 | Magnetic regenerator, method of manufacturing magnetic regenerator, method of manufacturing active magnetic refrigerator, and active magnetic refrigerator |
CN101135510A (en) * | 2007-10-19 | 2008-03-05 | 中国科学院电工研究所 | Heat exchange system of permanent magnetism rotary type magnetic refrigerating device |
CN101341368A (en) * | 2005-12-21 | 2009-01-07 | 大宇电子株式会社 | Magnetic refrigerator |
CN202613833U (en) * | 2012-05-18 | 2012-12-19 | 华中科技大学 | Magnetic cold accumulation device for magnetic refrigerator |
-
2012
- 2012-05-18 CN CN2012101559447A patent/CN102706028A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2610281Y (en) * | 2003-04-18 | 2004-04-07 | 财团法人工业技术研究院 | Magnetic heat transfer device |
CN101115962A (en) * | 2005-01-12 | 2008-01-30 | 丹麦理工大学 | Magnetic regenerator, method of manufacturing magnetic regenerator, method of manufacturing active magnetic refrigerator, and active magnetic refrigerator |
CN101341368A (en) * | 2005-12-21 | 2009-01-07 | 大宇电子株式会社 | Magnetic refrigerator |
CN101135510A (en) * | 2007-10-19 | 2008-03-05 | 中国科学院电工研究所 | Heat exchange system of permanent magnetism rotary type magnetic refrigerating device |
CN202613833U (en) * | 2012-05-18 | 2012-12-19 | 华中科技大学 | Magnetic cold accumulation device for magnetic refrigerator |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105307457A (en) * | 2015-09-14 | 2016-02-03 | 联想(北京)有限公司 | Stirling-magnetocaloric united heat dissipation system and electronic device |
CN105307457B (en) * | 2015-09-14 | 2018-11-09 | 联想(北京)有限公司 | Stirling-magnetic heat integration cooling system and electronic equipment |
CN105890222A (en) * | 2016-06-05 | 2016-08-24 | 山东商业职业技术学院 | Non-contact electromagnetic quick cold storage system based on magnetic rotation enhanced heat transfer |
CN106369723A (en) * | 2016-11-10 | 2017-02-01 | 海南省蓝波新能源科技有限公司 | Air conditioner |
CN107238229A (en) * | 2017-05-11 | 2017-10-10 | 上海卫星装备研究所 | A kind of monopole and multistage magnetic refrigeration apparatus based on gravity assisted heat pipe |
CN110542153A (en) * | 2019-09-25 | 2019-12-06 | 珠海格力电器股份有限公司 | Heat dissipation device adopting magnetic working medium for heat dissipation, outdoor unit and air conditioning unit |
CN112203367A (en) * | 2020-09-25 | 2021-01-08 | 中国科学院宁波材料技术与工程研究所 | Thermal switch and temperature control device having the same |
CN112629059A (en) * | 2020-12-31 | 2021-04-09 | 包头稀土研究院 | Method for evaluating refrigerating capacity of room-temperature magnetic refrigerating material and heat exchange device |
CN112629059B (en) * | 2020-12-31 | 2024-03-29 | 包头稀土研究院 | Method for evaluating refrigerating capacity of room-temperature magnetic refrigerating material and heat exchange device |
CN113446753A (en) * | 2021-06-25 | 2021-09-28 | 华南理工大学 | Room-temperature magnetic refrigeration device and refrigeration method of coupling gravity heat pipe |
CN113446753B (en) * | 2021-06-25 | 2022-05-24 | 华南理工大学 | A room temperature magnetic refrigeration device coupled with a gravity heat pipe and a refrigeration method |
CN113921852A (en) * | 2021-09-22 | 2022-01-11 | 中国三峡新能源(集团)股份有限公司 | Fuel cell cold start system based on liquid magnetic heat flow and control method |
CN113921852B (en) * | 2021-09-22 | 2023-10-20 | 中国三峡新能源(集团)股份有限公司 | Fuel cell cold start system based on liquid magnetic heat flow and control method |
CN114909817A (en) * | 2022-04-13 | 2022-08-16 | 西安交通大学 | Regenerative thermomagnetic-magnetocaloric coupling refrigeration system and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102706028A (en) | Magnetic cold storage device for magnetic refrigerator | |
JP6336123B2 (en) | Rotary series magnetic refrigeration system | |
JP4643668B2 (en) | Magnetic refrigeration device and magnetic refrigeration system | |
CN107014235B (en) | A phase-change material coupled with a heat-dissipating heat pipe for energy storage system | |
US20040182086A1 (en) | Magnetocaloric refrigeration device | |
JP4783406B2 (en) | Magnetic refrigeration device, magnetic refrigeration system and magnetic refrigeration method | |
Zhang et al. | Solutions to obstacles in the commercialization of room-temperature magnetic refrigeration | |
CN101458008B (en) | Magnetic cooling cycle system | |
CN101013010A (en) | Pulsating heat pipe heating panel using microcapsule phase-change thermal storage fluid as operating means | |
CN202613833U (en) | Magnetic cold accumulation device for magnetic refrigerator | |
CN101275793B (en) | Thermoacoustic Magnetic Refrigeration Cryogenic System | |
CN102109258B (en) | Low-temperature loop heat pipe device | |
CN108413675A (en) | Modularization refrigerator based on magnetic refrigeration | |
CN102937315A (en) | Refrigeration and cold accumulation system | |
CN109506389B (en) | Magnetic refrigeration heat exchange system | |
CN115876019A (en) | Phase change heat storage container, heat pump system thereof and control method | |
CN103175343A (en) | Vacuum heat pipe electromagnetic field magnetic refrigeration prototype | |
CN105318596B (en) | A kind of separate heat pipe room temperature magnetic refrigerating device | |
CN111238078B (en) | Thermoacoustic driven magnetic refrigeration system | |
CN103822412A (en) | Active heat regenerator for room temperature magnetic refrigerator | |
CN102072584B (en) | Compact absorption refrigeration device | |
CN109682115A (en) | The diffusion absorbing hybrid refrigeration device of solar energy-semiconductor driving | |
CN107816821B (en) | Solar adsorption, absorption cascade cooling and heating system | |
JP2010112592A (en) | Sorption type cooling device and heat switching device | |
CN101852511B (en) | Pressure swing adsorption refrigerator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20121003 |