CN102623543B - MgZnO/NPB紫外光探测器及其制作方法 - Google Patents
MgZnO/NPB紫外光探测器及其制作方法 Download PDFInfo
- Publication number
- CN102623543B CN102623543B CN201210109738.2A CN201210109738A CN102623543B CN 102623543 B CN102623543 B CN 102623543B CN 201210109738 A CN201210109738 A CN 201210109738A CN 102623543 B CN102623543 B CN 102623543B
- Authority
- CN
- China
- Prior art keywords
- npb
- film
- ultraviolet light
- mgzno
- lif
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Light Receiving Elements (AREA)
Abstract
MgZnO/NPB紫外光探测器及其制作方法,属于光电子信息领域,涉及一种MgZnO/NPB紫外光探测器,主要用于产生低偏压、高响应的紫外光探测器。解决了无机宽禁带半导体p型掺杂问题和有机电子迁移率低的问题。该探测器是在石英ITO衬底上生长单相MgxZn1-xO薄膜、NPB薄膜、LiF薄膜和电极。其制作方法为:将石英ITO衬底在MBE预生长室中预处理;在MBE生长室中生长温度为400-500℃下,生长厚度为200-350nm的MgxZn1-xO薄膜,其中X=0.1-0.4;然后传入热蒸发中,在其上生长厚度为50-120nm NPB薄膜;在NPB薄膜上生长厚度为0.5-2nm的LiF电极修饰层;在LiF电极修饰层上制作电极,制作出石英ITO/MgxZn1-xO/NPB/LiF/电极结构的MgZnO/NPB紫外光探测器。
Description
技术领域
本发明属于光电子信息领域,涉及一种MgZnO/NPB紫外光探测器,主要用于产生低偏压、高响应的紫外光探测器。
背景技术
紫外光探测器是许多应用领域的关键元件,广泛应用于火警探测、火焰传感、天文学观测与研究、航空及航天跟踪与控制、气象环境监测与预报、医疗卫生与生物工程、通信等领域。传统上用光电倍增管和过滤器及荧光降频技术做紫外检测,然而这种设备具有成本高、运行时需要高压、体积大、重量重等缺点。而宽禁带半导体紫外探测器具有成本低、寿命长、驱动电压低、体积小、重量轻、功率密度大、携带方便等优点。其主要材料为SiC、AlGaN、Mg ZnO等,其中SiC成本比较高,近年来AlGaN和MgZnO紫外光探测器的研究倍受关注。特别是ZnO(激子结合能为60meV)及其合金材料成本比较低,更重要的是它比III-V族(如GaN激子结合能为24meV)和其它II-VI族(如ZnS激子结合能为20meV)化合物半导体材料的激子结合能大很多,使其制作的光电子器件可以在高温度下工作。目前MgZnO是ZnO基合金薄膜中质量最好的,带隙可以调节的半导体合金,因而MgZnO紫外光探测器的研究引起了各国学者的极大兴趣。但是目前MgZnO紫外光探测器的性能还不够理想,主要是MgZnO的p型掺杂问题(稳定低阻高质量p型掺杂ZnO及其基合金薄膜是世界难题,目前还没有很好的解决),致使紫外光探测器的空穴传输层不能很好地传输空穴;然有机(有机小分子和聚合物)材料具有空穴迁移率高、电子迁移率低的特点。若用n型MgZnO作为电子传输层,用有机材料作为空穴传输层,制作有机/MgZnO复合薄膜结构新型紫外探测器,可以有效地解决紫外探测器用无机宽禁带半导体空穴传输的困难和用有机材料电子传输的困难。有关MgZnO紫外光探测器和有机紫外光探测器已有一些报道,但是有机/无机复合薄膜结构新型紫外光探测器的研究还没有报道。
发明内容
本发明所要解决的技术问题是,解决无机宽禁带半导体p型掺杂问题和有机电子迁移率低的问题。提供一种MgZnO/NPB新型紫外光探测器的制作方法。
本发明解决其技术问题的技术方案:
一种MgZnO/NPB紫外光探测器,它是在石英ITO衬底上生长单相MgxZn1-xO薄膜、NPB薄膜、LiF薄膜和电极。
所述的单相MgxZn1-xO中X=0.1-0.4,厚度为200-350nm;所述的NPB薄膜厚度为50-120nm;所述的LiF薄膜厚度为0.5-2nm。
一种MgZnO/NPB紫外光探测器制作方法,该方法的步骤包括:
步骤一将清洗过的石英ITO衬底传入MBE的预生长室;
步骤二在预生长室750-850℃处理15-30分钟;
步骤三经步骤二处理的石英ITO衬底传入MBE的生长室,在生长温度400-500℃下,生长厚度为200-350nm的MgxZn1-xO薄膜,其中X=0.1-0.4;
步骤四将MgxZn1-xO薄膜传入热蒸发中,在MgxZn1-xO薄膜上,生长厚度为50-120nm NPB薄膜;
步骤五在NPB薄膜上生长厚度为0.5-2nm的LiF电极修饰层;
步骤六在LiF电极修饰层上制作电极,制作出石英ITO/MgxZn1-xO/NPB/LiF/电极结构的MgZnO/NPB紫外光探测器。
本发明的有益效果:
石英ITO/MgxZn1-xO/NPB/LiF/金属电极结构的紫外光探测器,用MgZnO薄膜作电子传输层,用NPB薄膜作空穴传输层,解决了无机宽禁带半导体p型掺杂问题和有机电子迁移率低问题,制作出MgZnxO/NPB紫外光探测器,其制作工艺简单、成本低,光响应较高。而研制成本低、偏压低、光响应高、体积小的紫外光探测器对国民经济和社会发展以及国防建设具有十分重要的意义。
附图说明
图1为MgZnO/NPB紫外光探测器的光暗I-V特性。
图2为-1V下MgZnO/NPB紫外光探测器的光谱响应。
具体实施方式
一种MgZnO/NPB紫外光探测器,该紫外光探测器是在石英ITO衬底上生长单相MgxZn1-xO薄膜、NPB薄膜、LiF薄膜和电极。所述的单相MgxZn1-xO中X=0.1-0.4,厚度为200-350nm;所述的NPB薄膜厚度为50-120nm;所述的LiF薄膜厚度为0.5-2nm。
一种MgZnO/NPB紫外光探测器制作方法一,该方法的步骤包括:
步骤一将清洗过的石英ITO衬底传入MBE的预生长室;
步骤二在预生长室750℃处理30分钟;
步骤三经步骤二处理的石英ITO衬底传入MBE的生长室,在生长温度400℃下,生长厚度为200nm的MgxZn1-xO薄膜,其中X=0.1;
步骤四将MgxZn1-xO薄膜传入热蒸发中,在MgxZn1-xO薄膜上,生长厚度为50nmNPB薄膜;
步骤五在NPB薄膜上生长厚度为0.5nm的LiF电极修饰层;
步骤六在LiF电极修饰层上制作厚度为90nm的Au电极,制作出石英ITO/MgxZn1-xO/NPB/LiF/电极结构的MgZnO/NPB紫外光探测器。
一种MgZnO/NPB紫外光探测器制作方法二,该方法的步骤包括:
步骤一将清洗过的石英ITO衬底传入MBE的预生长室;
步骤二在预生长室800℃处理20分钟;
步骤三经步骤二处理的石英ITO衬底传入MBE的生长室,在生长温度450℃下,生长厚度为300nm的MgxZn1-xO薄膜,其中X=0.15;
步骤四将MgxZn1-xO薄膜传入热蒸发中,在MgxZn1-xO薄膜上,生长厚度为70nm NPB薄膜;
步骤五在NPB薄膜上生长厚度为1nm的LiF电极修饰层;
步骤六在LiF电极修饰层上制作厚度为100nm的Al电极,制作出石英ITO/MgxZn1-xO/NPB/
LiF/电极结构的MgZnO/NPB紫外光探测器。
一种MgZnO/NPB紫外光探测器制作方法三,该方法的步骤包括:
步骤一将清洗过的石英ITO衬底传入MBE的预生长室;
步骤二在预生长室850℃处理15分钟;
步骤三经步骤二处理的石英ITO衬底传入MBE的生长室,在生长温度500℃下,生长厚度为350nm的MgxZn1-xO薄膜,其中X=0.4;
步骤四将MgxZn1-xO薄膜传入热蒸发中,在MgxZn1-xO薄膜上,生长厚度为120nm NPB薄膜;
步骤五在NPB薄膜上生长厚度为2nm的LiF电极修饰层;
步骤六在LiF电极修饰层上制作厚度为200nm的Pt电极,制作出石英ITO/MgxZn1-xO/NPB/LiF/电极结构的MgZnO/NPB紫外光探测器。
NPB(N,N′-(1-萘基)-N,N′-二苯基-4,4′-联苯二胺)薄膜,N,N’-bis(naphthalen-1-y1)-N,N’-bis(pheny)benzidine(NPB)。
按上述制作方法二制作的石英/ITO/MgxZn1-xO/NPB/LiF/Al电极的紫外光探测器,其光暗电阻I-V特性如图1所示。由图1可以看出,在340nm光强为1.33mW/cm2的光照下,光暗电阻比高达1×105。其光谱响应如图2所示,由图2可以看出,光谱响应在紫外区,在-1V电压下,340nm响应为0.192A/W。
Claims (2)
1.一种MgZnO/NPB紫外光探测器,其特征在于:MgZnO/NPB紫外光探测器是在石英ITO衬底上生长单相MgxZn1-xO薄膜、NPB薄膜、LiF薄膜和电极;
所述的单相MgxZn1-xO中X=0.1-0.4,厚度为200-350nm;所述的NPB薄膜厚度为50-120nm;所述的LiF薄膜厚度为0.5-2nm。
2.一种MgZnO/NPB紫外光探测器制作方法,其特征在于:该方法的步骤包括:
步骤一将清洗过的石英ITO衬底传入MBE的预生长室;
步骤二在预生长室750-850℃处理15-30分钟;
步骤三经步骤二处理的石英ITO衬底传入MBE的生长室,在生长温度400-500℃下,生长厚度为200-350nm的MgxZn1-xO薄膜,其中X=0.1-0.4;
步骤四将MgxZn1-xO薄膜传入热蒸发中,在MgxZn1-xO薄膜上,生长厚度为50-120nm NPB薄膜;
步骤五在NPB薄膜上生长厚度为0.5-2nm的LiF电极修饰层;
步骤六在LiF电极修饰层上制作电极,制作出石英ITO/MgxZn1-xO/NPB/LiF/电极结构的MgZnO/NPB紫外光探测器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210109738.2A CN102623543B (zh) | 2012-04-13 | 2012-04-13 | MgZnO/NPB紫外光探测器及其制作方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210109738.2A CN102623543B (zh) | 2012-04-13 | 2012-04-13 | MgZnO/NPB紫外光探测器及其制作方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102623543A CN102623543A (zh) | 2012-08-01 |
CN102623543B true CN102623543B (zh) | 2014-11-26 |
Family
ID=46563337
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210109738.2A Expired - Fee Related CN102623543B (zh) | 2012-04-13 | 2012-04-13 | MgZnO/NPB紫外光探测器及其制作方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102623543B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105787207A (zh) * | 2016-03-23 | 2016-07-20 | 西安电子科技大学 | 一种MgZnO基MSM紫外光探测器等效电路与扩频方法 |
CN106910751B (zh) * | 2017-03-07 | 2018-08-21 | 吉林大学 | 一种基于自耗尽效应的TiO2/NPB异质一维纳米棒阵列紫外探测器及其制备方法 |
CN111048604B (zh) * | 2019-12-17 | 2021-04-06 | 吉林大学 | 一种基于MgZnO/ZnSⅡ型异质结的紫外探测器及其制备方法 |
CN114256377A (zh) * | 2021-11-22 | 2022-03-29 | 上海科技大学 | 基于晶体管结构的量子点近红外光电探测器及其制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101350312A (zh) * | 2008-09-22 | 2009-01-21 | 北京交通大学 | 在ITO衬底上生长ZnMgO合金薄膜的方法 |
CN101964397A (zh) * | 2010-08-18 | 2011-02-02 | 北京交通大学 | 一种基于npb和bnd的紫外光探测器 |
-
2012
- 2012-04-13 CN CN201210109738.2A patent/CN102623543B/zh not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101350312A (zh) * | 2008-09-22 | 2009-01-21 | 北京交通大学 | 在ITO衬底上生长ZnMgO合金薄膜的方法 |
CN101964397A (zh) * | 2010-08-18 | 2011-02-02 | 北京交通大学 | 一种基于npb和bnd的紫外光探测器 |
Non-Patent Citations (4)
Title |
---|
S. Mridha and D. Basak.ZnO/polyaniline based inorganic/organic hybrid structure: electrical and photoconductivity properties.《Applied Physics Letters》.美国物理联合会,2008,第92卷(第14期), * |
Y. N. Hou, Z. X. Mei, H. L. Liang, D. Q. Ye, S. Liang, C. Z.Comparative study of n-MgZnO/p-Si ultraviolet-B photodetector performance with different device structures.《Applied Physics Letters》.美国物理联合会,2011,第98卷(第26期), * |
Y.N.Hou Z. X. Mei * |
ZnO/polyaniline based inorganic/organic hybrid structure: electrical and photoconductivity properties;S. Mridha and D. Basak;《Applied Physics Letters》;美国物理联合会;20080411;第92卷(第14期);第142111-1页左栏第1段 * |
Also Published As
Publication number | Publication date |
---|---|
CN102623543A (zh) | 2012-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xie et al. | Recent progress in solar‐blind deep‐ultraviolet photodetectors based on inorganic ultrawide bandgap semiconductors | |
Su et al. | Self‐powered ultraviolet photodetectors driven by built‐in electric field | |
Guo et al. | Fabrication of β-Ga 2 O 3 thin films and solar-blind photodetectors by laser MBE technology | |
Qian et al. | Ultrahigh-responsivity, rapid-recovery, solar-blind photodetector based on highly nonstoichiometric amorphous gallium oxide | |
Ai et al. | Fast-response solar-blind ultraviolet photodetector with a graphene/β-Ga2O3/graphene hybrid structure | |
Liu et al. | ZnO ultraviolet random laser diode on metal copper substrate | |
Wang et al. | A review of earth abundant ZnO-based materials for thermoelectric and photovoltaic applications | |
CN102623543B (zh) | MgZnO/NPB紫外光探测器及其制作方法 | |
He et al. | Metalorganic Chemical Vapor Deposition Heteroepitaxial β‐Ga2O3 and Black Phosphorus Pn Heterojunction for Solar‐Blind Ultraviolet and Infrared Dual‐Band Photodetector | |
Li et al. | Enhancement of a Cu 2 O/ZnO photodetector via surface plasmon resonance induced by Ag nanoparticles | |
Kim et al. | Cu4O3-based all metal oxides for transparent photodetectors | |
Zhou et al. | Self-powered p-CuI/n-GaN heterojunction UV photodetector based on thermal evaporated high quality CuI thin film | |
Dai et al. | Self-powered ultraviolet photodetector based on an n-ZnO: Ga microwire/p-Si heterojunction with the performance enhanced by a pyro-phototronic effect | |
Mondal et al. | Unraveling the effects of a GeSe BSF layer on the performance of a CuInSe 2 thin film solar cell: a computational analysis | |
Wang et al. | Pt/(InGa) 2O3/n-Si heterojunction-based solar-blind ultraviolet photovoltaic detectors with an ideal absorption cutoff edge of 280 nm | |
Su et al. | A vertical CsPbBr 3/ZnO heterojunction for photo-sensing lights from UV to green band | |
Zhou et al. | Self-powered heterojunction photodetector based on thermal evaporated p-CuI and hydrothermal synthesised n-TiO 2 nanorods | |
Yu et al. | Numerical simulation analysis of effect of energy band alignment and functional layer thickness on the performance for perovskite solar cells with Cd1-xZnxS electron transport layer | |
Liao et al. | Observation of unusual optical transitions in thin-film Cu (In, Ga) Se 2 solar cells | |
Zhang et al. | Performance enhancement of Ga2O3 solar-blind UV photodetector by the combination of oxygen annealing and plasma treatment | |
Wang et al. | The role of oxygen vacancies in Ga2O3-based solar-blind photodetectors | |
Singh et al. | Unveiling the potential of organometal halide perovskite materials in enhancing photodetector performance | |
Xie et al. | High performance blue light detector based on ZnO nanowire arrays | |
Xie et al. | Ultra-low threshold avalanche gain from solar-blind photodetector based on graded-band-gap-cubic-MgZnO | |
Wu et al. | Interfacial Engineering of SnS/Ga2O3 Heterojunction by SnO for a High‐Performance Self‐Powered Solar‐Blind UV Photodetector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20141126 Termination date: 20150413 |
|
EXPY | Termination of patent right or utility model |