CN102662033A - Structure of test cavity - Google Patents

Structure of test cavity Download PDF

Info

Publication number
CN102662033A
CN102662033A CN2012101572140A CN201210157214A CN102662033A CN 102662033 A CN102662033 A CN 102662033A CN 2012101572140 A CN2012101572140 A CN 2012101572140A CN 201210157214 A CN201210157214 A CN 201210157214A CN 102662033 A CN102662033 A CN 102662033A
Authority
CN
China
Prior art keywords
test chamber
wall
structure according
test cavity
chamber structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012101572140A
Other languages
Chinese (zh)
Inventor
谢光忠
蒋亚东
周泳
杜晓松
李娴
太惠玲
朱涛
廖剑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN2012101572140A priority Critical patent/CN102662033A/en
Publication of CN102662033A publication Critical patent/CN102662033A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

The invention discloses a structure of a test cavity in the technical field of a gas sensor. The structure of the test cavity comprises an airflow inlet 1, an energy converter 2, an inner wall medium layer 3, a sensitive membrane 4, a test cavity 5, an airflow outlet 6 and an air pump. The test cavity is connected with the air pump through a capillary tube. With the adoption of the structure provided by the invention, the inflation volume inside the test cavity is reduced. At the same airflow, the air concentration which is close to the sensitive membrane 4 is rapidly changed, and the energy converter can achieve a stable state in a rapider manner, so that the response time of the energy converter is shortened. An area of the inner wall of the test cavity is reduced, so that the amount of absorbing the air to be detected through the inner wall is reduced. Furthermore, the absorption amount of substances to be detected through the area of the inner wall in a unit is reduced by selecting a material of the inner wall which difficultly adsorbs the air to be detected or coating the medium material on the inner wall, so that the detection precision is improved and the detection limitation value is reduced.

Description

一种测试腔结构A test chamber structure

技术领域 technical field

本发明涉及气体传感器技术领域,尤其涉及一种测试腔结构。 The invention relates to the technical field of gas sensors, in particular to a test chamber structure.

背景技术 Background technique

气体传感器在室内空气质量检测、工业环境检测、食品工业检测、战场环境预警、反恐预警等领域具有较好的应用前景,与物联网进行整合之后,可大幅度提高社会生产生活的质量和效率。然而目前传感器自身的缺陷限制了其大规模应用,其中主要的缺陷有:1、传感器的响应时间过长;2、传感器检测误差较大,尤其在对低浓度气体检测时,直接影响了检测精度;3、传感器的检测极限值过高,不能满足需求。 Gas sensors have good application prospects in indoor air quality detection, industrial environment detection, food industry detection, battlefield environment early warning, anti-terrorism early warning and other fields. After integration with the Internet of Things, the quality and efficiency of social production and life can be greatly improved. However, the defects of the sensor itself limit its large-scale application. The main defects are: 1. The response time of the sensor is too long; 2. The detection error of the sensor is relatively large, especially when detecting low-concentration gases, which directly affects the detection accuracy. ; 3. The detection limit of the sensor is too high to meet the demand.

目前造成传感器响应时间过长的主要原因有两点:一是敏感机理和换能器技术对外界信息量变化的感知过于缓慢;二是测试腔内部充气容积过大,即测试腔体充气容积和气流进出口容积之和过大,导致敏感膜附近的被测气体浓度变化速度过于缓慢。值得注意的是,传感器敏感机理和换能器技术的问题有时并不容易解决;因而,传感器响应时间过长的问题只能通过其他方面改进。 At present, there are two main reasons for the long response time of the sensor: one is that the sensitive mechanism and transducer technology perceive the change of external information too slowly; The sum of the volumes of the inlet and outlet of the gas flow is too large, resulting in too slow a change in the concentration of the measured gas near the sensitive membrane. It is worth noting that issues with sensor sensitivity mechanisms and transducer technology are sometimes not easy to resolve; thus, excessive sensor response times can only be improved in other ways.

测试腔内部充气容积大意味着内壁面积大,传感器内壁对被测气体的吸附和凝结的量也就很大,因此气氛中只有部分被测气体能够对敏感膜起作用。另外,吸附和凝结的气体量受环境温度、湿度和被测气体浓度等多种因素的影响,后端算法很难剔除其影响。这些因素只能视作随机误差,这不仅降低了传感器的检测精度,还提高了传感器的检测极限值,为避免虚警误报而不得不提高传感器的报警阈值,这是以牺牲性能来换取可靠性。上述问题是传感器实用化的最大的几个问题。 The large inflated volume inside the test chamber means that the inner wall area is large, and the amount of adsorption and condensation of the measured gas on the inner wall of the sensor is also large, so only part of the measured gas in the atmosphere can act on the sensitive membrane. In addition, the amount of gas adsorbed and condensed is affected by various factors such as ambient temperature, humidity, and the concentration of the gas to be measured, and it is difficult for the back-end algorithm to eliminate its influence. These factors can only be regarded as random errors, which not only reduce the detection accuracy of the sensor, but also increase the detection limit of the sensor. In order to avoid false alarms and false alarms, the alarm threshold of the sensor has to be increased, which is to sacrifice performance for reliability. sex. The above-mentioned problems are the biggest problems in the practical application of sensors.

内壁或者内壁涂覆材料是减少内壁吸附的一个主要的方法。要么选择合适的内壁材料,要么在内壁上涂覆一层涂层。目前使用的材料中,金属(主要是金)、玻璃、聚四氟乙烯(特氟龙)对被测气体的吸附最小。对于常温为气体的被测气体,例如CO2、CO、O2、SO2和H2S等,只要求内壁或者涂层化学性质惰性,不与被测气体发生化学反应即可。对于常温下是蒸汽和遇冷凝结为液滴的被测气体,例如挥发性有机化合物VOC蒸汽(苯系物、有机氯化物、氟里昂系列、有机酮、胺、醇、醚、酯、酸和石油烃化合物等),则要求更高。金属的“冷”表面会凝结一部分进入测试腔中的蒸汽,在ppm甚至ppb级的检测浓度上,金属的这种凝结会对结果产生较大的误差,因而,玻璃和聚四氟乙烯更为适合。 Inner wall or inner wall coating material is a major method to reduce inner wall adsorption. Either choose a suitable inner wall material, or apply a coating on the inner wall. Among the materials currently used, metal (mainly gold), glass, and polytetrafluoroethylene (Teflon) have the least adsorption on the measured gas. For measured gases that are gases at normal temperature, such as CO 2 , CO, O 2 , SO 2 and H 2 S, etc., it is only required that the inner wall or coating is chemically inert and does not chemically react with the measured gas. For the measured gas that is vapor at room temperature and condenses into liquid droplets when condensed, such as volatile organic compound VOC vapor (benzene series, organic chloride, Freon series, organic ketones, amines, alcohols, ethers, esters, acids and Petroleum hydrocarbons, etc.), the requirements are higher. The "cold" surface of the metal will condense a part of the vapor that enters the test chamber. At the detection concentration of ppm or even ppb level, this condensation of metal will cause a large error in the result. Therefore, glass and polytetrafluoroethylene are more suitable. Suitable.

发明内容 Contents of the invention

针对上述现有技术,本发明要解决的技术问题是:现有传感器测试腔中的气体传感器的响应时间较长,传感器气体检测精度较低和检测极限值较大。 In view of the above-mentioned prior art, the technical problems to be solved by the present invention are: the response time of the gas sensor in the existing sensor test chamber is long, the gas detection accuracy of the sensor is low and the detection limit value is large.

为了解决上述技术问题,本发明采用如下技术方案: In order to solve the above technical problems, the present invention adopts the following technical solutions:

一种测试腔结构,包括气流进口、换能器、内壁介质层、敏感膜、测试腔、气流出口、气泵,测试腔和气泵经毛细管连接,其特征在于,所述测试腔的三维尺寸至少有一维在微米量级,连接外界和测试腔的气路截面尺寸为微米至毫米量级。 A test chamber structure, including airflow inlet, transducer, inner wall medium layer, sensitive film, test chamber, airflow outlet, air pump, test chamber and air pump are connected through capillary, it is characterized in that, the three-dimensional dimension of described test chamber has at least one Dimensions are on the order of microns, and the cross-sectional size of the gas path connecting the outside world and the test chamber is on the order of microns to millimeters.

所述测试腔的三维尺寸为2mm×2mm×300um~4mm×4mm×300um,连接外界和测试腔的气路尺寸为:进气口0.3mm×0.03mm×200um~0.5mm×0.05mm×300um,出气口3mm×0.2mm×200um~5mm×0.3mm×300um。 The three-dimensional size of the test chamber is 2mm×2mm×300um~4mm×4mm×300um, the size of the gas path connecting the outside world and the test chamber is: air inlet 0.3mm×0.03mm×200um~0.5mm×0.05mm×300um, Air outlet 3mm×0.2mm×200um~5mm×0.3mm×300um.

本发明所述换能器为测试腔内壁的一部分并设置于测试腔内。 The transducer of the present invention is a part of the inner wall of the test cavity and is arranged in the test cavity.

本发明所述毛细管的材质为硅、二氧化硅、砷化镓、氮化硅等半导体材料中的一种。 The material of the capillary in the present invention is one of semiconductor materials such as silicon, silicon dioxide, gallium arsenide, and silicon nitride.

本发明所述测试腔的内壁介质层为表面张力小、化学惰性的材料或者在内壁介质层表面涂覆一层具表面张力小、化学惰性的介质材料。 The inner wall medium layer of the test chamber of the present invention is a material with low surface tension and chemical inertness or a layer of low surface tension and chemically inert medium material is coated on the surface of the inner wall medium layer.

本发明内壁介质层为金、铂、钯、钛、铑、铱、锇、钌、聚四氟乙烯、聚对二甲苯、聚丁烯、聚苯乙烯、玻璃、非晶二氧化硅、单晶二氧化硅、硅、氮化硅、氧化铝、砷化镓和金属氧化物中的一种。 The medium layer of the inner wall of the present invention is gold, platinum, palladium, titanium, rhodium, iridium, osmium, ruthenium, polytetrafluoroethylene, parylene, polybutene, polystyrene, glass, amorphous silicon dioxide, single crystal One of silicon dioxide, silicon, silicon nitride, aluminum oxide, gallium arsenide, and metal oxides.

本发明内壁介质层表面上涂覆的介质材料为金、铂、钯、钛、铑、铱、锇、钌、聚四氟乙烯、聚对二甲苯、聚丁烯、聚苯乙烯、玻璃、非晶二氧化硅、单晶二氧化硅、硅、氧化铝、氮化硅、砷化镓、金属氧化物和熔融石英等中的一种。 The dielectric material coated on the surface of the inner wall dielectric layer of the present invention is gold, platinum, palladium, titanium, rhodium, iridium, osmium, ruthenium, polytetrafluoroethylene, parylene, polybutylene, polystyrene, glass, non- One of crystalline silica, single crystal silica, silicon, alumina, silicon nitride, gallium arsenide, metal oxides, and fused silica.

本发明所述敏感膜为有机聚合物、有机小分子、金属、金属氧化物、非金属氧化物和生物材料中的一种。 The sensitive film of the present invention is one of organic polymers, small organic molecules, metals, metal oxides, non-metal oxides and biological materials.

本发明所述换能器附带加热和温控功能,为质量型、热感应型、光学、电导型、电容型、电化学型中的一种。 The transducer of the present invention has heating and temperature control functions, and is one of mass type, heat induction type, optical, conduction type, capacitive type, and electrochemical type.

本发明换能器使用气泵对外界环境气体进行采样。 The transducer of the present invention uses an air pump to sample the gas in the external environment.

本发明测试腔的密封方式为是键合或为一层介质材料覆盖整个换能器外围。 The sealing method of the test cavity of the present invention is bonding or a layer of dielectric material covering the entire periphery of the transducer.

与现有技术相比,本发明具有的有益效果表现在: Compared with prior art, the beneficial effect that the present invention has is shown in:

一、测试腔体、气流进口尺寸已缩小至微米量级,减小了测试腔内部充气容积即减小内壁面积,进一步减小了内壁对被测气体的吸附面积,因此减小内壁吸附气体对检测结果的干扰,减少检测误差,提高检测精度。 1. The size of the test chamber and airflow inlet has been reduced to the order of microns, which reduces the inflated volume inside the test chamber, that is, reduces the area of the inner wall, and further reduces the adsorption area of the inner wall to the gas to be measured, thus reducing the impact of the adsorbed gas on the inner wall. The interference of the detection result reduces the detection error and improves the detection accuracy.

二、测试腔内壁采用表面张力小、化学惰性的材料或者在其表面涂覆一层具有此类性质的介质材料,以减小内壁对被测气体的单位面积吸附量,从而减小内壁吸附对检测结果的干扰,减少检测误差,提高检测精度。 2. The inner wall of the test chamber is made of a material with low surface tension and chemical inertness, or a layer of dielectric material with such properties is coated on the surface to reduce the amount of adsorption per unit area of the inner wall to the measured gas, thereby reducing the impact of inner wall adsorption on The interference of the detection result reduces the detection error and improves the detection accuracy.

三、缩小测试腔内部充气容积即测试腔体充气容积和气流进出口容积之和,辅以适当的内壁材料或内壁涂层可有效改善传感器的各项性能,促进传感器实用化和普及。 3. Reduce the inflated volume inside the test chamber, which is the sum of the inflated volume of the test chamber and the volume of the air inlet and outlet. Supplemented with appropriate inner wall materials or inner wall coatings, it can effectively improve the performance of the sensor and promote the practicality and popularization of the sensor.

附图说明 Description of drawings

图1为本发明的剖视图; Fig. 1 is a sectional view of the present invention;

图2为本发明的立体效果图; Fig. 2 is the three-dimensional rendering of the present invention;

附图标记为:1为气流进口、2为换能器、3为内壁介质层、4为敏感膜、5为测试腔体,6为气流出口、7为气泵。 Reference numerals are: 1 is the air inlet, 2 is the transducer, 3 is the inner wall medium layer, 4 is the sensitive film, 5 is the test chamber, 6 is the air outlet, and 7 is the air pump.

具体实施方式 Detailed ways

下面将结合附图及具体实施方式对本发明作进一步的描述。 The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.

一种测试腔结构,包括气流进口、换能器、内壁介质层、敏感膜、测试腔、气流出口、气泵,测试腔和气泵经毛细管连接, 缩小测试腔内部充气容积,所述测试腔的三维尺寸至少有一维在微米量级,连接外界和测试腔的气路截面尺寸为微米至毫米量级。所述换能器为测试腔内壁的一部分或设置于测试腔内。所述毛细管的材质为硅、二氧化硅、砷化镓、氮化硅等半导体材料中的一种。所述测试腔的内壁介质层为表面张力小、化学惰性的材料或者在内壁介质层表面涂覆一层具表面张力小、化学惰性的介质材料。所述敏感膜为有机聚合物、有机小分子、金属、金属氧化物、非金属氧化物和生物材料中的一种。 A test chamber structure, including an airflow inlet, a transducer, an inner wall medium layer, a sensitive film, a test chamber, an airflow outlet, and an air pump. The test chamber and the air pump are connected through a capillary tube to reduce the inflated volume inside the test chamber. The three-dimensional shape of the test chamber At least one dimension is on the order of microns, and the cross-sectional size of the gas path connecting the outside world and the test chamber is on the order of microns to millimeters. The transducer is a part of the inner wall of the test cavity or is arranged in the test cavity. The material of the capillary is one of semiconductor materials such as silicon, silicon dioxide, gallium arsenide, and silicon nitride. The inner wall medium layer of the test chamber is made of low surface tension and chemically inert material or a layer of low surface tension and chemically inert medium material is coated on the surface of the inner wall medium layer. The sensitive film is one of organic polymers, small organic molecules, metals, metal oxides, non-metal oxides and biological materials.

其中所述内壁介质层为金、铂、钯、钛、铑、铱、锇、钌、聚四氟乙烯、聚对二甲苯、聚丁烯、聚苯乙烯、玻璃、非晶二氧化硅、单晶二氧化硅、硅、氮化硅、氧化铝、砷化镓和金属氧化物中的一种或者内壁介质层表面上涂覆的介质材料为金、铂、钯、钛、铑、铱、锇、钌、聚四氟乙烯、聚对二甲苯、聚丁烯、聚苯乙烯、玻璃、非晶二氧化硅、单晶二氧化硅、硅、氧化铝、氮化硅、砷化镓、金属氧化物和熔融石英等中的一种。 Wherein the inner wall medium layer is gold, platinum, palladium, titanium, rhodium, iridium, osmium, ruthenium, polytetrafluoroethylene, parylene, polybutylene, polystyrene, glass, amorphous silicon dioxide, single One of crystalline silicon dioxide, silicon, silicon nitride, aluminum oxide, gallium arsenide and metal oxide, or the dielectric material coated on the surface of the inner wall dielectric layer is gold, platinum, palladium, titanium, rhodium, iridium, osmium , ruthenium, PTFE, parylene, polybutylene, polystyrene, glass, amorphous silica, monocrystalline silica, silicon, alumina, silicon nitride, gallium arsenide, metal oxide One of materials and fused silica.

所述换能器附带加热和温控功能,为质量型(压电声波器件、悬臂梁)、热感应型、光学、电导型、电容型、电化学型中的一种,并使用气泵对外界环境气体进行采样。 The transducer has heating and temperature control functions, and is one of mass type (piezoelectric acoustic wave device, cantilever beam), thermal induction type, optical, conductivity type, capacitive type, electrochemical type, and uses an air pump to Ambient gases are sampled.

本发明所提供的测试腔结构的制备方法如下: The preparation method of the test chamber structure provided by the present invention is as follows:

如图1所示,该测试腔结构包括,气流进口1,换能器2,内壁介质层3,敏感膜4,测试腔5,气流出口6,气泵7。在单晶硅基板表面采用深度反应离子刻蚀DRIE工艺制备出面积2mm×2mm,深度300um的凹槽,凹槽两端各制备一个窄凹槽,规格分别为面积0.5mm×0.05mm、深度300um和面积5mm×0.3mm、深度300um。凹槽、窄凹槽分别为封装后的测试腔5和气路(气流的进出口)。另一只硅基板表面制备叉指换能器2、铂加热器和铂温度传感器,后两者实质都是铂电阻器。除叉指换能器2、铂加热器和铂温度传感器之外,测试腔内壁均制备一层聚对二甲苯薄膜形成内避介质层3。在叉指换能器表面用气喷雾技术制备一层聚环氧乙烷敏感薄膜。将两块硅片合并在一起,使用挡板挡住气流进出口,在整个测试腔外表面制备一层聚对二甲苯薄膜,堵住所有缝隙,完成封装,即获得测试腔5、气流进口1和气流出口6。测试腔尺寸范围为2mm×2mm×300um~4mm×4mm×300um,最佳尺寸为2mm×2mm×300um;气流进口1的尺寸范围为0.3mm×0.03mm×200um~0.5mm×0.05mm×300um,最佳尺寸为0.5mm×0.05mm×300um,气流出口6的尺寸范围为3mm×0.2mm×200um~5mm×0.3mm×300um,最佳尺寸为5mm×0.3mm×300um。通过倒扣的方式将淀积有叉指换能器的传感器放入测试腔内,传感器的基底也是测试腔结构的一部分。石英毛细管连接测试腔和气泵,毛细管的一端插入测试腔的气流出口,并用环氧树脂胶密封,毛细管经转接头与气泵的不锈钢管进行连接。 As shown in FIG. 1 , the test chamber structure includes an airflow inlet 1 , a transducer 2 , an inner wall dielectric layer 3 , a sensitive film 4 , a test chamber 5 , an airflow outlet 6 , and an air pump 7 . Grooves with an area of 2mm×2mm and a depth of 300um were prepared on the surface of the single crystal silicon substrate by the deep reactive ion etching DRIE process, and a narrow groove was prepared at both ends of the groove, and the specifications were 0.5mm×0.05mm in area and 300um in depth. And the area is 5mm×0.3mm, the depth is 300um. The groove and the narrow groove are respectively the packaged test cavity 5 and the gas path (the inlet and outlet of the airflow). An interdigital transducer 2, a platinum heater and a platinum temperature sensor are prepared on the surface of the other silicon substrate, and the latter two are essentially platinum resistors. Except for the interdigital transducer 2 , the platinum heater and the platinum temperature sensor, a layer of parylene film is prepared on the inner wall of the test chamber to form the inner avoidance medium layer 3 . A layer of polyethylene oxide sensitive film was prepared on the surface of interdigital transducer by air spray technology. Combine the two silicon wafers together, use a baffle to block the airflow inlet and outlet, prepare a layer of parylene film on the entire outer surface of the test chamber, block all the gaps, and complete the packaging, that is, the test chamber 5, the airflow inlet 1 and the test chamber 5 are obtained. Air outlet 6. The size range of the test chamber is 2mm×2mm×300um~4mm×4mm×300um, the optimal size is 2mm×2mm×300um; the size range of the air inlet 1 is 0.3mm×0.03mm×200um~0.5mm×0.05mm×300um, The optimum size is 0.5mm×0.05mm×300um, the size range of the air outlet 6 is 3mm×0.2mm×200um~5mm×0.3mm×300um, and the optimum size is 5mm×0.3mm×300um. The sensor deposited with the interdigital transducer is put into the test chamber by buckling, and the substrate of the sensor is also a part of the test chamber structure. The quartz capillary connects the test chamber and the air pump. One end of the capillary is inserted into the air outlet of the test chamber and sealed with epoxy resin. The capillary is connected to the stainless steel pipe of the air pump through an adapter.

在单晶硅基板表面采用深度反应离子刻蚀DRIE工艺制备出的凹槽和凹槽两端的窄凹槽。密封方法可以用一层介质材料覆盖整个换能器外围或者键合方法。密封方法为键合时采用直接键合法。直接键合法,通常是在键合前先对硅片表面进行亲水性预处理,接着在室温下对硅片进行键合,然后对键合硅片经1000℃左右高温退火,以达到最终的键合强度。 A groove and narrow grooves at both ends of the groove are prepared on the surface of the single crystal silicon substrate by a deep reactive ion etching DRIE process. The sealing method can cover the entire transducer periphery with a layer of dielectric material or a bonding method. When the sealing method is bonding, the direct bonding method is used. In the direct bonding method, the surface of the silicon wafer is usually pretreated with hydrophilicity before bonding, and then the silicon wafer is bonded at room temperature, and then the bonded silicon wafer is annealed at a high temperature of about 1000 ° C to achieve the final bond strength.

在本发明中,测试腔体和气流进出口的充气容积从传统的100mL降至大约0.4uL,响应时间由3min缩短到0.5s左右,响应的误差从5%降至0.01%,检测极限值从1000ppm降至大约5ppm。 In the present invention, the inflated volume of the test chamber and the air inlet and outlet is reduced from the traditional 100mL to about 0.4uL, the response time is shortened from 3min to about 0.5s, the response error is reduced from 5% to 0.01%, and the detection limit value is reduced from 1000ppm down to about 5ppm.

Claims (10)

1.一种测试腔结构,包括气流进口、换能器、内壁介质层3、敏感膜4、测试腔、气流出口、气泵,测试腔和气泵经毛细管连接,其特征在于,所述测试腔的三维尺寸至少有一维在微米量级,连接外界和测试腔的气路截面尺寸为微米至毫米量级。 1. A test chamber structure, comprising an airflow inlet, a transducer, an inner wall dielectric layer 3, a sensitive film 4, a test chamber, an airflow outlet, an air pump, and the test chamber and the air pump are connected through a capillary, wherein the test chamber At least one of the three-dimensional dimensions is on the order of microns, and the cross-sectional size of the gas path connecting the outside world and the test chamber is on the order of microns to millimeters. 2.根据权利要求1所述的测试腔结构,其特征在于,所述测试腔的三维尺寸为2mm×2mm×300um~4mm×4mm×300um,连接外界和测试腔的气路尺寸为:进气口0.3mm×0.03mm×200um~0.5mm×0.05mm×300um,出气口3mm×0.2mm×200um~5mm×0.3mm×300um。 2. The test chamber structure according to claim 1, characterized in that, the three-dimensional size of the test chamber is 2mm×2mm×300um~4mm×4mm×300um, and the size of the gas path connecting the outside world and the test chamber is: air intake The port is 0.3mm×0.03mm×200um~0.5mm×0.05mm×300um, the air outlet is 3mm×0.2mm×200um~5mm×0.3mm×300um. 3.根据权利要求1所述的测试腔结构,其特征在于,所述换能器即叉指换能器为测试腔内壁的一部分并设置于测试腔内。 3 . The test cavity structure according to claim 1 , wherein the transducer, namely the interdigital transducer, is a part of the inner wall of the test cavity and is arranged in the test cavity. 4 . 4.根据权利要求1所述的测试腔结构,其特征在于,所述毛细管的材质为硅、二氧化硅、砷化镓、氮化硅等半导体材料中的一种。 4 . The test chamber structure according to claim 1 , wherein the material of the capillary is one of semiconductor materials such as silicon, silicon dioxide, gallium arsenide, and silicon nitride. 5.根据权利要求1所述的测试腔结构,其特征在于,所述测试腔的内壁介质层为表面张力小、化学惰性的材料或者在内壁介质层表面涂覆一层具表面张力小、化学惰性的介质材料。 5. The test chamber structure according to claim 1, characterized in that, the inner wall medium layer of the test chamber is a material with low surface tension and chemical inertness or a layer of material with small surface tension and chemical inertness is coated on the surface of the inner wall medium layer. Inert dielectric material. 6.根据权利要求4所述的测试腔结构,其特征在于,其中所述内壁介质层为金、铂、钯、钛、铑、铱、锇、钌、聚四氟乙烯、聚对二甲苯、聚丁烯、聚苯乙烯、玻璃、非晶二氧化硅、单晶二氧化硅、硅、氮化硅、氧化铝、砷化镓和金属氧化物等中的一种。 6. The test chamber structure according to claim 4, wherein the inner wall dielectric layer is gold, platinum, palladium, titanium, rhodium, iridium, osmium, ruthenium, polytetrafluoroethylene, parylene, One of polybutylene, polystyrene, glass, amorphous silica, single crystal silica, silicon, silicon nitride, alumina, gallium arsenide, and metal oxides. 7.根据权利要求4所述的测试腔结构,其特征在于,其中内壁介质层表面上涂覆的介质材料为金、铂、钯、钛、铑、铱、锇、钌、聚四氟乙烯、聚对二甲苯、聚丁烯、聚苯乙烯、玻璃、非晶二氧化硅、单晶二氧化硅、硅、氧化铝、氮化硅、砷化镓、金属氧化物和熔融石英等中的一种。 7. The test chamber structure according to claim 4, wherein the dielectric material coated on the surface of the inner wall dielectric layer is gold, platinum, palladium, titanium, rhodium, iridium, osmium, ruthenium, polytetrafluoroethylene, One of parylene, polybutylene, polystyrene, glass, amorphous silica, single crystal silica, silicon, alumina, silicon nitride, gallium arsenide, metal oxides, and fused silica kind. 8.根据权利要求1所述的测试腔结构,其特征在于,所述敏感膜为有机聚合物、有机小分子、金属、金属氧化物、非金属氧化物和生物材料中的一种。 8. The test chamber structure according to claim 1, wherein the sensitive film is one of organic polymers, small organic molecules, metals, metal oxides, non-metal oxides and biological materials. 9.根据权利要求2所述的测试腔结构,其特征在于,所述换能器附带加热和温控功能,为质量型、热感应型、光学、电导型、电容型、电化学型中的一种。 9. The test chamber structure according to claim 2, characterized in that, the transducer has heating and temperature control functions, and is one of mass type, thermal induction type, optical, conductivity type, capacitive type, and electrochemical type A sort of. 10.根据权利要求2所述的测试腔结构,其特征在于,经气泵对外界环境气体进行采样。 10. The test chamber structure according to claim 2, characterized in that the external environment gas is sampled through an air pump.
CN2012101572140A 2012-05-21 2012-05-21 Structure of test cavity Pending CN102662033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012101572140A CN102662033A (en) 2012-05-21 2012-05-21 Structure of test cavity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012101572140A CN102662033A (en) 2012-05-21 2012-05-21 Structure of test cavity

Publications (1)

Publication Number Publication Date
CN102662033A true CN102662033A (en) 2012-09-12

Family

ID=46771565

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012101572140A Pending CN102662033A (en) 2012-05-21 2012-05-21 Structure of test cavity

Country Status (1)

Country Link
CN (1) CN102662033A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104407035A (en) * 2014-11-14 2015-03-11 无锡信大气象传感网科技有限公司 Gas sensor chip
CN107462615A (en) * 2017-07-31 2017-12-12 广东美的制冷设备有限公司 Electrochemical gas sensor and air conditioner
CN107561230A (en) * 2017-10-31 2018-01-09 电子科技大学中山学院 Air detection mechanism based on electric signal or wireless control
CN111366390A (en) * 2020-03-18 2020-07-03 上海电力大学 A kind of portable aerator oxygenation performance on-site measurement device and method
CN111537670A (en) * 2020-04-20 2020-08-14 中国科学院上海微系统与信息技术研究所 A top-contact gas test chamber and a dynamic gas test system using the same
CN115144229A (en) * 2022-05-17 2022-10-04 河北工业大学 Device and method for detecting atmospheric environmental pollutants on rotorcraft
CN117405651A (en) * 2023-12-15 2024-01-16 武汉理工大学 Rhodium-plated metal capillary tube and preparation method thereof, gas Raman spectroscopy detection system

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0868781A (en) * 1994-08-31 1996-03-12 Ricoh Co Ltd Gas sensor system
US5801297A (en) * 1993-09-17 1998-09-01 Alpha M.O.S. Methods and devices for the detection of odorous substances and applications
US20010039824A1 (en) * 1998-03-20 2001-11-15 Cyrano Sciences, Inc. Handheld sensing apparatus
EP0821229B1 (en) * 1996-07-26 2004-09-08 DaimlerChrysler AG Gas sensor and usage of a gas sensor for the selective detection of hydrocarbons in the exhaust gas of a spark ignition engine
US20040188250A1 (en) * 2003-03-24 2004-09-30 Denso Corporation Gas concentration detecting apparatus
CN101000357A (en) * 2007-01-08 2007-07-18 华东理工大学 Olfactory instrument and olfactory analysing method of small automatic machine
CN101109725A (en) * 2007-08-16 2008-01-23 中国科学院合肥物质科学研究院 Surface-sensitive capacitive gas sensor and manufacturing method thereof
CN101149354A (en) * 2007-10-26 2008-03-26 华中科技大学 Gas-sensitive array sensor and preparation method thereof
CN101363807A (en) * 2008-09-11 2009-02-11 电子科技大学 A kind of organic gas sensor and preparation method thereof
CN101592578A (en) * 2009-06-25 2009-12-02 上海应用技术学院 A silicon cantilever beam sensor and its preparation method and application
CN201364325Y (en) * 2009-01-21 2009-12-16 电子科技大学 Surface acoustic wave (SAW) gas sensor array with electromagnetic shielding function
CN102012399A (en) * 2010-09-27 2011-04-13 电子科技大学 Device for improving response stability of surface acoustic wave gas sensor

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5801297A (en) * 1993-09-17 1998-09-01 Alpha M.O.S. Methods and devices for the detection of odorous substances and applications
JPH0868781A (en) * 1994-08-31 1996-03-12 Ricoh Co Ltd Gas sensor system
EP0821229B1 (en) * 1996-07-26 2004-09-08 DaimlerChrysler AG Gas sensor and usage of a gas sensor for the selective detection of hydrocarbons in the exhaust gas of a spark ignition engine
US20010039824A1 (en) * 1998-03-20 2001-11-15 Cyrano Sciences, Inc. Handheld sensing apparatus
US20040188250A1 (en) * 2003-03-24 2004-09-30 Denso Corporation Gas concentration detecting apparatus
JP2004286685A (en) * 2003-03-24 2004-10-14 Denso Corp Gas concentration detecting device
CN101000357A (en) * 2007-01-08 2007-07-18 华东理工大学 Olfactory instrument and olfactory analysing method of small automatic machine
CN101109725A (en) * 2007-08-16 2008-01-23 中国科学院合肥物质科学研究院 Surface-sensitive capacitive gas sensor and manufacturing method thereof
CN101149354A (en) * 2007-10-26 2008-03-26 华中科技大学 Gas-sensitive array sensor and preparation method thereof
CN101363807A (en) * 2008-09-11 2009-02-11 电子科技大学 A kind of organic gas sensor and preparation method thereof
CN201364325Y (en) * 2009-01-21 2009-12-16 电子科技大学 Surface acoustic wave (SAW) gas sensor array with electromagnetic shielding function
CN101592578A (en) * 2009-06-25 2009-12-02 上海应用技术学院 A silicon cantilever beam sensor and its preparation method and application
CN102012399A (en) * 2010-09-27 2011-04-13 电子科技大学 Device for improving response stability of surface acoustic wave gas sensor

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
李昊峰等: "气体声表面波传感器的研究进展", 《微纳电子技术》 *
肖华 等: "声表面波气体探测器控制电路设计与优化", 《微处理机》 *
胡文平等: "有机/聚合物薄膜声表面波气体传感器的设计简介", 《传感技术学报》 *
邹小红等: "声表面波气体传感器的设计", 《化学传感器》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104407035A (en) * 2014-11-14 2015-03-11 无锡信大气象传感网科技有限公司 Gas sensor chip
CN107462615A (en) * 2017-07-31 2017-12-12 广东美的制冷设备有限公司 Electrochemical gas sensor and air conditioner
CN107462615B (en) * 2017-07-31 2019-10-25 广东美的制冷设备有限公司 Electrochemical gas sensor and air conditioner
CN107561230A (en) * 2017-10-31 2018-01-09 电子科技大学中山学院 Air detection mechanism based on electric signal or wireless control
CN111366390A (en) * 2020-03-18 2020-07-03 上海电力大学 A kind of portable aerator oxygenation performance on-site measurement device and method
CN111537670A (en) * 2020-04-20 2020-08-14 中国科学院上海微系统与信息技术研究所 A top-contact gas test chamber and a dynamic gas test system using the same
CN111537670B (en) * 2020-04-20 2022-06-10 中国科学院上海微系统与信息技术研究所 A top-contact gas test chamber and a dynamic gas test system using the same
CN115144229A (en) * 2022-05-17 2022-10-04 河北工业大学 Device and method for detecting atmospheric environmental pollutants on rotorcraft
CN115144229B (en) * 2022-05-17 2025-01-17 河北工业大学 Device and method for detecting atmospheric environmental pollutants on rotor aircraft
CN117405651A (en) * 2023-12-15 2024-01-16 武汉理工大学 Rhodium-plated metal capillary tube and preparation method thereof, gas Raman spectroscopy detection system
CN117405651B (en) * 2023-12-15 2024-03-22 武汉理工大学 Rhodium-plated metal capillary, preparation method thereof and gas Raman spectrum detection system

Similar Documents

Publication Publication Date Title
CN102662033A (en) Structure of test cavity
JP6345421B2 (en) Gas barrier property evaluation apparatus and evaluation method
CN101532975B (en) Constant temperature measurement-type micro humidity sensor and producing method thereof
JP6304745B2 (en) Gas barrier property evaluation apparatus and evaluation method
JP2009544020A (en) Protective device for humidity sensor in erosive outside air
CN101949878A (en) Polyimide film miniature quick-response humidity sensing element and manufacturing method thereof
CN104990968A (en) Humidity sensor device based on film volume acoustic wave resonator
CN101620057B (en) Preparation method of quartz crystal microbalance humidity sensor based on ordered mesoporous material SBA-15
CN104215283B (en) Gas micro detection means based on scorpion legendary venomous insect gross discharge mechanism of perception
CN103528957A (en) Infrared gas sensor with integrally packaged air chamber
CN100485381C (en) Gas sensor with pressure difference compensation function
CN101713735A (en) Oxygen-sensitive fluorescent membrane and preparation method thereof
CN101625358B (en) Simultaneous detection biological sensor by utilizing capacitance and conduction of quasi-one-dimensional nanometer material field effective tube
CN105973952B (en) Photo-electric gas sensor based on micro-cantilever projection
CN104764773B (en) A kind of beam type metal oxide detector and manufacture method
CN201903532U (en) Double-sensitive-layer bulk acoustic wave hydrogen resonance sensor
CN102023184A (en) Double-sensing-layer body sound-wave hydrogen resonant transducer
CN112858387B (en) A dew point detection device capable of filtering gas
US10222345B2 (en) Acetic acid gas sensor based on azobenzene compound, preparation method and application thereof
CN113203769B (en) A kind of miniature thermal conductivity detector with high airtightness and its manufacturing method
CN101650326B (en) An in-situ measurement device for nanosensors
CN105588815B (en) A kind of infrared gas detector based on Tiny pore
CN205786303U (en) A kind of condenser type infrared gas sensor based on MEMS
CN103323362A (en) Method for preparing gas-sensitive sensor array for detecting rice-flavor liquor
JP2010197218A (en) Device and method for measuring water vapor permeability of barrier film

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20120912