CN102643936B - 钢渣粒化、改性、显热回收一体化系统及工艺方法 - Google Patents

钢渣粒化、改性、显热回收一体化系统及工艺方法 Download PDF

Info

Publication number
CN102643936B
CN102643936B CN2012101283598A CN201210128359A CN102643936B CN 102643936 B CN102643936 B CN 102643936B CN 2012101283598 A CN2012101283598 A CN 2012101283598A CN 201210128359 A CN201210128359 A CN 201210128359A CN 102643936 B CN102643936 B CN 102643936B
Authority
CN
China
Prior art keywords
slag particle
waste heat
slag
cleared
machinery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2012101283598A
Other languages
English (en)
Other versions
CN102643936A (zh
Inventor
于庆波
李朋
胡贤忠
刘军祥
秦勤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN2012101283598A priority Critical patent/CN102643936B/zh
Publication of CN102643936A publication Critical patent/CN102643936A/zh
Application granted granted Critical
Publication of CN102643936B publication Critical patent/CN102643936B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/02Physical or chemical treatment of slags
    • C21B2400/022Methods of cooling or quenching molten slag
    • C21B2400/024Methods of cooling or quenching molten slag with the direct use of steam or liquid coolants, e.g. water
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/05Apparatus features
    • C21B2400/052Apparatus features including rotating parts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/05Apparatus features
    • C21B2400/052Apparatus features including rotating parts
    • C21B2400/054Disc-shaped or conical parts for cooling, dispersing or atomising of molten slag rotating along vertical axis
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/08Treatment of slags originating from iron or steel processes with energy recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

一种钢渣粒化、改性、显热回收一体化系统,属于钢铁冶金生产领域。该系统包括转杯、渣粒捕集器、水冷壁、电机、一级消解输送联合装置、二级消解余热回收联合装置、三级消解装置、消解气分配器和气体捕集器。方法为:步骤1:高温液态钢渣破碎过程;步骤2:渣粒凝壳及捕集过程;步骤3:一级消解输送过程;步骤4:二级消解余热回收过程;步骤5:三级消解过程。本发明的优点:实现了钢渣低成本破碎、钢渣游离氧化钙的消解,高温显热的高效回收利用。

Description

钢渣粒化、改性、显热回收一体化系统及工艺方法
技术领域
本发明属于钢铁冶金生产领域,特别涉及一种钢渣粒化、改性、显热回收一体化系统及工艺方法。
背景技术
钢渣是炼钢过程中的副产品,是金属炉料中各元素被氧化后生成的氧化物,主要含有CaO、Fe2O3、SiO2和FeO,在出炉时的温度高达1700℃,排放量约占粗钢产量的12%~15%,2011年我国的粗钢产量为6.83亿吨,则钢渣的产生量至少有8196万吨,是钢铁行业的主要固体废弃物之一,因此钢渣的环境友好型处置及资源化在一定程度上影响着钢铁工业的可持续发展。到目前为止,钢渣的主要应用方法是用其生产钢渣水泥和作为碎石和细骨料的替代物。但是由于钢渣中含有5%~10%的游离氧化钙(其水解时体积将增大1~2倍)遇水后会生成氢氧化钙,体积发生膨胀,用作建材时会因体积膨胀导致建筑的断裂,限制了其作为建筑材料使用,而采用机械破碎法需要较高的成本,简单的堆积陈放又污染环境、占用土地。而随着国家循环经济的发展,要求冶金行业废弃资源实现再利用,特别是冶金渣的再利用成为冶金行业循环经济关注的焦点,有效的降低钢渣中的游离氧化钙含量更是其中的关键。目前钢渣的处理工艺主要有热泼法、喷水冷却、闷渣法以及轮式水淬法,这些工艺中,闷渣法和轮式水淬法处理后的钢渣安定性较好,游离氧化钙的含量在3%以下,但这两种方法的投资大,成本高,且钢渣的高温显热没有得到有效的回收利用。
发明内容
针对现有技术存在的不足,本发明提供了一种钢渣粒化、改性、显热回收一体化系统及工艺方法。
该系统包括转杯、渣粒捕集器、水冷壁、电机、电机保护罩、一级消解输送联合装置、二级消解余热回收联合装置、三级消解装置、消解气分配器和气体捕集器,其中渣粒捕集器呈圆筒状,渣粒捕集器的中心位置设置转杯,转杯的下方设置电机,转杯的中心轴与电机轴同轴连接,电机保护罩安装在电机外,渣粒捕集器内圆周上设有水冷壁,水冷壁通过管道与渣粒捕集器连接,渣粒捕集器的出口下方设置一级消解输送联合装置,一级消解输送联合装置一端的下方设置二级消解余热回收联合装置,使一级消解输送联合装置上的物料能够落入二级消解余热回收联合装置,二级消解余热回收联合装置的下方设置三级消解装置,一级消解输送联合装置、二级消解余热回收联合装置和三级消解装置的上方均设有气体捕集器、下方均设有消解气分配器。
所述的转杯呈浅杯形状,转杯深度与上口直径的比为1∶3,转杯深度为50~300mm。
所述的渣粒捕集器呈圆筒状。
所述的一级消解输送联合装置包括输送板和底板,输送板安装在底板上面,输送板可为振动式、也可为履带式,底板设有气体分布板和冷却水管。
所述的二级消解余热回收联合装置可以为两种结构,一种结构为腔体结构,包括二级消解器、余热锅炉、换热管和布风板,二级消解器和余热锅炉为同轴嵌套,内部设有换热管,渣粒与换热管直接接触,换热管以叉排的方式布置;下部设有布风板;使渣粒在消解过程中同时进行换热、消解和余热回收反应;
另一种结构为二级消解器和余热锅炉两个单体连接,二级消解器下部设有布风板,渣粒在消解装置中同时进行换热和消解反应,余热锅炉内部设有换热管,换热管以叉排的方式布置,渣粒在余热锅炉中进行余热回收。
所述的三级消解装置为腔体结构,腔体可为矩形,也可为柱形,其内部和外部由钢板焊接组成,中间设置耐火材料,底部设有布风板,三级消解装置至少设置一个。
一种钢渣粒化、改性、显热回收一体化系统的工艺方法,按如下步骤进行:
步骤1:高温液态钢渣破碎过程,方法为:高温液态钢,温度小于1700℃,由渣包经中间包输送到转杯中,液态渣由转速为600-2000转/分的转杯沿切向甩出,经过破碎、冷却形成直径小于10mm的渣粒;
步骤2:渣粒凝壳及捕集过程,方法为:破碎后的渣粒,其表面在飞行过程中凝固,并撞到渣粒捕集器的水冷壁,在水冷壁进一步凝固到1200℃~1300℃,并沿水冷壁下滑到渣粒捕集器底部;
步骤3:一级消解输送过程:渣粒捕集器收集的渣粒由底部进入一级消解输送联合装置,并在击振力的作用下向前运动或履带上向前运动,同时通过一级消解输送联合装置下方的消解气分配器向渣粒层喷吹水蒸气和二氧化碳的混合气体,渣粒在移动过程中进行一级消解;
步骤4:二级消解余热回收过程,方法为:渣粒经一级消解输送联合装置进入二级消解余热回收联合装置,在此高温渣粒与换热管直接接触将热量传递给管内的水,使水汽化产生蒸汽,在该过程中,底部消解气分配器通过二级消解余热回收联合装置的布风板向二级消解余热回收联合装置内部喷吹水蒸气和二氧化碳的混合气,渣粒在下落移动过程中进行二级消解,冷却后的渣粒温度在300℃以下,从二级消解余热回收联合装置底部进入三级消解装置,渣粒进入二级消解余热回收联合装置中和二级消解器底部喷入的大量消解气换热并发生消解反应,反应后的高温气体进入余热锅炉中回收余热;
步骤5:三级消解过程,方法为:渣粒进入三级消解装置,在该装置中保温0.5~3.0h,并在该过程中通过三级消解装置底部的消解气分配器向装置内部喷吹水蒸气和二氧化碳的混合气,进行渣粒的三级消解,保证最终排出渣粒的游离氧化钙消解率高于85%。
步骤3、4、5中使用的水蒸气均由步骤4中的余热锅炉提供。
本发明的优点:实现了钢渣低成本破碎、钢渣游离氧化钙的消解,高温显热的高效回收利用。
附图说明
图1为本发明钢渣粒化、改性、显热回收一体化系统结构示意图1;
图2为本发明钢渣粒化、改性、显热回收一体化系统结构示意图2;
图3为本发明钢渣粒化、改性、显热回收一体化系统工艺方法流程图;
图中:1、转杯;2、渣粒捕集器;3、水冷壁;4、电机;5、电机保护罩;6、一级消解输送联合装置;7、二级消解余热回收联合装置;8、换热管;9、三级消解装置;10、消解气分配器;11、气体捕集器;12、蒸汽管道;13、余热锅炉;14、二级消解器。
具体实施方式
下面结合附图对本发明作进一步说明:
实施例1:如图1所示,该系统包括转杯1、渣粒捕集器2、水冷壁3、电机4、电机保护罩5、一级消解输送联合装置6、二级消解余热回收联合装置7、三级消解装置9、换热管8、消解气分配器10和气体捕集器11,其中渣粒捕集器2呈圆筒状,渣粒捕集器2的中部设置转杯1,转杯1处于渣粒捕集器的中心位置,转杯1的下方设置电机4,转杯1的中心轴与电机4轴连接,电机保护罩5安装在电机4外,渣粒捕集器2内圆周上设有水冷壁3,水冷壁3通过管道与渣粒捕集器2连接,渣粒捕集器2的出口下方设置一级消解输送联合装置6,一级消解输送联合装置6一端的下方设置二级消解余热回收联合装置7,使一级消解输送联合装置6上的物料能够落入二级消解余热回收联合装置7,二级消解余热回收联合装置7的下方设置三级消解装置9,一级消解输送联合装置6、二级消解余热回收联合装置7和三级消解装置9的上方均设有气体捕集器11、下方均设有消解气分配器10。
所述的转杯1呈浅杯形状,转杯1深度与上口直径的比为1∶3,转杯1深度为50~300mm。
所述的渣粒捕集器2呈圆筒状。
所述的一级消解输送联合装置6包括输送板和底板,输送板安装在底板上面,输送板可为振动式、也可为履带式,底板设有气体分布板和冷却水管。
所述的二级消解余热回收联合装置7为腔体结构,二级消解器14和余热锅炉13为同轴嵌套,内部设有换热管8,渣粒与换热管8直接接触,换热管8以叉排的方式布置;下部设有布风板;使渣粒在消解过程中同时进行换热、消解和余热回收反应;
所述的三级消解装置9为腔体结构,腔体可为矩形,也可为柱形,其内部和外部由钢板焊接组成,中间设置耐火材料,底部设有布风板,三级消解装置9至少设置一个。
一种钢渣粒化、改性、显热回收一体化系统的工艺方法,包括以下步骤:如图3所示,
步骤1、熔渣由渣罐运到渣粒捕集器2的正上方,并倾倒到转杯1中,高温液态渣进入转速为600转/分的转杯1后,沿转杯1的切线方向甩出,在此过程中渣被破碎成直径小于10mm的渣粒,
步骤2、破碎后的渣粒在飞行过程中,其表面开始凝固,并最终撞到渣粒捕集器2的水冷壁3上,在水冷壁3上渣粒被进一步冷却并完全凝固至1200℃,然后下滑到渣粒捕集器2的底部,随后下落到一级消解-输送联合装置6上,
步骤3、一级消解输送联合装置6的下部设有消解气分配器10,钢渣渣粒在激振力的作用下在一级消解输送联合装置6上向前运动,在该过程中消解气分配器10向一级消解输送联合装置6中喷吹H2O和CO2的混合气,进行钢渣的一级消解,
步骤4、一级消解输送联合装置6的出口与二级消解余热回收联合装置7的入口相连,二级消解余热回收联合装置7的下部也设有消解气分配器10,渣粒在二级消解余热回收联合装置7中一边和换热管8进行热交换,一边与消解气分配器10喷吹的H2O和CO2的混合气进行消解反应,渣粒在此进行二级消解,渣粒由二级消解余热回收联合装置7出来进入三级消解装置9中,
步骤5、渣粒与三级消解装置9底部的消解气分配器10喷吹的H2O和CO2的混合气发生消解反应,进行钢渣的三级消解,在该装置中保温0.5h,并保证钢渣排出时的消解率在85%以上,消解所用水蒸气可由二级消解余热回收联合装置7提供,一级消解输送联合装置6、二级消解余热回收联合装置7和三级消解装置9均设有气体捕集器11,对消解剩余气体进行捕集回收再利用。
实施例2:如图2所示,其中二级消解余热回收联合装置7为腔体结构为二级消解器14和余热锅炉13两个单体连接,二级消解器14下部设有布风板,渣粒在消解装置中同时进行换热和消解反应,余热锅炉13内部设有换热管8,换热管8以叉排的方式布置,渣粒在余热锅炉13中进行余热回收。
一种钢渣粒化、改性、显热回收一体化系统的工艺方法,包括以下步骤:
步骤1、熔渣由渣罐运到渣粒捕集器2的正上方,并倾倒到转杯1中,高温液态渣进入转速为1500转/分的转杯1后,沿转杯1的切线方向甩出,在此过程中渣被破碎成直径小于10mm的渣粒,
步骤2、破碎后的渣粒在飞行过程中,其表面开始凝固,并最终撞到渣粒捕集器2的水冷壁3上,在水冷壁3上渣粒被进一步冷却并完全凝固至1250℃,然后下滑到渣粒捕集器2的底部,随后下落到一级消解输送联合装置6上,
步骤3、一级消解输送联合装置6的下部设有消解气分配器10,钢渣渣粒在激振力的作用下在一级消解输送联合装置6上向前运动,在该过程中消解气分配器10向一级消解输送联合装置6中喷吹H2O和CO2的混合气,进行钢渣的一级消解,
步骤4、一级消解输送联合装置的出口与二级消解余热回收联合装置7的入口相连,二级消解余热回收联合装置7的下部也设有消解气分配器10,渣粒在二级消解余热回收联合装置7中与消解气分配器10中喷吹处的消解气同时进行换热和消解反应,从二级消解器14出来的高温气体进入余热锅炉13中进行余热回收,渣粒在此过程中进行二级消解,渣粒由二级消解装置14出来进入三级消解装置9中,
步骤5、渣粒与三级消解装置9底部的消解气分配器10喷吹的H2O和CO2的混合气发生消解反应,进行钢渣的三级消解,在该装置中保温2.0h,并保证钢渣排出时的消解率在85%以上,消解所用水蒸气可由二级消解余热回收联合装置7提供,一级消解输送联合装置6、二级消解余热回收联合装置7和三级消解装置9均设有气体捕集器11,对消解剩余气体进行捕集回收再利用。
实施例3:一种钢渣粒化、改性、显热回收一体化系统的工艺方法,包括以下步骤:
步骤1、熔渣由渣罐运到渣粒捕集器2的正上方,并倾倒到转杯1中,高温液态渣进入转速为2000转/分的转杯1后,沿转杯1的切线方向甩出,在此过程中渣被破碎成直径小于10mm的渣粒;
步骤2、破碎后的渣粒在飞行过程中,其表面开始凝固,并最终撞到渣粒捕集器2的水冷壁3上,在水冷壁3上渣粒被进一步冷却并完全凝固至1300℃,然后下滑到渣粒捕集器2的底部,随后下落到一级消解输送联合装置6上;
步骤3、一级消解输送联合装置6的下部设有消解气分配器10,钢渣渣粒在激振力的作用下在一级消解输送联合装置6上向前运动,在该过程中消解气分配器10向一级消解输送联合装置6中喷吹H2O和CO2的混合气,进行钢渣的一级消解;
步骤4、一级消解输送联合装置的出口与二级消解余热回收联合装置7的入口相连,二级消解余热回收联合装置7的下部也设有消解气分配器10,渣粒在二级消解余热回收联合装置7中与消解气分配器10中喷吹处的消解气同时进行换热和消解反应,从二级消解器14出来的高温气体进入余热锅炉13中进行余热回收,渣粒在此过程中进行二级消解,渣粒由二级消解装置14出来进入三级消解装置9中;
步骤5、渣粒与三级消解装置9底部的消解气分配器10喷吹的H2O和CO2的混合气发生消解反应,进行钢渣的三级消解,在该装置中保温3.0h,并保证钢渣排出时的消解率在85%以上,消解所用水蒸气可由二级消解余热回收联合装置7提供,一级消解输送联合装置6、二级消解余热回收联合装置7和三级消解装置9均设有气体捕集器11,对消解剩余气体进行捕集回收再利用。

Claims (3)

1.一种钢渣粒化、改性、显热回收一体化系统,该系统包括转杯、渣粒捕集器、水冷壁、电机,其中渣粒捕集器呈圆筒状,渣粒捕集器的中心位置设置转杯,转杯的下方设置电机,转杯的中心轴与电机轴同轴连接,渣粒捕集器内圆周上设有水冷壁,水冷壁通过管道与渣粒捕集器连接,其特征在于:系统还包括一级消解输送联合装置、二级消解余热回收联合装置、三级消解装置、消解气分配器和气体捕集器,渣粒捕集器的出口下方设置一级消解输送联合装置,一级消解输送联合装置一端的下方设置二级消解余热回收联合装置,使一级消解输送联合装置上的物料能够落入二级消解余热回收联合装置,二级消解余热回收联合装置的下方设置三级消解装置,一级消解输送联合装置、二级消解余热回收联合装置和三级消解装置的上方均设有气体捕集器、下方均设有消解气分配器; 
所述的一级消解输送联合装置包括输送板和底板,输送板安装在底板上面,输送板为振动式、或履带式,底板设有气体分布板和冷却水管; 
所述的二级消解余热回收联合装置可以为两种结构:一种结构为腔体结构,包括二级消解器、余热锅炉、换热管和布风板,二级消解器和余热锅炉为同轴嵌套,内部设有换热管,渣粒与换热管直接接触,换热管以叉排的方式布置,下部设有布风板,使渣粒在消解过程中同时进行换热、消解和余热回收反应; 
另一种结构为二级消解器和余热锅炉两个单体连接,二级消解器下部设有布风板,渣粒在消解装置中同时进行换热和消解反应,余热锅炉内部设有换热管,换热管以叉排的方式布置,渣粒在余热锅炉中进行余热回收; 
所述的三级消解装置为腔体结构,腔体为矩形,或为柱形,其内部和外部由钢板焊接组成,中间设置耐火材料,底部设有布风板,三级消解装置至少设置一个。 
2.根据权利要求1所述的钢渣粒化、改性、显热回收一体化系统,其特征在于:所述的转杯呈浅杯形状,转杯深度与上口直径的比为1:3,转杯深度为50~300mm; 
所述的渣粒捕集器呈圆筒状。 
3.采用权利要求1所述的钢渣粒化、改性、显热回收一体化系统的工艺方法,其特征在于:按如下步骤进行: 
步骤1:高温液态钢渣破碎过程:高温液态钢渣,温度大于1400℃,由渣包经中间包输送到转杯中,液态渣由转速为600—2000转/分的转杯沿切向甩出,经过破碎、冷却形成直径小于10mm的渣粒; 
步骤2:渣粒凝壳及捕集过程:破碎后的渣粒,其表面在飞行过程中凝固,并撞到渣粒捕集器的水冷壁,在水冷壁进一步凝固到1200℃~1300℃,并沿水冷壁下滑到渣粒捕集器底部; 
步骤3:一级消解输送过程:渣粒捕集器收集的渣粒由底部进入一级消解输送联合装置,并在击振力的作用下向前运动或履带上向前运动,同时通过一级消解输送联合装置下方的消解气分配器向渣粒层喷吹水蒸气和二氧化碳的混合气体,渣粒在移动过程中进行一级消解; 
步骤4:二级消解余热回收过程:渣粒经一级消解输送联合装置进入二级消解余热回收联合装置,在此高温渣粒与换热管直接接触将热量传递给管内的水,使水汽化产生蒸汽,在该过程中,底部消解气分配器通过二级消解余热回收联合装置的布风板向二级消解余热回收联合装置内部喷吹水蒸气和二氧化碳的混合气,渣粒在下落移动过程中进行二级消解,冷却后的渣粒温度在300℃以下,从二级消解余热回收联合装置底部进入三级消解装置,渣粒进入二级消解余热回收联合装置中和二级消解器底部喷入的大量消解气换热并发生消解反应,反应后的高温气体进入余热锅炉中回收余热; 
步骤5:三级消解过程:渣粒进入三级消解装置,在该装置中保温0.5~3.0h,并在该过程中通过三级消解装置底部的消解气分配器向装置内部喷吹水蒸气和二氧化碳的混合气,进行渣粒的三级消解,保证最终排出渣粒的游离氧化钙消解率高于85%; 
步骤3、4、5中使用的水蒸气均由步骤4中的余热锅炉提供。 
CN2012101283598A 2012-04-27 2012-04-27 钢渣粒化、改性、显热回收一体化系统及工艺方法 Active CN102643936B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012101283598A CN102643936B (zh) 2012-04-27 2012-04-27 钢渣粒化、改性、显热回收一体化系统及工艺方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012101283598A CN102643936B (zh) 2012-04-27 2012-04-27 钢渣粒化、改性、显热回收一体化系统及工艺方法

Publications (2)

Publication Number Publication Date
CN102643936A CN102643936A (zh) 2012-08-22
CN102643936B true CN102643936B (zh) 2013-06-26

Family

ID=46657011

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012101283598A Active CN102643936B (zh) 2012-04-27 2012-04-27 钢渣粒化、改性、显热回收一体化系统及工艺方法

Country Status (1)

Country Link
CN (1) CN102643936B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102925599A (zh) * 2012-10-23 2013-02-13 鞍钢股份有限公司 一种高炉渣显热回收利用装置及回收方法
CN105087835B (zh) * 2015-08-26 2017-05-17 中冶南方工程技术有限公司 煤气化回收高温熔渣余热的系统及方法
CN105087844B (zh) * 2015-08-26 2017-05-17 中冶南方工程技术有限公司 高炉渣余热回收与直接还原联合生产系统及方法
CN108993891B (zh) * 2018-06-29 2020-04-14 东北大学 液态氯化镁粒化及颗粒分级收集设备及方法
CN111041134B (zh) * 2019-07-10 2021-11-26 江苏富凯重工机械有限公司 一种应用钢渣闷锅对钢渣进行热闷处理的方法
CN110665614B (zh) * 2019-10-10 2021-09-07 山东祥桓环境科技有限公司 一种钢渣粉碎及固碳处理系统及其应用
CN111041138B (zh) * 2019-12-25 2021-04-27 北京市金万旺科技有限公司 一种犁破同步水蒸汽分解的钢渣冷却碎化处理系统和方法
CN111100957A (zh) * 2020-01-13 2020-05-05 北京大学 一种高温液态熔渣粒化及余热回收方法
CN113718070A (zh) * 2021-09-30 2021-11-30 青岛达能环保设备股份有限公司 Co2汽水联合淬钢渣耦合固碳及有压热闷余热回收系统
CN114317845B (zh) * 2021-12-31 2023-04-28 西安交通大学 一种钢渣余热综合利用与f-CaO分级消解方法及系统
CN114432832B (zh) * 2021-12-31 2023-05-02 西安交通大学 一种钢铁厂余热驱动空气捕集co2的系统及co2的使用方法
CN114507758B (zh) * 2021-12-31 2023-04-07 西安交通大学 一种钢渣余热回收和f-CaO分级消解以及碳减排系统
CN115491445A (zh) * 2022-09-01 2022-12-20 刘春茗 液态钢渣干法处理调质设备及其调质方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101418950A (zh) * 2008-12-10 2009-04-29 东北大学 高炉渣显热回收系统
CN101475999A (zh) * 2009-01-16 2009-07-08 首钢总公司 一种热态块状钢渣快速稳定化处理方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101418950A (zh) * 2008-12-10 2009-04-29 东北大学 高炉渣显热回收系统
CN101475999A (zh) * 2009-01-16 2009-07-08 首钢总公司 一种热态块状钢渣快速稳定化处理方法

Also Published As

Publication number Publication date
CN102643936A (zh) 2012-08-22

Similar Documents

Publication Publication Date Title
CN102643936B (zh) 钢渣粒化、改性、显热回收一体化系统及工艺方法
CN101418950B (zh) 高炉渣显热回收系统
CN110982967B (zh) 利用水和二氧化碳实现钢渣淬化及余热回收的方法与装置
CN102492790B (zh) 钢渣碎化处理工艺及设备
CN102851415B (zh) 一种高炉熔渣热能回收系统
CN101476000B (zh) 一种热态钢渣余热回收系统及回收方法
CN101660014A (zh) 熔融高炉渣显热回收方法及装置
CN202415574U (zh) 熔融炉渣急冷干式粒化及显热回收发电系统
CN201400690Y (zh) 一种用于液态熔渣进行粒化的超音速气体喷嘴
CN102766706B (zh) 一种高炉渣余热煤气化系统
CN103557711A (zh) 熔融炉渣急冷粒化及余热回收发电系统及其方法
CN102433401A (zh) 熔融炉渣急冷干式粒化及显热回收发电系统及其方法
CN102329900B (zh) 一种液态钢渣干法粒化装置及显热回收方法
CN103540698B (zh) 钢渣粒化及余热回收装置
CN105087835B (zh) 煤气化回收高温熔渣余热的系统及方法
CN105087844B (zh) 高炉渣余热回收与直接还原联合生产系统及方法
CN101921884A (zh) 一种高炉熔渣干式显热回收系统和生产工艺
CN202297623U (zh) 卧式液态渣资源微粉化回收装置
CN102851416A (zh) 一种处理高炉熔渣热能回收方法
CN112760434A (zh) 一种钢渣处理工艺方法
CN104404179A (zh) 一种液态高温物料余热回收装置
CN104388608A (zh) 干式粒化余热回收与磨制处理系统
TW202132575A (zh) 高爐熔渣粒化和餘熱回收利用裝置及方法
CN105154604B (zh) 提高炼铁工序能效的方法及装置
CN104388611A (zh) 干式粒化处理余热回收系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant