CN102638229A - 音频放大电路 - Google Patents

音频放大电路 Download PDF

Info

Publication number
CN102638229A
CN102638229A CN2012101148312A CN201210114831A CN102638229A CN 102638229 A CN102638229 A CN 102638229A CN 2012101148312 A CN2012101148312 A CN 2012101148312A CN 201210114831 A CN201210114831 A CN 201210114831A CN 102638229 A CN102638229 A CN 102638229A
Authority
CN
China
Prior art keywords
circuit
voltage
signal
audio
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012101148312A
Other languages
English (en)
Other versions
CN102638229B (zh
Inventor
张振浩
杜黎明
郭辉
李俊杰
管少钧
万幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Awinic Technology Co Ltd
Original Assignee
Shanghai Awinic Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46622503&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN102638229(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Shanghai Awinic Technology Co Ltd filed Critical Shanghai Awinic Technology Co Ltd
Priority to CN201210114831.2A priority Critical patent/CN102638229B/zh
Publication of CN102638229A publication Critical patent/CN102638229A/zh
Application granted granted Critical
Publication of CN102638229B publication Critical patent/CN102638229B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Amplifiers (AREA)

Abstract

一种音频放大电路。所述音频放大电路包括音频功率放大器、升压转换电路和控制电路;所述控制电路用于产生第一控制信号和第二控制信号;所述升压转换电路连接所述控制电路和音频功率放大器,用于在所述第一控制信号的控制下将电源电压转换为高电压,所述高电压用于给所述音频功率放大器进行供电;所述音频功率放大器连接所述控制电路,用于在所述第二控制信号的控制下将音频输入信号进行放大处理,并输出音频输出信号;所述升压转换电路在所述高电压建立之后发送建立成功的信号给所述控制电路;所述控制电路在接收到所述建立成功的信号之后发送第二控制信号至所述音频功率放大器。本发明的音频放大电路有效地消除了独立控制电路引起的启动杂音。

Description

音频放大电路
技术领域
本发明涉及电子电路技术领域,特别涉及一种音频放大电路。
背景技术
如今,在便携式系统中通常采用锂电池进行供电,由于锂电池电压的限制(通常最高为4.2V),使得系统中的音频放大电路电源轨最高只有4.2V,若采用差分输出的方式,则输出峰值VP最高可以达到4V左右,在不出现明显截顶失真情况下,若系统的负载RL为8Ω时,音频放大电路的输出功率
Figure BDA0000154705900000011
为了获得更好的音质、更大的音量,需要提高音频放大电路的供电电源轨。
传统的方式通常采用电荷泵或者电感的DC-DC(直流-直流)升压转换器,将锂电池电压升高,将电压提升后的电源提供给音频放大电路供电,提升音频放大电路的输出功率。
图1示出了现有技术中音频放大电路的一种实施方式。在这种实施方式中,采用两颗芯片实现D类放大器在低压供电下的大功率输出。具体地,参考图1,所述音频放大电路包括:升压转换电路10和D类放大器20。
首先通过升压转换电路10将电池电压VBAT升高到PVDD,然后用PVDD给D类放大器20供电,所述D类放大器20用于驱动扬声器30。通过这样的方式提高了D类放大器20的电源轨,实现了音频功率放大电路的大功率输出。
在这种方式中,升压转换电路10和D类放大器20分别形成于两颗芯片上,从而使得成本较高、占用PCB(印制电路板)的空间大,不利于电路的集成。
在现有技术中还也可以将升压转换电路10与D类放大器20集成在同一颗芯片中,图2即示出了现有技术中音频放大电路的另一种实施方式。
如图2所示,此时D类放大器和升压转换电路集成于同一个芯片中。具体地,参考图2,升压转换电路10包括:第一控制电路11、时钟发生器12、基准电路13和DC-DC升压转换器14。
所述时钟发生器12用于产生升压转换电路10所需要的时钟脉冲信号;所述基准电路13用于产生升压转换电路10所需要的基准电压和基准电流;所述DC-DC升压转换器14在所述第一控制电路11的控制下,根据所述时钟脉冲信号和基准电压(或基准电流)将电池电压VBAT升高到PVDD,并利用升压后的电压PVDD对D类放大器20进行供电。
所述D类放大器20包括:第二控制电路21、三角波发生器22、PWM(Pulse-Width Modulation,脉宽调制)转换电路23和功率输出级24。所述三角波发生器22用于产生三角波信号;所述PWM转换电路23根据接收到的所述三角波信号产生PWM信号;所述第二控制电路21用于控制所述三角波发生器22、PWM转换电路23以及功率输出级24;所述功率输出级24用于驱动扬声器30。
在这种方式中,由于电压轨不同,升压转换电路10和D类放大器20需要分别有控制电路、基准电路、三角波发生器或者时钟发生器等外围电路。这样,不同控制电路的独立控制就可能带来启动杂音等问题。
这是因为,D类放大器20采用高压PVDD供电,必须在高压PVDD稳定后,再启动D类放大器20,不然会带来启动杂音等问题,但是采用不同的控制电路时,系统并不知道高压PVDD的建立时间,因此可能会导致高压PVDD还没有建立,D类放大器20就已经启动了,从而产生启动杂音的问题。
同样地,在采用其他类型(如A类放大器、B类放大器等)音频功率放大器时,也会由于控制电路的独立存在而产生启动杂音问题。因此,如何消除启动杂音以提高电路的性能就成为本领域技术人员亟待解决的问题之一。
发明内容
本发明解决的问题是提供一种音频放大电路,以有效地消除启动杂音,从而提高电路的性能。
为解决上述问题,本发明提供一种音频放大电路,包括:音频功率放大器、升压转换电路和控制电路;
所述控制电路用于产生第一控制信号和第二控制信号;
所述升压转换电路连接所述控制电路和音频功率放大器,用于在所述第一控制信号的控制下将电源电压转换为高电压,所述高电压用于给所述音频功率放大器进行供电;
所述音频功率放大器连接所述控制电路,用于在所述第二控制信号的控制下将音频输入信号进行放大处理,并输出音频输出信号;
其中,所述升压转换电路在所述高电压建立之后发送建立成功的信号给所述控制电路;所述控制电路在接收到所述建立成功的信号之后发送第二控制信号至所述音频功率放大器。
可选地,所述音频放大电路还包括基准电路,用于给所述升压转换电路和音频功率放大器提供参考电压或参考电流。
可选地,所述音频功率放大器为D类放大器,所述音频放大电路还包括参考波发生电路,所述参考波发生电路连接升压转换电路和D类放大器,用于将产生的时钟信号发送至所述升压转换电路,并且将产生的三角波信号发送至D类放大器;所述时钟信号的频率与三角波信号的频率或者倍频相同。
可选地,所述D类放大器包括:脉宽调制转换电路、电压转换器和功率输出电路;
所述脉宽调制转换电路包括积分器和比较器,所述积分器在电源电压下对接收到的音频输入信号进行积分;所述比较器连接积分器和参考波发生电路,用于在电源电压下将所述积分器的输出信号与所述参考波发生电路产生的三角波进行比较以产生脉宽调制信号;
所述电压转换器,连接所述比较器和升压转换电路,用于在所述升压转换电路提供的高电压下将接收到的脉宽调制信号由电源电压域转换为高电压域;
所述功率输出电路,连接所述电压转换器和升压转换电路,用于在所述升压转换电路提供的高电压下对所述电压转换器输出的位于高电压域的脉宽调制信号进行处理以输出音频输出信号。
可选地,所述D类放大器还包括反馈电路,所述反馈电路的一端连接功率输出电路的输出端,另一端连接积分器的输入端。
可选地,所述反馈电路包括反馈电阻。
可选地,所述积分器采用轨至轨输入级。
可选地,所述电压转换器包括:第一NMOS管、第二NMOS管、第一PMOS管、第二PMOS管、第一反相器和第二反相器;其中,
所述第一NMOS管的源极接地,漏极连接第一PMOS管的漏极,栅极连接第一反相器的输出端;
所述第一反相器的输入端作为所述电压转换器的输入端;
所述第二NMOS管的源极接地,栅极连接第二反相器的输出端,漏极连接第二PMOS管的漏极,并作为所述电压转换器的输出端;
所述第二反相器的输入端连接所述第一反相器的输出端;
所述第一PMOS管的源极连接升压转换电路的输出端,栅极连接第二NMOS管的漏极;
所述第二PMOS管的源极连接升压转换电路的输出端,栅极连接第一NMOS管的漏极;所述第一反相器和第二反相器的电源端均连接电源电压。
可选地,所述第一反相器和第二反相器分别为CMOS反相器。
可选地,所述升压转换电路包括升压转换器和电压检测电路;所述升压转换器用于在所述第一控制信号的控制下将电源电压转换为高电压;所述电压检测电路连接所述升压转换器和控制电路,用于检测升压转换器转换后的电压值,并在所述升压转换器转换后的电压值达到预定值时,发送建立成功的信号给所述控制电路。
与现有技术相比,本发明至少具有以下优点:
1)本发明的音频放大电路中,音频功率放大器和升压转换电路采用统一的控制电路,并且只有在升压转换电路输出的高压稳定之后,所述控制电路才会启动音频功率放大器,从而有效地消除了启动杂音。
2)可选方案中,由于音频功率放大器和升压转换电路采用统一的外围电路,所述外围电路包括控制电路、基准电路等,所以不仅简化了电路的规模,而且还减小了芯片的面积。
3)可选方案中,所述音频放大电路采用统一的参考波发生电路,因此,可以保证所述升压转换电路所需的时钟信号的频率与放大器所需的三角波信号的频率相同,从而使得D类放大器不会受到升压转换电路的干扰,不会产生差频信号,进一步地消除了杂音。
4)可选方案中,所述音频放大电路只有其功率输出级和电压转换器采用高压轨供电,其余器件均工作在低压下,因此,仅有较少的器件需要采用高压工艺形成,从而可以有效地降低成本,并且减小了芯片的面积。
附图说明
图1是现有技术中音频放大电路的一种实施例的示意图;
图2是现有技术中音频放大电路的另一种实施例的示意图;
图3是本发明音频放大电路的一种实施例的示意图;
图4是图3中时钟信号频率和三角波信号频率的一种示意图;
图5是图3中D类放大器的示意图;
图6是图5中电压转换器的一种实现方式的示意图;
图7是图5中积分器的轨至轨输入级的一种示意图。
具体实施方式
正如背景技术中所述,在现有技术中为了提高音频放大电路的功率输出,通常可以通过升压转换电路将电源电压升高的方式来实现。在一种实施方式中,所述升压转换电路和D类放大器分别位于两颗芯片上,从而使得其成本较高、占用PCB板的空间大,不利于电路的集成。
在另一种实施方式中,虽然将所述升压转换电路和D类放大器集成于同一颗芯片上,但是由于升压转换电路和D类放大器的电压轨不同,因此,需要分别形成各自的控制电路、时钟发生器、基准电路等外围电路,而不同的控制电路可能导致启动杂音等问题。同样地,在采用其他类型的音频功率放大器时,也会由于各自独立的控制电路而产生启动杂音的问题。
本发明的音频放大电路,采用统一的控制电路来控制音频功率放大器和升压转换电路的工作,只有当升压转换电路建立高电压并发送建立成功的信号之后,所述控制电路才发送第二控制信号以启动所述音频功率放大器。通过这种方式有效地消除了现有技术中由于独立的控制电路而引起的启动杂音现象。
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。
在以下描述中阐述了具体细节以便于充分理解本发明。但是本发明能够以多种不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广。因此本发明不受下面公开的具体实施方式的限制。
图3示出了本发明音频放大电路的一种实施例的示意图。参考图3,所述音频放大电路包括:控制电路100、升压转换电路200和D类放大器300。
所述控制电路100用于产生第一控制信号和第二控制信号。
所述升压转换电路200连接所述控制电路100和D类放大器300,用于在所述第一控制信号的控制下将电源电压VBAT转换为高电压PVDD,并在所述高电压PVDD建立之后发送建立成功的信号给所述控制电路100;所述高电压PVDD用于给所述D类放大器300进行供电。
所述高电压PVDD的电压轨高于所述电源电压VBAT的电压轨。作为一个具体例子,所述电源电压VBAT可以是锂电池电压,例如4V。当然,此仅为举例说明,本发明对此不做限制。所述D类放大器300连接所述控制电路100,用于在所述第二控制信号的控制下将音频输入信号进行放大处理,并输出音频输出信号。
其中,所述控制电路100在接收到升压转换电路200发送的建立成功的信号之后发送第二控制信号至所述D类放大器300。
在本实施例中,所述升压转换电路200和D类放大器300统一在控制电路100的控制下进行工作。所述控制电路100首先将第一控制信号发送给所述升压转换电路200,从而使得所述升压转换电路200根据第一控制信号进行电压转换,即将电源电压VBAT转换为高电压PVDD。当高电压PVDD成功建立之后,例如当高电压PVDD达到预定的电压值后认为所述高电压PVDD成功建立,所述升压转换电路200将发送成功建立的信号给控制电路100。
控制电路100在接收到该成功建立的信号之后,将发送第二控制信号给D类放大器300。所述D类放大器300在第二控制信号的控制下启动并进行工作。
在控制电路100的控制下,所述D类放大器300的启动总是晚于高电压PVDD的建立,从而有效地避免了现有技术中的启动杂音问题。
当然,需要说明的是,在其他实施例中,还可以采用其他类型的音频功率放大器,例如A类放大器、B类放大器、AB类放大器等等,其不应局限于本实施例中的D类放大器。与图3所示的音频放大电路相类似,在其他实施例中采用其他类型的音频功率放大器时,所述音频功率放大器的启动同样会晚于高电压PVDD的建立,从而避免产生启动杂音。
继续参考图3,所述音频放大电路还包括:参考波发生电路400。
所述参考波发生电路400连接升压转换电路200和D类放大器300,用于将产生的时钟信号发送至所述升压转换电路200,并且将产生的三角波信号发送至D类放大器300。
具体地,在本实施例中,所述时钟信号的频率与三角波信号的频率相同,或者所述时钟信号的频率与三角波信号的倍频相同。
为了方便说明,假定三角波的频率为fPWM,时钟信号的频率为fCLK
在图2所示的现有技术中,D类放大器20需要的三角波和升压转换电路10的时钟信号独立产生,如果fCLK与fPWM相近,或者fCLK与的fPWM倍频相近,例如fPWM=300KHZ,fCLK=301KHZ或者601KHZ,当D类放大器20的信号通路中受到DC-DC升压转换器14的干扰,也会产生1KHZ的差频信号,从而产生杂音。
而在本实施例中,由参考波发生电路400统一产生时钟信号和三角波信号,因此可以保证fCLK与fPWM相同,或者fCLK与的fPWM倍频相同,从而不会产生差频信号,也就有效地避免了D类放大器因受到升压转换电路的干扰而产生架音。
图4即示出了本实施例中所述时钟信号与三角波信号的频率的一种示意图。参考图4,所述时钟信号的频率fCLK与三角波信号的频率fPWM相同。当然,在其他实施例中,也可以使得所述时钟信号的频率fCLK与三角波信号的倍频一致,其不应限制本发明的保护范围。
可以采用现有技术中的参考波发生电路来产生所述时钟信号和三角波信号,在此不再赘述。
在本实施例中,所述升压转换电路200可以包括升压转换器和电压检测电路。所述升压转换器用于在所述第一控制信号的控制下将电源电压VBAT转换为高电压PVDD;所述电压检测电路连接所述升压转换器和控制电路100,用于检测升压转换器转换后的电压值,并在所述升压转换器转换后的电压值达到预定值(例如6V)时,发送建立成功的信号给所述控制电路100。当然,所述预定值可以根据实际需要进行其他数值的预先设置,其不应限制本发明的保护范围。
所述升压转换器可以采用现有技术中任意一种DC-DC升压转换器;所述电压检测电路也可以采用现有的任意一种电路结构,其不应限制本发明的保护范围。
需要说明的是,在本实施例中,所述音频放大电路还包括基准电路(图中未示出),所述基准电路用于给所述升压转换电路200和D类放大器300提供参考电压或参考电流。所述基准电路可以采用现有技术中的带隙基准电路,其为本领域技术人员所熟知,故在此不再赘述。
图5示出了图3中D类放大器的示意图。参考图5,所述D类放大器300包括:PWM转换电路301、电压转换器302和功率输出电路303。
所述PWM转换电路301包括积分器3011和比较器3012,所述积分器3011在电源电压VBAT下对接收到的音频输入信号进行积分;所述比较器3012连接积分器3011和参考波发生电路400,用于在电源电压VBAT下将所述积分器3011的输出信号与所述参考波发生电路400产生的三角波进行比较以产生PWM信号。
在本实施例中,所述积分器3011包括由输入电阻RIN和电容C1组成的外围电路。所述积分器3011的结构与工作原理与现有技术中的相类似,故在此不再赘述。另外,所述积分器3011接收的音频输入信号为差分信号。
所述电压转换器302,连接所述比较器3012和升压转换电路200,用于在所述升压转换电路200提供的高电压PVDD下将接收到的PWM信号由电源电压域(VBAT电压域)转换为高电压域(PVDD电压域)。换句话说,所述升压转换电路200用于将接收到的PWM信号的幅值放大,或者说所述升压转换电路200用于提高接收到的PWM信号对应的电压值。
作为一个具体的例子,假定所述比较器3012产生的PWM信号的逻辑电平“1”对应的电压值为3V;那么经过所述电压转换器302之后,PWM信号的逻辑电平“1”对应的电压值变为6V。这样,所述升压转换电路200在不改变接收到的PWM信号的频率的基础上,实现了对PWM信号的幅值的放大作用。
所述功率输出电路303,连接所述电压转换器302和升压转换电路200,用于在所述升压转换电路200提供的高电压PVDD下对放大后的PWM信号进行处理以输出音频输出信号。所述功率输出电路303用于驱动扬声器500。
图6示出了图5中电压转换器的一种实现方式的示意图。参考图5,所述电压转换器302包括:第一NMOS管N1、第二NMOS管N2、第一PMOS管P1、第二PMOS管P2、第一反相器INV1和第二反相器INV2。
所述第一NMOS管N1的源极接地,漏极连接第一PMOS管P1的漏极,栅极连接第一反相器INV1的输出端。
所述第一反相器INV1的输入端作为所述电压转换器302的输入端(IN),用于接收比较器3012输出PWM信号。所述第二反相器INV2的输入端连接所述第一反相器INV1的输出端,输出端连接所述第二NMOS管N2的栅极。其中,所述第一反相器INV1和第二反相器INV2的电源端均连接电源电压VBAT。
所述第二NMOS管N2的源极接地,漏极连接第二PMOS管P2的漏极,并作为所述电压转换器302的输出端(OUT)。
所述第一PMOS管P1`的源极连接升压转换电路200的输出端,栅极连接第二NMOS管N2的漏极;所述第二PMOS管P2的源极连接升压转换电路200的输出端,栅极连接第一NMOS管N1的漏极。
具体地,在本实施例中,所述第一反相器INV1和第二反相器INV2分别为CMOS反相器。所述CMOS反相器为本领域技术人员所熟知,故在此不再赘述。
下面结合图6对本实例中的电压转换器的工作原理做详细说明。
由于所述电压转换器302接收的为比较器3012输出的PWM信号,因此,当PWM信号为逻辑低电平0时,经过第一反相器INV1后变为逻辑高电平1,再经过第二反相器INV2后变为逻辑低电平0。此时,第一NMOS管N1导通,所述第二NMOS管N2截止,从而使得所述第一NMOS管N1的漏极电压为0V,即所述第二PMOS管P2的栅极电压为0V,所述第二PMOS管P2导通,其漏极上的电压为高电压PVDD,也就是说,此时所述电压转换器302输出的电压为高电压PVDD。
当PWM信号为逻辑高电平1时,经过第一反相器INV1后变为逻辑低电平0,再经过第二反相器INV2后变为逻辑高电平1。此时,第一NMOS管N1截止,所述第二NMOS管N2导通,在所述第二NMOS管N2的下拉作用下,其漏极上的电压为0V,也就是说,此时所述电压转换器302输出的电压为0V。
由上述分析可知,在本实施例中,所述电压转换器302实现了逻辑信号(即本实施例中所述比较器3012输出的PWM信号)在不同电压轨(电源电压VBAT与高电压电平PVDD)之间的切换。
并且在本实施例中,所述D类放大器300只有部分器件,如电压转换器302和功率输出电路303工作在高电压PVDD下;而其他的器件,如PWM转换电路301中的积分器3011和比较器3012等均工作在电源电压VBAT下,从而减小了工作在高压环境下的器件的数量,也就减少了需要采用高压工艺形成的器件的数量,不仅可以降低成本,而且还能有效地节省芯片面积。
继续参考图5,为了提高D类放大器300的信嗓比(Signal to Noise Ratio,SNR)以及得到较低的总谐波失真,所述D类放大器300还包括反馈电路,所述反馈电路的一端连接功率输出电路303的输出端,另一端连接积分器3011的输入端。
具体地,在本实施例中,所述反馈电路包括图5中所示的反馈电阻RF。
音频输入信号和反馈电阻RF反馈的反馈信号被输入到积分器3011中,通过积分器3011对其进行求和,再将求和后的信号与参考波发生电路400输出的三角波信号进行比较,从而产生PWM信号。
另外,需要说明的是,在本实施例中,为了提高积分器3011的输入共模范围,所述积分器3011采用轨至轨(rail to rail)输入级(图中未示出)。
参考图5,所述D类放大器300的功率输出电路的电压轨被提高到高电压PVDD,那么导致PWM转换电路301中的积分器3011的输入共模点发生了变化。具体地,所述积分器3011的输入共模点其中,RF为反馈电阻的电阻值,RIN为输入电阻的电阻值,VBAT为电源电压,PVDD为高电压。
当电源电压VBAT较低,且高电压PVDD较高时,输入共模点Vcom较高,从而可能超出单P管差分对积分器的输入共模范围。例如,当反馈电阻RF等于输入电阻RIN,电源电压VBAT为3.3V,高电压PVDD为6.3V时,输入共模点Vcom为2.4V。
若采用单P管差分对输入级时,P管的源极与电源电压VBAT之间通常连接一电流源,而该电流源的压降一般在0.3V~0.5V左右。另外,P管的栅极与源极之间的电压差VGS通常在-1V左右,因此,为了使P管工作在饱和区,P管的栅极与电源电压VBAT之间的电压差应该在-1.3V~-1.5V的范围内。
然而,在上述的举例中,所述积分器3011的输入共模点Vcom为2.4V,电源电压VBAT为3.3V,从而使得P管的栅极与电源电压VBAT之间的电压差在-0.9V(即2.4V-3.3V=-0.9V),这样采用单P管差分对输入级时,P管无法工作在饱和区,从而降低了电路的性能。
换句话说,在采用单P管差分对输入级时,为了使P管工作在饱和区,积分器3011的输入共模Vcom应该在1.8V(即3.3V-1.5V)至2V(即3.3V-1.3V)的范围内,而在上述举例中,所述积分器3011的输入共模点Vcom为2.4V,超出了单P管差分对积分器的输入共模范围。
为了提高积分器3011的输入共模范围,本实施例采用了rail to rail(轨至轨)输入级。图7示出了rail to rail输入级的一种实施例的示意图,如图7所示,所述rail to rail输入级采用NMOS管和PMOS管并联的互补差分输入对结构,其中晶体管M1、晶体管M2为NMOS差分输入对,晶体管M3和晶体管M4为PMOS差分输入对。
具体地,如图7所示,晶体管M1的栅极作为rail to rail输入级一个输入端,用于接收输入信号Vin+;晶体管M2的栅极作为rail to rail输入级的另一个输入端,用于接收输入信号Vin-,所述输入信号Vin+与输入信号Vin-是一对差分输入信号。
所述rail to rail输入级总的共模输入范围为:VSS<Vcom<VDD,其中,VDD正电源电压;VSS为负电源电压。这样就实现了输入级的全摆幅。
在本实施例中,可以采用电源电压VBAT提供所述rail to rail输入级的正电源电压VDD;将负电压电压VSS设置为接地,即0V。但是其不应限制本发明的保护范围,在其他实施例中,既可以根据实际需要通过对电源电压VBAT进行负向转换得到所述负电源电压VSS,也可以通过其他的外部电源电路来提供所述正电源电压VDD和负电源电压VSS。所述rail to rail输入级的结构与工作原理与现有技术相类似,其为本技术领域人员所熟知,故在此不再赘述。
本实施例中通过采用rail to rail输入级提高了积分器3011的输入共模范围,从而有效地提高了电路的性能。
本发明虽然已以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法和技术内容对本发明技术方案做出可能的变动和修改,因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化及修饰,均属于本发明技术方案的保护范围。

Claims (10)

1.一种音频放大电路,其特征在于,包括:音频功率放大器、升压转换电路和控制电路;
所述控制电路用于产生第一控制信号和第二控制信号;
所述升压转换电路连接所述控制电路和音频功率放大器,用于在所述第一控制信号的控制下将电源电压转换为高电压,所述高电压用于给所述音频功率放大器进行供电;
所述音频功率放大器连接所述控制电路,用于在所述第二控制信号的控制下将音频输入信号进行放大处理,并输出音频输出信号;
其中,所述升压转换电路在所述高电压建立之后发送建立成功的信号给所述控制电路;所述控制电路在接收到所述建立成功的信号之后发送第二控制信号至所述音频功率放大器。
2.如权利要求1所述的音频放大电路,其特征在于,所述音频放大电路还包括基准电路,用于给所述升压转换电路和音频功率放大器提供参考电压或参考电流。
3.如权利要求1所述的音频放大电路,其特征在于,所述音频功率放大器为D类放大器,所述音频放大电路还包括参考波发生电路,所述参考波发生电路连接升压转换电路和D类放大器,用于将产生的时钟信号发送至所述升压转换电路,并且将产生的三角波信号发送至D类放大器;所述时钟信号的频率与三角波信号的频率或者倍频相同。
4.如权利要求3所述的音频放大电路,其特征在于,所述D类放大器包括:脉宽调制转换电路、电压转换器和功率输出电路;
所述脉宽调制转换电路包括积分器和比较器,所述积分器在电源电压下对接收到的音频输入信号进行积分;所述比较器连接积分器和参考波发生电路,用于在电源电压下将所述积分器的输出信号与所述参考波发生电路产生的三角波进行比较以产生脉宽调制信号;
所述电压转换器,连接所述比较器和升压转换电路,用于在所述升压转换电路提供的高电压下将接收到的脉宽调制信号由电源电压域转换为高电压域;
所述功率输出电路,连接所述电压转换器和升压转换电路,用于在所述升压转换电路提供的高电压下对所述电压转换器输出的位于高电压域的脉宽调制信号进行处理以输出音频输出信号。
5.如权利要求4所述的音频放大电路,其特征在于,所述D类放大器还包括反馈电路,所述反馈电路的一端连接功率输出电路的输出端,另一端连接积分器的输入端。
6.如权利要求5所述的音频放大电路,其特征在于,所述反馈电路包括反馈电阻。
7.如权利要求4所述的音频放大电路,其特征在于,所述积分器采用轨至轨输入级。
8.如权利要求4所述的音频放大电路,其特征在于,所述电压转换器包括:第一NMOS管、第二NMOS管、第一PMOS管、第二PMOS管、第一反相器和第二反相器;其中,
所述第一NMOS管的源极接地,漏极连接第一PMOS管的漏极,栅极连接第一反相器的输出端;
所述第一反相器的输入端作为所述电压转换器的输入端;
所述第二NMOS管的源极接地,栅极连接第二反相器的输出端,漏极连接第二PMOS管的漏极,并作为所述电压转换器的输出端;
所述第二反相器的输入端连接所述第一反相器的输出端;
所述第一PMOS管的源极连接升压转换电路的输出端,栅极连接第二NMOS管的漏极;
所述第二PMOS管的源极连接升压转换电路的输出端,栅极连接第一NMOS管的漏极;所述第一反相器和第二反相器的电源端均连接电源电压。
9.如权利要求8所述的音频放大电路,其特征在于,所述第一反相器和第二反相器分别为CMOS反相器。
10.如权利要求1所述的音频放大电路,其特征在于,所述升压转换电路包括升压转换器和电压检测电路;所述升压转换器用于在所述第一控制信号的控制下将电源电压转换为高电压;所述电压检测电路连接所述升压转换器和控制电路,用于检测升压转换器转换后的电压值,并在所述升压转换器转换后的电压值达到预定值时,发送建立成功的信号给所述控制电路。
CN201210114831.2A 2012-04-18 2012-04-18 音频放大电路 Active CN102638229B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210114831.2A CN102638229B (zh) 2012-04-18 2012-04-18 音频放大电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210114831.2A CN102638229B (zh) 2012-04-18 2012-04-18 音频放大电路

Publications (2)

Publication Number Publication Date
CN102638229A true CN102638229A (zh) 2012-08-15
CN102638229B CN102638229B (zh) 2014-12-10

Family

ID=46622503

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210114831.2A Active CN102638229B (zh) 2012-04-18 2012-04-18 音频放大电路

Country Status (1)

Country Link
CN (1) CN102638229B (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104348422A (zh) * 2013-08-01 2015-02-11 无锡华润矽科微电子有限公司 实现消除音频功率放大器开关噪声的电路结构及其方法
CN104518743A (zh) * 2013-09-27 2015-04-15 亚德诺半导体集团 Hd类功率放大器
CN106130497A (zh) * 2016-06-21 2016-11-16 深圳天珑无线科技有限公司 音频功放增益控制电路及具有该电路的移动设备
CN108880491A (zh) * 2017-05-10 2018-11-23 三星电机株式会社 具有升压功能的功率放大装置
CN109587602A (zh) * 2017-09-29 2019-04-05 深圳市三诺数字科技有限公司 一种音频信号升压控制电路
CN109729486A (zh) * 2017-10-30 2019-05-07 无锡华润矽科微电子有限公司 提高音频功放输出功率的封装结构、封装方法及接线结构
CN111044780A (zh) * 2019-12-10 2020-04-21 上海艾为电子技术股份有限公司 一种数字音频功放电路及其电流采样控制电路
CN112653400A (zh) * 2020-12-10 2021-04-13 Oppo(重庆)智能科技有限公司 放大电路及其控制方法、电子设备、存储介质
CN112672254A (zh) * 2020-12-24 2021-04-16 Oppo广东移动通信有限公司 音频信号调节装置及电子设备
CN115633111A (zh) * 2022-12-21 2023-01-20 荣耀终端有限公司 线路板、相关装置和控制方法
CN116566347A (zh) * 2023-07-10 2023-08-08 上海海栎创科技股份有限公司 一种音频装置和带有增益控制的供电电源控制方法
CN116723451A (zh) * 2023-08-10 2023-09-08 上海海栎创科技股份有限公司 一种放音电源控制电路及控制方法
CN116761115A (zh) * 2023-08-11 2023-09-15 上海海栎创科技股份有限公司 一种低成本高效能的放音电源控制电路及控制方法
CN116782092A (zh) * 2023-06-21 2023-09-19 芯朗半导体(深圳)有限公司 一种音频功放稳压控制电路、芯片和音频功放装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1822504A (zh) * 2006-03-30 2006-08-23 复旦大学 一种互补式交叉耦合能量恢复电路结构
CN101132172A (zh) * 2006-08-25 2008-02-27 三星电子株式会社 在音频输出设备中避免爆破音的装置及其方法
CN101335500A (zh) * 2008-07-29 2008-12-31 深圳华为通信技术有限公司 一种消除音频电路破音的方法及电路
CN102122923A (zh) * 2011-01-30 2011-07-13 上海艾为电子技术有限公司 D类放大器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1822504A (zh) * 2006-03-30 2006-08-23 复旦大学 一种互补式交叉耦合能量恢复电路结构
CN101132172A (zh) * 2006-08-25 2008-02-27 三星电子株式会社 在音频输出设备中避免爆破音的装置及其方法
CN101335500A (zh) * 2008-07-29 2008-12-31 深圳华为通信技术有限公司 一种消除音频电路破音的方法及电路
CN102122923A (zh) * 2011-01-30 2011-07-13 上海艾为电子技术有限公司 D类放大器

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104348422A (zh) * 2013-08-01 2015-02-11 无锡华润矽科微电子有限公司 实现消除音频功率放大器开关噪声的电路结构及其方法
CN104518743A (zh) * 2013-09-27 2015-04-15 亚德诺半导体集团 Hd类功率放大器
CN104518743B (zh) * 2013-09-27 2018-04-13 亚德诺半导体集团 Hd类功率放大器
CN106130497A (zh) * 2016-06-21 2016-11-16 深圳天珑无线科技有限公司 音频功放增益控制电路及具有该电路的移动设备
CN108880491A (zh) * 2017-05-10 2018-11-23 三星电机株式会社 具有升压功能的功率放大装置
CN108880491B (zh) * 2017-05-10 2022-05-03 三星电机株式会社 具有升压功能的功率放大装置
CN109587602A (zh) * 2017-09-29 2019-04-05 深圳市三诺数字科技有限公司 一种音频信号升压控制电路
CN109587602B (zh) * 2017-09-29 2024-05-17 深圳市三诺数字科技有限公司 一种音频信号升压控制电路
CN109729486A (zh) * 2017-10-30 2019-05-07 无锡华润矽科微电子有限公司 提高音频功放输出功率的封装结构、封装方法及接线结构
CN109729486B (zh) * 2017-10-30 2020-08-21 无锡华润矽科微电子有限公司 提高音频功放输出功率的封装结构、封装方法及接线结构
CN111044780A (zh) * 2019-12-10 2020-04-21 上海艾为电子技术股份有限公司 一种数字音频功放电路及其电流采样控制电路
CN112653400A (zh) * 2020-12-10 2021-04-13 Oppo(重庆)智能科技有限公司 放大电路及其控制方法、电子设备、存储介质
CN112653400B (zh) * 2020-12-10 2023-04-14 Oppo(重庆)智能科技有限公司 放大电路及其控制方法、电子设备、存储介质
CN112672254A (zh) * 2020-12-24 2021-04-16 Oppo广东移动通信有限公司 音频信号调节装置及电子设备
CN112672254B (zh) * 2020-12-24 2022-03-22 Oppo广东移动通信有限公司 音频信号调节装置及电子设备
CN115633111A (zh) * 2022-12-21 2023-01-20 荣耀终端有限公司 线路板、相关装置和控制方法
CN116782092A (zh) * 2023-06-21 2023-09-19 芯朗半导体(深圳)有限公司 一种音频功放稳压控制电路、芯片和音频功放装置
CN116782092B (zh) * 2023-06-21 2024-05-07 芯朗半导体(深圳)有限公司 一种音频功放稳压控制电路、芯片和音频功放装置
CN116566347A (zh) * 2023-07-10 2023-08-08 上海海栎创科技股份有限公司 一种音频装置和带有增益控制的供电电源控制方法
CN116723451A (zh) * 2023-08-10 2023-09-08 上海海栎创科技股份有限公司 一种放音电源控制电路及控制方法
CN116723451B (zh) * 2023-08-10 2023-11-03 上海海栎创科技股份有限公司 一种放音电源控制电路及控制方法
CN116761115A (zh) * 2023-08-11 2023-09-15 上海海栎创科技股份有限公司 一种低成本高效能的放音电源控制电路及控制方法
CN116761115B (zh) * 2023-08-11 2023-12-12 上海海栎创科技股份有限公司 一种低成本高效能的放音电源控制电路及控制方法

Also Published As

Publication number Publication date
CN102638229B (zh) 2014-12-10

Similar Documents

Publication Publication Date Title
CN102638229B (zh) 音频放大电路
CN105048980B (zh) 一种d类音频放大器
US8149061B2 (en) Class H amplifier
CN106656065A (zh) 音频功率放大器和音频设备
CN101385238B (zh) D类放大器及其方法
CN101540587A (zh) 音频功率放大器
CN205142150U (zh) 功放电路及功放设备
US7679451B2 (en) Power supply device for driving an amplifier
CN106549564A (zh) 具有供给调制的功率放大设备和方法
US8594346B2 (en) Audio output drivers for piezo speakers
CN102035366B (zh) 一种供电装置
CN102043417A (zh) 低压降稳压器、直流对直流转换器以及低压降稳压方法
CN101151799A (zh) 放大器装置
CN106487343B (zh) 用于d类放大器的功率级的驱动器电路
US8558617B2 (en) Multilevel class-D amplifier
CN102844982B (zh) 单电源d类放大器
US20140169588A1 (en) Boosted Differential Class H Amplifier
CN109688514A (zh) 一种高压数字音频功放系统
CN103125067B (zh) 优化的开关模式电源
CN102013875A (zh) 一种数字功率放大器及其控制方法
CN202586876U (zh) 差频消除电路、脉冲宽度调制信号产生电路与放大器电路
CN102215029A (zh) D类音频功率放大器及其音频信号处理方法
US20150055805A1 (en) Multiple level charge pump generating voltages with distinct levels and associated methods
CN107168445B (zh) 一种移动终端、dcdc供电装置及其dcdc供电电路
Huffenus et al. A class d headphone amplifier with dc coupled outputs and 1.2 ma quiescent current

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee

Owner name: SHANGHAI AWINIC ELECTRONIC TECHNOLOGY CO., LTD.

Free format text: FORMER NAME: SHANGHAI AWINIC TECHNOLOGY CO. LTD

CP01 Change in the name or title of a patent holder

Address after: 200233, No. 418, Guiping Road, Shanghai, Xuhui District, 15 Floor

Patentee after: SHANGHAI AWINIC ELECTRONIC TECHNOLOGY CO., LTD.

Address before: 200233, No. 418, Guiping Road, Shanghai, Xuhui District, 15 Floor

Patentee before: Shanghai AWINIC Technology Co. Ltd