CN102683136A - 石墨复合阴极材料及其制备方法 - Google Patents

石墨复合阴极材料及其制备方法 Download PDF

Info

Publication number
CN102683136A
CN102683136A CN2011100526282A CN201110052628A CN102683136A CN 102683136 A CN102683136 A CN 102683136A CN 2011100526282 A CN2011100526282 A CN 2011100526282A CN 201110052628 A CN201110052628 A CN 201110052628A CN 102683136 A CN102683136 A CN 102683136A
Authority
CN
China
Prior art keywords
graphite
cathode material
point metal
film
metal film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011100526282A
Other languages
English (en)
Other versions
CN102683136B (zh
Inventor
熊鹰
王兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Southwest University of Science and Technology
Original Assignee
Southwest University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest University of Science and Technology filed Critical Southwest University of Science and Technology
Priority to CN201110052628.2A priority Critical patent/CN102683136B/zh
Publication of CN102683136A publication Critical patent/CN102683136A/zh
Application granted granted Critical
Publication of CN102683136B publication Critical patent/CN102683136B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

本发明涉及一种用于强流电子发射的石墨复合阴极材料及其制备方法,在石墨基体的表面镀覆一层高熔点金属薄膜,在高熔点金属薄膜表面再镀覆一层金刚石薄膜,其中高熔点金属薄膜厚度为0.5~5μm,金刚石薄膜的厚度为0.5~2μm。其制备方法是将石墨阴极置于真空电子束蒸发沉积镀膜仪中,启动聚焦电子束,使其轰击高熔点金属靶材表面20~40分钟,然后自然冷却,将沉积上高熔点金属薄膜的石墨基体进行金刚石薄膜的化学气相沉积。本发明复合阴极材料可以提高阴极材料电子发射过程中的电流-电压一致性,有效的抑制或削弱电流发射过程中等离子体的产生和石墨基体的掉灰,并能改善阴极材料的真空放气问题。

Description

石墨复合阴极材料及其制备方法
技术领域
本发明涉及一种用于强流电子发射的石墨阴极材料,特别是石墨复合阴极材料及其制备方法。
背景技术
强流发射阴极在许多高电压(> 300 kV)、大电流(> 1 kA)电子束驱动源系统中被广泛应用,如高功率微波产生、自由电子激光、受激准分子激光等。文献中经常研究和报道的强流发射阴极主要包括石墨、金属、碳纤维以及天鹅绒等。阴极材料的选用极大地影响着电子束驱动源系统的设计及结构,是整个源系统构建的关键环节之一,尤其在高功率微波中更是设计和建立高功率微波源最关键的问题之一。美国在高功率微波源研究等方面取得了较快的发展,在阴极材料的选择与制备方面也进行了大量的研究。俄罗斯建立一系列脉冲高功率微波源装置,在强流发射阴极技术研究中也取得了重大进展。
在众多强流发射阴极材料中,石墨材料由于容易获得、发射阈值低和发射较为均匀等特点,在低阻器件中得到了较好的应用。然而,由于石墨阴极在脉冲过程中产生的等离子体间隙闭合问题会引起二极管阻抗的明显变化,因而减弱慢波结构中的束波耦合。此外,等离子体的不均匀发射以及发射的不可重复性等问题均会破坏器件的正常运行并缩短阴极的使用寿命,同时石墨阴极在使用过程中容易存在掉灰等现象而引起二极管及其后续设备的真空系统的污染等一系列问题。为此,研究人员一方面在致力于寻求石墨阴极的替代材料如碳纤维、铁电和天鹅绒等,但试验结果表明替代阴极材料的实际运行特性相较石墨阴极各有优劣;另一方面,从简便和不改变现有阴极及整个源系统结构的更为实用的技术途径出发,仍希望在保留石墨阴极。
发明内容
本发明的目的在于克服上述现有技术的不足,提供一种在多脉冲条件下强流电子发射的电压——电流一致性较高,可有效地抑制或削弱强流电子发射过程中场致等离子体的产生的石墨复合阴极材料及其制备方法。
本发明的解决方案是:一种石墨复合阴极材料,其特点是在石墨基体的表面镀覆一层高熔点金属薄膜,在高熔点金属薄膜表面再镀覆一层金刚石薄膜,其中高熔点金属薄膜膜厚度0.5 ~ 5μm,金刚石薄膜的厚度为0.5 ~ 2μm。
本发明的解决方案中高熔点金属薄膜为金属钨薄膜或金属钼薄
膜。
石墨复合阴极材料的制备方法,其特点是包括以下步骤:
a、将石墨阴极置于真空电子束蒸发沉积镀膜仪中,抽真空至
真空度1.0 ~ 8.0 *10-3 Pa,将石墨阴极加热至200 ~ 300 ℃;
b、启动聚焦电子束,使其轰击高熔点金属靶材表面20 ~ 40
分钟,聚焦电子束流密度为200 ~ 300 mA,然后自然冷却;
c、将沉积上高熔点金属薄膜的石墨基体放入微波等离子体化学气相沉积仪谐振腔中进行金刚石薄膜的化学气相沉积,其中微波功率为1100 ~ 1500 W。
本发明的石墨复合阴极材料的制备方法中化学气相沉积的反应气源可为甲烷和氢气,甲烷占总体积比例为0.5 ~ 4%,总气流量为200 ~ 400 SCCM。
本发明的石墨复合阴极材料的制备方法中化学气相沉积的沉积时间为2~7小时。
本发明的优点:本发明中采用高熔点金属的电子束蒸发镀膜技术,在传统的单纯石墨阴极的表面镀覆上一层致密的高熔点金属薄膜,再采用微波等离子体化学气相沉积技术在石墨-高熔点金属表面再镀覆上一层金刚石薄膜,从而获得石墨-高熔点金属-金刚石多层复合阴极材料。本发明复合阴极材料可以提高阴极材料电子发射过程中的电流-电压一致性,有效的抑制或削弱电流发射过程中等离子体的产生和石墨基体的掉灰,并能改善阴极材料的真空放气问题。
附图说明
图1是本发明的X射线衍射图谱;
图2是本发明的Raman光谱;
图3是单纯石墨阴极(a)与本发明(b)的强流电子发射典型电压—电流波形对比图。
具体实施方式
本发明实施例一:将石墨阴极固定于真空电子束蒸发沉积镀膜仪的样品架上,抽沉积室的真空至真空度为4.0*10-3 Pa,并加热石墨阴极至300 ℃;启动蒸发沉积镀膜设备的聚焦电子束,使其轰击石墨坩埚中的金属钨靶,调节电子束束流密度至300 mA;待电子束持续轰击钨靶40分钟后,关闭聚焦电子束,待系统冷却至室温后再关闭真空系统;再重复以上步骤以便在石墨阴极每个表面均镀覆上金属钨的薄膜,从而获得石墨-高熔点金属钨薄膜复合材料。将该石墨-高熔点金属薄膜复合材料置于微波等离子体化学气相沉积仪的谐振腔中的样品台上,抽真空,开启微波发生器,开启气路控制系统,控制CH4占总体积比例为0.5%,总气流量为300 SCCM,再把微波功率升高到1200 W左右,石墨-高熔点金属复合材料表面温度为900 ℃,持续沉积5小时,最后逐渐降低微波功率缓慢冷却。其中金属钨薄膜厚度为3.5μm,金刚石薄膜的厚度为1.5μm。
实施例二:
将石墨阴极固定于真空电子束蒸发沉积镀膜仪的样品架上,抽沉积室的真空至真空度为4.0 * 10-3 Pa,并加热石墨阴极至300 ℃;启动蒸发沉积镀膜设备的聚焦电子束,使其轰击石墨坩埚中的金属钼靶,调节电子束束流密度至300 mA;待电子束持续轰击钼靶30分钟后,关闭聚焦电子束,待系统冷却至室温后再关闭真空系统;再重复以上步骤以便在石墨阴极每个表面均镀覆上金属钼的薄膜,从而获得石墨-高熔点金属钼薄膜复合材料;将该石墨-高熔点金属钼薄膜复合材料置于微波等离子体化学气相沉积仪的谐振腔中的样品台上,抽真空,开启微波发生器,开启气路控制系统,控制CH4占总体积比例为1%,总气流量为400 SCCM,再把微波功率升高到1000 W左右,石墨-高熔点金属复合材料表面温度为700℃,持续沉积4 小时,最后逐渐降低微波功率缓慢冷却。其中金属钼薄膜厚度为1.5μm,金刚石薄膜的厚度为1.0μm。
实施例三:
将石墨阴极固定于真空电子束蒸发沉积镀膜仪的样品架上,抽沉积室的真空至真空度为1.0*10-3 Pa,并加热石墨阴极至200℃;启动蒸发沉积镀膜设备的聚焦电子束,使其轰击石墨坩埚中的金属钨靶,调节电子束束流密度至250 mA;待电子束持续轰击钨靶30分钟后,关闭聚焦电子束,待系统冷却至室温后再关闭真空系统;再重复以上步骤以便在石墨阴极每个表面均镀覆上金属钨的薄膜,从而获得石墨-高熔点金属钨薄膜复合材料;将该石墨-高熔点金属钨薄膜复合材料置于微波等离子体化学气相沉积仪的谐振腔中的样品台上,抽真空,开启微波发生器,开启气路控制系统,控制CH4占总体积比例为2%,,总气流量为400 SCCM,再把微波功率升高到1400 W左右,石墨-高熔点金属复合材料表面温度为950 ℃,持续沉积3 小时,最后逐渐降低微波功率缓慢冷却。其中金属钨薄膜厚度为0.6μm,金刚石薄膜的厚度为0.5μm。
图1中可以看出,除了尖锐的石墨衍射峰(如图中所标示,JCPDS Card No. 75-2078)之外,还在41.2°和73.4°处出现了两个较弱的衍射峰,通过指标化可以指认为金属钨的特征峰(JCPDS Card No. 89-4900),因此,可以得出我们采用真空电子束蒸发的方式的确是在石墨阴极表面成功镀覆上高熔点金属钨的薄膜。
图2中可以看出,在1174 cm-1和1475 cm-1出现的峰可以指认为反式聚乙炔t-PA的特征峰,而1342 cm-1 --和1570 cm-1处出现的Raman峰则为sp2杂化成键的碳的D峰和G峰,以上这些Raman峰是纳米金刚石薄膜的特征Raman谱图。
图3中在双脉冲测试条件下,其中深色实线为二极管电压曲线,浅色空心线为阴极发射电流曲线,传统单纯石墨阴极(图3b)的第一个脉冲和第二个脉冲的发射电流的电压—电流之间的一致性较差,第二个脉冲电流强度明显大于第一个脉冲电流强度(在脉冲1电压强度大于脉冲2电压强度的条件下)。而石墨-高熔点金属钨薄膜-金刚石薄膜复合阴极(图3a)的第一个脉冲和第二个脉冲的发射电流的电压—电流之间的一致性较好,说明采用复合结构的阴极材料,在多脉冲条件下,可以有效地抑制或削弱场致等离子体的产生,从而减小前一个脉冲的等离子体对后一个脉冲发射的影响。

Claims (5)

1.一种石墨复合阴极材料,其特征在于在石墨基体的表面镀覆一层高熔点金属薄膜,在高熔点金属薄膜表面再镀覆一层金刚石薄膜,其中高熔点金属薄膜厚度为0.5 ~ 5μm,金刚石薄膜的厚度为0.5 ~ 2μm。
2.根据权利要求1所述的石墨复合阴极材料,其特征在于高熔点金属薄膜为金属钨薄膜或金属钼薄膜。
3.一种如权利要求1所述的石墨复合阴极材料的制备方法,其特征在于包括以下步骤:
a、将石墨阴极置于真空电子束蒸发沉积镀膜仪中,抽真空至
真空度1.0 ~ 8.0*10-3 Pa,将石墨阴极加热至200 ~ 300℃;
b、启动聚焦电子束,使其轰击高熔点金属靶材表面20 ~ 40
分钟,聚焦电子束流密度为200 ~ 300 mA,然后自然冷却;
c、将沉积上高熔点金属薄膜的石墨基体放入微波等离子体化学气相沉积仪谐振腔中进行金刚石薄膜的化学气相沉积,其中微波功率为1100 ~ 1500 W。
4.根据权利要求3所述的石墨复合阴极材料的制备方法,其特征在于化学气相沉积的反应气源为甲烷和氢气,甲烷占总体积比例为0.5 ~ 4%,总气流量为200 ~ 400 SCCM。
5.根据权利要求3所述的石墨复合阴极材料的制备方法,其特征在于化学气相沉积的沉积时间为2~7小时。
CN201110052628.2A 2011-03-07 2011-03-07 石墨复合阴极材料及其制备方法 Expired - Fee Related CN102683136B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110052628.2A CN102683136B (zh) 2011-03-07 2011-03-07 石墨复合阴极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110052628.2A CN102683136B (zh) 2011-03-07 2011-03-07 石墨复合阴极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN102683136A true CN102683136A (zh) 2012-09-19
CN102683136B CN102683136B (zh) 2015-07-15

Family

ID=46814875

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110052628.2A Expired - Fee Related CN102683136B (zh) 2011-03-07 2011-03-07 石墨复合阴极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN102683136B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113097032A (zh) * 2021-04-23 2021-07-09 西北核技术研究所 长寿命微柱阵列石墨和金属的复合阴极结构及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1309407A (zh) * 1999-12-21 2001-08-22 索尼公司 电子发射器件、冷阴极场发射器件和显示器及其制造方法
CN1423823A (zh) * 2000-02-16 2003-06-11 富勒林国际公司 用于有效电子场致发射的金钢石/碳纳米管结构
US20090111350A1 (en) * 2007-10-24 2009-04-30 Canon Kabushiki Kaisha Electron-emitting device, electron source, image display apparatus, and manufacturing method of electron-emitting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1309407A (zh) * 1999-12-21 2001-08-22 索尼公司 电子发射器件、冷阴极场发射器件和显示器及其制造方法
CN1423823A (zh) * 2000-02-16 2003-06-11 富勒林国际公司 用于有效电子场致发射的金钢石/碳纳米管结构
US20090111350A1 (en) * 2007-10-24 2009-04-30 Canon Kabushiki Kaisha Electron-emitting device, electron source, image display apparatus, and manufacturing method of electron-emitting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113097032A (zh) * 2021-04-23 2021-07-09 西北核技术研究所 长寿命微柱阵列石墨和金属的复合阴极结构及其制备方法
CN113097032B (zh) * 2021-04-23 2023-10-20 西北核技术研究所 长寿命微柱阵列石墨和金属的复合阴极结构及其制备方法

Also Published As

Publication number Publication date
CN102683136B (zh) 2015-07-15

Similar Documents

Publication Publication Date Title
US6329745B2 (en) Electron gun and cathode ray tube having multilayer carbon-based field emission cathode
WO1998021736A1 (en) Carbon cone and carbon whisker field emitters
CN104851765B (zh) 一种微波氢等离子体处理提升碳纳米管场发射性能的方法
Xiang et al. Photocathodes for high brightness photo injectors
US5973446A (en) Field emission cathode and methods in the production thereof
Soh et al. Shadowgraphic studies of DLC film deposition process in dense plasma focus device
JPWO2009142223A1 (ja) スパッタリング用ターゲット、薄膜の製造法及び表示装置
US6441550B1 (en) Carbon-based field emission electron device for high current density applications
US6806629B2 (en) Amorphous diamond materials and associated methods for the use and manufacture thereof
AU689702B2 (en) A field emission cathode and methods in the production thereof
Zeb et al. Deposition of diamond-like carbon film using dense plasma focus
CN104882346A (zh) 一种碳纳米颗粒包覆的碳纳米管阵列场发射阴极的制备方法
CN102683136B (zh) 石墨复合阴极材料及其制备方法
JP2004217975A (ja) 炭素薄膜及びその製造方法
CN108987215B (zh) 一种提升石墨烯片-碳纳米管阵列复合材料场发射性能的方法
CN102683135B (zh) 天鹅绒复合阴极及其制备方法
CN104952674A (zh) 一种纳米碳片-碳纳米管复合结构场发射阴极的制备方法
JP3819566B2 (ja) ダイヤモンド膜またはダイヤモンド状炭素膜の成膜方法
CN108987216B (zh) 一种提升碳纳米管阵列-碳纳米管膜柔性复合材料场发射性能的方法
RU2717526C1 (ru) Способ изготовления холодного катода
CN108987217B (zh) 一种提升石墨烯片-碳纳米管膜柔性复合材料场发射性能的方法
JP2791034B2 (ja) カーボンイオンビーム発生方法
RU104774U1 (ru) Газоразрядное устройство для синтеза углеродсодержащих пленок
Jin Research and Development of a New Field Enhanced Low Temperature Thermionic Cathode that Enables Fluorescent Dimming and Loan Shedding without Auxiliary Cathode Heating
CN117265492A (zh) 一种电池金属双极板用柔性硬质碳基涂层及制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150715

Termination date: 20160307

CF01 Termination of patent right due to non-payment of annual fee