CN102621394B - 双支路输入光伏并网逆变器对地绝缘电阻检测系统及方法 - Google Patents

双支路输入光伏并网逆变器对地绝缘电阻检测系统及方法 Download PDF

Info

Publication number
CN102621394B
CN102621394B CN201210089947.5A CN201210089947A CN102621394B CN 102621394 B CN102621394 B CN 102621394B CN 201210089947 A CN201210089947 A CN 201210089947A CN 102621394 B CN102621394 B CN 102621394B
Authority
CN
China
Prior art keywords
circuit
photovoltaic cell
resistance
photovoltaic
microprocessor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210089947.5A
Other languages
English (en)
Other versions
CN102621394A (zh
Inventor
韩军良
郑照红
徐海波
候坚
袁伟军
卢锦均
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong East Power Co Ltd
Original Assignee
Guangdong East Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong East Power Co Ltd filed Critical Guangdong East Power Co Ltd
Priority to CN201210089947.5A priority Critical patent/CN102621394B/zh
Publication of CN102621394A publication Critical patent/CN102621394A/zh
Application granted granted Critical
Publication of CN102621394B publication Critical patent/CN102621394B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

本发明涉及光伏并网逆变器技术,具体涉及一种双支路输入光伏并网逆变器对地绝缘电阻检测系统及方法,所述检测系统包括对第一路光伏电池升压的BOOST电路一、对第二路光伏电池升压的BOOST电路二、对第一路光伏电池电压进行采样的PV1电压采样电路、对第二路光伏电池电压进行采样的PV2电压采样电路、下桥臂电压采样电路、电阻开关电路和微处理器。本发明实现了双支路输入光伏电池的对地绝缘电阻的在线实时测量,从而可以在线判断光伏并网逆变器的对地绝缘要求是否满足安规要求,进而允许或禁止光伏并网逆变器的启动工作,保证了光伏并网逆变器安全可靠的工作。

Description

双支路输入光伏并网逆变器对地绝缘电阻检测系统及方法
技术领域
本发明涉及光伏并网逆变器技术,具体涉及一种双支路输入光伏并网逆变器对地绝缘电阻检测系统及方法。
背景技术
在光伏并网发电技术中,光伏电池的输出电压比较高,例如:大功率的光伏并网逆变器的光伏电池输出电压高达600V以上,由于光伏电池的光伏电池板为露天放置,灰尘、雨雪、大雾等天气因素都会影响光伏电池的正极、负极对地(以下所称“对地”,均是指 “对于大地”,即Earth)绝缘的变化。作为一种高压系统,光伏并网逆变器安全的一项关键指标就是绝缘程度的好坏,绝缘电阻测量技术可以判断出当前系统的绝缘状态是否良好,以及绝缘状态的变化情况。光伏并网逆变器每天开机前需要进行光伏电池的对地绝缘电阻的检测,TUV认证中要求并网逆变器的对地绝缘电阻不小于1KΩ/V。
双支路输入光伏并网逆变器是一种采用双支路光伏电池输入的并网逆变器,由于双支路光伏电池输入对地之间的绝缘电阻相互耦合,目前对双支路光伏电池输入对地之间的绝缘电阻的检测技术研究较少,缺乏可靠的检测电路和检测方法,以至于双支路光伏并网逆变器的工作过程中存在安全隐患。
发明内容
为了解决上述问题,本发明提供一种双支路输入光伏并网逆变器对地绝缘电阻检测系统及方法,实现了双支路光伏电池正极对地绝缘电阻、负极对地绝缘电阻的在线实时测量。
双支路输入光伏并网逆变器对地绝缘电阻检测系统,包括对第一路光伏电池升压的BOOST电路一、对第二路光伏电池升压的BOOST电路二、对第一路光伏电池电压进行采样的PV1电压采样电路、对第二路光伏电池电压进行采样的PV2电压采样电路、下桥臂电压采样电路、电阻开关电路和微处理器;
所述BOOST电路一的第一端与第一路光伏电池的正极连接,所述BOOST电路一的第二端与直流母线的正极连接,所述BOOST电路一的控制端与所述微处理器的第一PWM端口连接;
所述BOOST电路二的第一端与第二路光伏电池的正极连接,所述BOOST电路二的第二端与直流母线的正极连接,所述BOOST电路二的控制端与所述微处理器的第二PWM端口连接;
第一路光伏电池和第二路光伏电池的公共负极与所述电阻开关电路的第一端连接,所述电阻开关电路的第二端接大地,所述电阻开关电路的控制端与所述微处理器的第一I/O端口连接;
所述PV1电压采样电路的输出端与所述微处理器的第一A/D端口连接;所述PV2电压采样电路的输出端与所述微处理器的第二A/D端口连接;
第一路光伏电池和第二路光伏电池的公共负极与所述下桥臂电压采样电路的第一端连接,所述下桥臂电压采样电路的第二端接大地,所述下桥臂电压采样电路的输出端与所述微处理器的第三A/D端口连接。
第一路光伏电池和第二路光伏电池的公共负极与直流母线的负极连接。
其中,所述微处理器包括第三PWM端口组,所述第三PWM端口组与光伏并网逆变器的逆变电路连接。
其中,所述微处理器还包括第二I/O端口,所述第二I/O端口连接有报警电路。
其中,所述电阻开关电路包括辅助测量电阻R0和开关S1,所述开关S1为开关管、继电器或光耦。
其中,所述PV1电压采样电路采用差分放大电路、线性隔离放大电路或电压传感器采样电路;所述PV2电压采样电路采用差分放大电路、线性隔离放大电路或电压传感器采样电路。
其中,所述微处理器采用FIR数字滤波算法对A/D采样信号进行数字滤波处理,该微处理器为DSP微处理器。
一种双支路输入光伏并网逆变器对地绝缘电阻检测系统的检测方法,包括以下步骤:
A、微处理器关闭逆变电路、BOOST电路一和BOOST电路二,采样第一路光伏电池的输入电压信号VPV1和第二路光伏电池的输入电压信号VPV2
B、微处理器控制电阻开关电路的开关闭合,使辅助测试电阻和下桥臂并联,采样下桥臂输出电压信号u1;
C、微处理器控制电阻开关电路的开关断开,使辅助测试电阻和下桥臂脱离,关闭BOOST电路二,控制BOOST电路一,使得第一路光伏电池的正极和负极输入短路,微处理器采样下桥臂输出电压信号u2;
D、微处理器关闭BOOST电路一,控制BOOST电路二,使得第二路光伏电池的正极和负极输入短路,微处理器采样下桥臂输出电压信号u3;
E、微处理器根据获得的电压信号u1、u2和u3分别计算出第一路光伏电池的正极对大地的绝缘电阻R1+,第二路光伏电池的正极对大地的绝缘电阻R2+,以及第一路光伏电池和第二路光伏电池的公共负极对大地的等效并联绝缘电阻R-;
第一路光伏电池和第二路光伏电池的公共负极与大地之间的电路构成所述的下桥臂。
其中,所述步骤E的计算具体为:
E1、根据电压信号u1,由基尔霍夫电路定律建立第一个关系方程式e1:
Figure 548071DEST_PATH_IMAGE001
E2、根据电压信号u2,由基尔霍夫电路定律建立第二个关系方程式e2:
Figure 686929DEST_PATH_IMAGE002
E3、根据电源信号u3,由基尔霍夫电路定律建立第三个关系方程式e3:
Figure 208040DEST_PATH_IMAGE003
其中,
Figure 644706DEST_PATH_IMAGE004
Figure 629980DEST_PATH_IMAGE005
Figure 877421DEST_PATH_IMAGE006
Figure 948146DEST_PATH_IMAGE007
,R0是已知的辅助测量电阻;
求解由e1、e2、e3组成的三元一次方程组,得出R1+、R2+、R-的电阻值。
三元一次方程组为:
e4、  
Figure 529748DEST_PATH_IMAGE009
,解方程组e4可得:
Figure 948091DEST_PATH_IMAGE010
Figure 240532DEST_PATH_IMAGE011
Figure 284580DEST_PATH_IMAGE012
即:
Figure 978867DEST_PATH_IMAGE013
根据上述表达式分别计算出R1+、R2+、R-的电阻值。
进一步地,在步骤E后,还包括步骤F:判断R1+、R2+、R-的电阻值是否满足安规要求。
进一步地,在步骤F后,还包括步骤G:若R1+、R2+、R-的电阻值满足安规要求,则允许光伏并网逆变器启动工作;否则,禁止光伏并网逆变器启动工作,并控制报警电路发出报警信号。
本发明的有益效果是:本发明的双支路输入光伏并网逆变器对地绝缘电阻检测系统及方法,电路实现简单,测量精度高,实现了双支路输入的光伏电池正极对地绝缘电阻、光伏电池负极对地绝缘电阻的在线实时测量,在线诊断光伏电池正极对地绝缘电阻和光伏电池负极对地绝缘电阻是否满足安规要求,进而采取相应措施,保证了光伏并网逆变器安全可靠地工作。
附图说明
图1为双支路输入光伏并网逆变器对地绝缘电阻检测系统的等效电路模型图。
图2为本发明的双支路输入光伏并网逆变器对地绝缘电阻检测系统的电路实现原理框图。
附图标记说明如下:
10—微处理器,       11—PV1电压采样电路,
12—PV2电压采样电路,
13—BOOST电路一,    14—BOOST电路二,
15—电阻开关电路,   16—下桥臂电压采样电路,
17—逆变电路,       18—报警电路。
具体实施方式
为了使发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。
参见图1和图2,双支路输入光伏并网逆变器对地绝缘电阻检测系统,包括对第一路光伏电池升压的BOOST电路一13、对第二路光伏电池升压的BOOST电路二14、对第一路光伏电池电压进行采样的PV1电压采样电路11、对第二路光伏电池电压进行采样的PV2电压采样电路12、下桥臂电压采样电路16、电阻开关电路15和微处理器10;
BOOST电路是一种升压电路,BOOST电路一和BOOST电路二的作用是把两路光伏电池的输入电压分别升压到所需要的直流母线电压,保证逆变电路正常工作,同时执行对光伏电池的最大功率跟踪(MPPT)的功能。
所述BOOST电路一13的第一端与第一路光伏电池的正极连接,所述BOOST电路一13的第二端与直流母线的正极连接,所述BOOST电路一13的控制端与所述微处理器10的第一PWM端口连接;
所述BOOST电路二14的第一端与第二路光伏电池的正极连接,所述BOOST电路二14的第二端与直流母线的正极连接,即第一路光伏电池经过BOOST电路一13升压后与直流母线连接,第二路光伏电池经过BOOST电路二14升压后与直流母线连接;所述BOOST电路二14的控制端与所述微处理器10的第二PWM端口连接;
第一路光伏电池和第二路光伏电池的公共负极PV-与所述电阻开关电路15的第一端连接,所述电阻开关电路15的第二端接大地,所述电阻开关电路15的控制端与所述微处理器10的第一I/O端口连接;
第一路光伏电池和第二路光伏电池的公共负极PV-与直流母线的负极连接;
第一路光伏电池的正极和公共负极PV-之间设置有PV1电压采样电路11,所述PV1电压采样电路11的输出端与所述微处理器10的第一A/D端口连接;第二路光伏电池的正极和公共负极PV-之间设置有PV2电压采样电路12,所述PV2电压采样电路12的输出端与所述微处理器10的第二A/D端口连接;
第一路光伏电池和第二路光伏电池的公共负极PV-与所述下桥臂电压采样电路16的第一端连接,所述下桥臂电压采样电路16的第二端接大地,所述下桥臂电压采样电路16的输出端与所述微处理器10的第三A/D端口连接。
第一路光伏电池和第二路光伏电池是由若干块光伏电池板串并联组成的光伏电池串。
其中,所述微处理器10包括第二I/O端口,所述第二I/O端口连接有报警电路18。
其中,所述微处理器10还包括第三PWM端口组,所述第三PWM端口组与光伏并网逆变器的逆变电路17连接。第三PWM端口组是一组PWM口。
其中,所述电阻开关电路15包括由外部配置的辅助测量电阻R0和开关S1,辅助测量电阻R0的一端与开关S1的一端连接,辅助测量电阻R0的另一端接大地,开关S1的另一端连接公共负极PV-,所述开关S1为开关管、继电器或光耦。
其中,所述PV1电压采样电路11采用差分放大电路或电压传感器隔离采样电路;所述PV2电压采样电路12采用差分放大电路或电压传感器隔离采样电路。
其中,所述微处理器10采用FIR数字滤波算法对A/D采样信号进行数字滤波处理,该微处理器10为DSP微处理器。
一种双支路输入光伏并网逆变器对地绝缘电阻检测系统的检测方法,包括以下步骤:
A、微处理器10关闭逆变电路17、BOOST电路一13和BOOST电路二14;通过PV1电压采样电路11采样第一路光伏电池的输入电压信号VPV1;通过PV2电压采样电路12采样第二路光伏电池的输入电压信号VPV2
B、微处理器10控制电阻开关电路15的开关S1闭合,使辅助测量电阻R0和下桥臂并联,通过下桥臂电压采样电路16采样下桥臂输出电压信号u1;
C、微处理器10控制电阻开关电路15的开关S1断开,使辅助测量电阻R0和下桥臂脱离,微处理器10关闭BOOST电路二14,控制BOOST电路一13,使第一路光伏电池的正极和负极输入短路,通过下桥臂电压采样电路16采样下桥臂输出电压信号u2;光伏电池本身是允许短路的;
D、微处理器10关闭BOOST电路一13,控制BOOST电路二14,使得第二路光伏电池的正极和负极输入短路,通过下桥臂电压采样电路16采样下桥臂输出电压信号u3;
E、微处理器10根据获得的电压信号u1、u2和u3分别计算出第一路光伏电池的正极对大地的绝缘电阻R1+,第二路光伏电池的正极对大地的绝缘电阻R2+,以及第一路光伏电池和第二路光伏电池的公共负极PV-对大地的等效并联绝缘电阻R-;
第一路光伏电池和第二路光伏电池的公共负极PV-与大地之间的电路构成所述的下桥臂。
其中,所述步骤E的计算具体为:
E1、根据电压信号u1,由基尔霍夫电路定律建立第一个关系方程式e1:
Figure 711701DEST_PATH_IMAGE001
E2、根据电压信号u2,由基尔霍夫电路定律建立第二个关系方程式e2:
Figure 260494DEST_PATH_IMAGE002
E3、根据电源信号u3,由基尔霍夫电路定律建立第三个关系方程式e3:
Figure 286219DEST_PATH_IMAGE003
其中,
Figure 553252DEST_PATH_IMAGE004
Figure 939103DEST_PATH_IMAGE005
Figure 342402DEST_PATH_IMAGE006
,R0是已知的辅助测量电阻;
求解由e1、e2、e3组成的三元一次方程组,得出R1+、R2+、R-的电阻值。
三元一次方程组为:
e4、
Figure 293358DEST_PATH_IMAGE008
Figure 718785DEST_PATH_IMAGE009
,解方程组e4可得:
Figure 609698DEST_PATH_IMAGE011
Figure 585744DEST_PATH_IMAGE012
即:
Figure 313397DEST_PATH_IMAGE013
Figure 956868DEST_PATH_IMAGE014
Figure 229718DEST_PATH_IMAGE015
根据上述表达式分别计算出R1+、R2+、R-的电阻值。
进一步地,在步骤E后,还包括步骤F:判断R1+、R2+、R-的电阻值是否满足安规要求。安规要求的具体数值预先保存在微处理器中。
进一步地,在步骤F后,还包括步骤G:若R1+、R2+、R-的电阻值满足安规要求,则允许光伏并网逆变器启动工作;否则,禁止光伏并网逆变器启动工作,并控制报警电路18发出报警信号。
禁止BOOST电路工作就是控制BOOST电路的开关管一直处于断开状态。
同样禁止逆变电路工作就是控制逆变电路的开关管一直处于断开状态。
本发明的双支路输入光伏并网逆变器对地绝缘电阻检测系统及方法,电路实现简单,测量精度较高,实现了双支路输入的光伏电池正极对地绝缘电阻、光伏电池负极对地绝缘电阻的在线实时测量,判断光伏电池正极对地绝缘电阻和光伏电池负极对地绝缘电阻是否满足安规要求,进而采取相应措施,保证了光伏并网逆变器安全可靠地工作。
以上内容仅为本发明的较佳实施例,对于本领域的普通技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,本说明书内容不应理解为对本发明的限制。

Claims (4)

1.一种双支路输入光伏并网逆变器对地绝缘电阻的检测方法,其特征在于:包括以下步骤:
A、微处理器关闭逆变电路、BOOST电路一和BOOST电路二,采样第一路光伏电池的输入电压信号VPV1和第二路光伏电池的输入电压信号VPV2
B、微处理器控制电阻开关电路的开关闭合,使辅助测试电阻和下桥臂并联,采样下桥臂输出电压信号u1;
C、微处理器控制电阻开关电路的开关断开,使辅助测试电阻和下桥臂脱离,关闭BOOST电路二,控制BOOST电路一,使得第一路光伏电池的正极和负极输入短路,微处理器采样下桥臂输出电压信号u2;
D、微处理器关闭BOOST电路一,控制BOOST电路二,使得第二路光伏电池的正极和负极输入短路,微处理器采样下桥臂输出电压信号u3;
E、微处理器根据获得的电压信号u1、u2和u3分别计算出第一路光伏电池的正极对大地的绝缘电阻R1+,第二路光伏电池的正极对大地的绝缘电阻R2+,以及第一路光伏电池和第二路光伏电池的公共负极对大地的等效并联绝缘电阻R-;
第一路光伏电池和第二路光伏电池的公共负极与大地之间的电路构成所述的下桥臂。
2.根据权利要求1所述的一种双支路输入光伏并网逆变器对地绝缘电阻的检测方法,其特征在于:所述步骤E的计算具体为:
E1、根据电压信号u1,由基尔霍夫电路定律建立第一个关系方程式e1:
Figure 93716DEST_PATH_IMAGE002
E2、根据电压信号u2,由基尔霍夫电路定律建立第二个关系方程式e2:
Figure 73173DEST_PATH_IMAGE004
E3、根据电源信号u3,由基尔霍夫电路定律建立第三个关系方程式e3:
Figure 413762DEST_PATH_IMAGE006
其中,
Figure DEST_PATH_IMAGE008
Figure DEST_PATH_IMAGE010
Figure DEST_PATH_IMAGE012
Figure DEST_PATH_IMAGE013
,R0是已知的辅助测量电阻;
求解由e1、e2、e3组成的三元一次方程组,得出R1+、R2+、R-的电阻值。
3.根据权利要求1所述的一种双支路输入光伏并网逆变器对地绝缘电阻的检测方法,其特征在于:在步骤E后,还包括步骤F:判断R1+、R2+、R-的电阻值是否满足安规要求。
4.根据权利要求3所述的一种双支路输入光伏并网逆变器对地绝缘电阻的检测方法,其特征在于:在步骤F后,还包括步骤G:若R1+、R2+、R-的电阻值满足安规要求,则允许光伏并网逆变器启动工作;否则,禁止光伏并网逆变器启动工作,并控制报警电路发出报警信号。
CN201210089947.5A 2012-03-30 2012-03-30 双支路输入光伏并网逆变器对地绝缘电阻检测系统及方法 Active CN102621394B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210089947.5A CN102621394B (zh) 2012-03-30 2012-03-30 双支路输入光伏并网逆变器对地绝缘电阻检测系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210089947.5A CN102621394B (zh) 2012-03-30 2012-03-30 双支路输入光伏并网逆变器对地绝缘电阻检测系统及方法

Publications (2)

Publication Number Publication Date
CN102621394A CN102621394A (zh) 2012-08-01
CN102621394B true CN102621394B (zh) 2014-07-09

Family

ID=46561426

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210089947.5A Active CN102621394B (zh) 2012-03-30 2012-03-30 双支路输入光伏并网逆变器对地绝缘电阻检测系统及方法

Country Status (1)

Country Link
CN (1) CN102621394B (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102798761B (zh) * 2012-08-31 2015-01-07 阳光电源股份有限公司 一种对地绝缘阻抗检测方法、电路及具有该电路的设备
CN102967766B (zh) * 2012-11-23 2015-08-19 广东易事特电源股份有限公司 双路光伏逆变器对地绝缘电阻的无开关管检测系统及方法
CN103018572A (zh) * 2012-12-20 2013-04-03 江苏宏宝电子有限公司 一种光伏并网逆变器绝缘阻抗监控电路
CN103091560A (zh) * 2012-12-24 2013-05-08 江苏兆伏新能源有限公司 双路光伏输入的绝缘阻抗检测电路以及检测方法
CN103630745B (zh) * 2013-05-15 2017-04-12 上海正泰电源系统有限公司 一种高精度的多路共地直流电源绝缘电阻检测电路及方法
CN103986355A (zh) * 2014-04-10 2014-08-13 苏州泽众新能源科技有限公司 一种低压双路mppt高频隔离型并网逆变器
CN104977471B (zh) * 2014-04-11 2018-02-16 维谛技术有限公司 双路输入光伏逆变器对地绝缘阻抗检测系统、方法及装置
CN104535839B (zh) * 2014-12-24 2017-05-17 常熟开关制造有限公司(原常熟开关厂) 光伏并网逆变器的绝缘阻抗检测方法及实现其的检测装置
CN105785133B (zh) * 2016-04-15 2019-12-13 易事特集团股份有限公司 一种双路光伏逆变器的对地绝缘电阻检测电路、方法及装置
CN107305224A (zh) 2016-04-19 2017-10-31 台达电子企业管理(上海)有限公司 光伏逆变器的绝缘阻抗检测电路、检测方法及光伏逆变器
CN106093586B (zh) * 2016-08-17 2022-10-11 苏州爱康能源集团股份有限公司 光伏汇流箱直流系统绝缘电阻检测系统及其检测方法
CN108011514A (zh) * 2017-10-09 2018-05-08 珠海格力电器股份有限公司 光伏空调及其双光伏输入电路和控制方法
CN111082460B (zh) * 2018-03-02 2022-04-08 阳光电源股份有限公司 光伏发电系统、逆变器及其并网运行控制方法和装置
CN108427037B (zh) * 2018-04-16 2023-11-24 北京动力源科技股份有限公司 一种光伏并网逆变器绝缘电阻的监测装置和电子设备
CN109725202B (zh) * 2018-12-27 2021-08-03 科华数据股份有限公司 多路mppt绝缘阻抗检测装置及方法
CN109696582A (zh) * 2019-02-26 2019-04-30 欣旺达电子股份有限公司 绝缘阻抗检测电路及其检测方法
CN110190741B (zh) * 2019-05-09 2020-05-15 合肥工业大学 大功率高升压比光伏直流变流器启动控制方法
CN114720771B (zh) * 2022-06-08 2022-11-15 阳光电源股份有限公司 一种逆变器及其交流绝缘阻抗检测方法
WO2024000553A1 (zh) * 2022-07-01 2024-01-04 华为数字能源技术有限公司 一种多机光伏组件的等效阻抗测量的光伏系统、方法及光伏功率变换设备
CN117590079B (zh) * 2024-01-15 2024-05-10 江苏天合清特电气有限公司 绝缘阻抗检测系统、方法和光储混合能源系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072077A1 (en) * 2007-12-05 2009-06-11 Meir Adest Testing of a photovoltaic panel
CN102279317B (zh) * 2011-06-23 2013-04-17 广东易事特电源股份有限公司 光伏并网逆变器的对地绝缘电阻在线检测方法
CN102279318B (zh) * 2011-06-23 2013-04-17 广东易事特电源股份有限公司 光伏并网逆变器的对地绝缘电阻在线检测系统
CN202486217U (zh) * 2012-03-30 2012-10-10 广东易事特电源股份有限公司 双支路输入光伏并网逆变器对地绝缘电阻检测系统

Also Published As

Publication number Publication date
CN102621394A (zh) 2012-08-01

Similar Documents

Publication Publication Date Title
CN102621394B (zh) 双支路输入光伏并网逆变器对地绝缘电阻检测系统及方法
CN202486217U (zh) 双支路输入光伏并网逆变器对地绝缘电阻检测系统
CN106645963B (zh) 绝缘电阻检测电路及其检测方法
CN104535839B (zh) 光伏并网逆变器的绝缘阻抗检测方法及实现其的检测装置
CN105356848B (zh) 多路mppt输入光伏逆变器的绝缘阻抗检测装置及方法
CN102279317B (zh) 光伏并网逆变器的对地绝缘电阻在线检测方法
CN103048544B (zh) 一种光伏发电系统的绝缘阻抗监测方法
CN104702208B (zh) 大功率光伏逆变器的光伏方阵对地绝缘阻抗在线检测系统
CN102854395B (zh) 一种直流电源对地绝缘电阻检测电路及其检测方法
CN104422825B (zh) 一种直流电源对地绝缘阻抗检测装置和方法
CN107305224A (zh) 光伏逆变器的绝缘阻抗检测电路、检测方法及光伏逆变器
CN202903889U (zh) 双路光伏逆变器对地绝缘电阻的无开关管检测系统
CN205246760U (zh) 一种光伏组件阵列对地绝缘阻抗检测电路
CN102967766B (zh) 双路光伏逆变器对地绝缘电阻的无开关管检测系统及方法
CN103107518B (zh) 一种光伏逆变器及其保护装置
CN202583327U (zh) 一种双路mppt的光伏并网逆变器绝缘阻抗检测电路
CN203465354U (zh) 一种直流电源对地绝缘阻抗检测装置
CN104330712A (zh) 一种充电机绝缘检测装置和绝缘检测方法
CN202870176U (zh) 一种直流接地电阻检测装置
CN104977471B (zh) 双路输入光伏逆变器对地绝缘阻抗检测系统、方法及装置
CN105548755A (zh) 通过单一接地绝缘阻抗检测网络检测逆变器交、直流侧接地的方法
CN105548712B (zh) 逆变器及其方阵绝缘阻抗检测系统、方法和计算单元
CN106452358A (zh) 光伏电池板对地绝缘阻抗检测方法和检测电路
CN103091560A (zh) 双路光伏输入的绝缘阻抗检测电路以及检测方法
CN103323674A (zh) 光伏并网逆变器的对地绝缘阻抗的实时检测电路和检测方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant