CN102610873A - 多孔纳米硅化学电池及其制备方法 - Google Patents

多孔纳米硅化学电池及其制备方法 Download PDF

Info

Publication number
CN102610873A
CN102610873A CN2012101095743A CN201210109574A CN102610873A CN 102610873 A CN102610873 A CN 102610873A CN 2012101095743 A CN2012101095743 A CN 2012101095743A CN 201210109574 A CN201210109574 A CN 201210109574A CN 102610873 A CN102610873 A CN 102610873A
Authority
CN
China
Prior art keywords
porous nano
battery
silicon
silicones
chemistry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012101095743A
Other languages
English (en)
Inventor
黄远明
翟保改
马青兰
佘倬然
黄晨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN2012101095743A priority Critical patent/CN102610873A/zh
Publication of CN102610873A publication Critical patent/CN102610873A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Hybrid Cells (AREA)

Abstract

本发明公开一种多孔纳米硅化学电池及其制备方法,属于新能源技术领域。本发明提供一种新的技术和方法,利用半导体硅为原始材料,经电化学腐蚀后制成能带较大的纳米硅,以含碘化钾的溶液作为电解液,用所获得的多孔纳米硅薄膜制备化学电池。所制备的多孔纳米硅制备化学电池其光生电压可以达到600毫伏。

Description

多孔纳米硅化学电池及其制备方法
一、技术领域
本发明涉及一种多孔纳米硅化学电池及其制备方法,属于新能源技术领域。
二、背景技术
半导体硅在新能源材料中有着重要十分重要的地位,通常用来制作单晶硅、多晶硅和非晶硅太阳能电池。因硅的能带较窄,它难于同具有较高费米能的化学电解液形成良好的接触,所以很难利用半导体硅材料直接性能良好的化学电池。本发明提供一种新的技术和方法,利用半导体硅为原始材料,经电化学腐蚀后制成多孔纳米硅,以含碘化钾的溶液作为电解液,用多孔纳米硅制备化学电池。
三、发明内容
本发明提供一种多孔纳米硅化学电池及其制备方法。本发明多孔纳米硅化学电池,其特征在于:所述多孔纳米硅化学电池中多孔纳米硅薄膜为电池的一个电极,以金属丝网作为电池的另一个电极,以含碘化钾的溶液作为电池的电解液。
本发明所述的多孔纳米硅化学电池的制备方法,其具体步骤如下:
1)选择单面或双面抛光的硅片作为衬底材料,一面蒸镀一层铝膜,热处理形成欧姆接触;
2)将上述硅衬底材料放入含氢氟酸的液体里进行电化学腐蚀,形成多孔纳米硅薄膜;
3)以上述多孔纳米硅薄膜作为一个电极材料,以金属丝网或石墨作为另一个电极材料,
在所述两个电极之间注入含碘化钾的电解液,封装形成所述的多孔纳米硅太阳能化学电池。
本发明所述的多孔纳米硅薄膜是以纳米硅为基本骨架的多孔半导体薄膜,其厚度在1纳米至1000微米之间,其特征在于:具有半导体材料的导电特性,其电阻率在0.002-1000欧姆·厘米之间。
本发明所述的金属丝网包括但不限于用铂、金、铜等金属及其合金制成的金属丝、金属圈、金属棒和金属网,其特征在于:具有导电能力并作为多孔纳米硅化学电池的一个电极;具有让部分或全部入射光通过的能力。
四、附图说明
图1是本发明制备的多孔纳米硅化学电池的光生电压随光照时间变化关系图。
图2是本发明制备的多孔纳米硅化学电池间歇式放电时的电压变化图。
图3是本发明制备的多孔纳米硅化学电池的电流-电压曲线图。
五、具体实施方式
本实施方式中以p型硅为原料制备多孔纳米硅、以碘化钾水溶液作电解液、以铂金丝网作对电极为例阐释多孔纳米硅化学电池及其制作方法。
选择单面抛光的p型硅片作为衬底材料,背面蒸镀一层铝膜,热处理形成欧姆接触后,放在由浓度为40%的氢氟酸和浓度为95%的乙醇按1:1等体积比配制成的电解液中,电流密度为3毫安每平方厘米,通电60分钟,取出清洗干燥,获得多孔纳米硅薄膜;将所述多孔纳米硅薄膜作为工作电极,与浓度为1M的碘化钾水性电解液接触,以铂金丝网作对电极,封装后制成了多孔纳米硅化学电池。图1为本发明多孔纳米硅化学电池的光生电压随光照时间的变化关系图,结果表明多孔纳米硅化学电池的光生电压达到0.6伏特;随着时间的推移,多孔纳米硅化学电池的光生电压最后稳定在0.25伏特。图2是本发明制备的多孔纳米硅化学电池随外电路通断时电压变化图;结果表明多孔纳米硅化学电池的光生电压能很好地重复再现。图3是本发明制备的多孔纳米硅化学电池的电流-电压曲线图;结果表明多孔纳米硅化学电池的光生电流电压的关系符合电池的电流电压基本关系。

Claims (4)

1.一种多孔纳米硅化学电池,其特征在于:所述多孔纳米硅化学电池中多孔纳米硅薄膜为电池的一个电极,以金属丝网作为电池的另一个电极,以含碘化钾的溶液作为电池的电解液。
2.如权利要求1所述的多孔纳米硅化学电池的制备方法,其具体步骤如下:
1)选择单面或双面抛光的硅片作为衬底材料,一面蒸镀一层铝膜,热处理形成欧姆接触;
2)将上述硅衬底材料放入含氢氟酸的液体里进行电化学腐蚀,形成多孔纳米硅薄膜;
3)以上述多孔纳米硅薄膜作为一个电极材料,以金属丝网或石墨作为另一个电极材料,在所述两个电极之间注入含碘化钾的电解液,封装形成所述的多孔纳米硅太阳能化学电池。
3.如权利要求1或2所述的多孔纳米硅薄膜是以纳米硅为基本骨架的多孔半导体薄膜,其厚度在1纳米至1000微米之间,其特征在于:具有半导体材料的导电特性,其电阻率在0.002-1000欧姆·厘米之间。
4.如权利要求1-2所述的金属丝网包括但不限于用铂、金、铜等金属及其合金制成的金属丝、金属圈、金属棒和金属网,其特征在于:具有导电能力并作为多孔纳米硅太阳能化学电池的一个电极;具有让部分或全部入射光通过的能力。
CN2012101095743A 2012-04-16 2012-04-16 多孔纳米硅化学电池及其制备方法 Pending CN102610873A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012101095743A CN102610873A (zh) 2012-04-16 2012-04-16 多孔纳米硅化学电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012101095743A CN102610873A (zh) 2012-04-16 2012-04-16 多孔纳米硅化学电池及其制备方法

Publications (1)

Publication Number Publication Date
CN102610873A true CN102610873A (zh) 2012-07-25

Family

ID=46528107

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012101095743A Pending CN102610873A (zh) 2012-04-16 2012-04-16 多孔纳米硅化学电池及其制备方法

Country Status (1)

Country Link
CN (1) CN102610873A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020048199A1 (zh) * 2018-09-03 2020-03-12 王益成 一种化学电池及其金属负极的结构

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1666377A (zh) * 2002-07-09 2005-09-07 株式会社藤仓 太阳电池

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1666377A (zh) * 2002-07-09 2005-09-07 株式会社藤仓 太阳电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈兰莉等: "多孔硅的分形结构及其荧光特性", 《光子学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020048199A1 (zh) * 2018-09-03 2020-03-12 王益成 一种化学电池及其金属负极的结构

Similar Documents

Publication Publication Date Title
Dharmadasa et al. Strengths and advantages of electrodeposition as a semiconductor growth technique for applications in macroelectronic devices
Peng et al. Platinum nanoparticle decorated silicon nanowires for efficient solar energy conversion
AlOtaibi et al. High efficiency photoelectrochemical water splitting and hydrogen generation using GaN nanowire photoelectrode
Young et al. Photo-assisted water oxidation with cobalt-based catalyst formed from thin-film cobalt metal on silicon photoanodes
Wang et al. Direct water splitting under visible light with nanostructured hematite and WO3 photoanodes and a GaInP2 photocathode
Xu et al. Photoelectrochemical cell for unassisted overall solar water splitting using a BiVO 4 photoanode and Si nanoarray photocathode
Zhao et al. Electrodeposition of photoactive silicon films for low-cost solar cells
Li et al. Electrodeposition and characterization of copper bismuth selenide semiconductor thin films
JP2018043193A (ja) 光透過性酸素発生触媒およびその製造方法、ならびにそれを利用した化学反応装置
Yae et al. Antireflective porous layer formation on multicrystalline silicon by metal particle enhanced HF etching
Abdelfatah et al. Effect of potentiostatic and galvanostatic electrodeposition modes on the basic parameters of solar cells based on Cu2O thin films
Sun et al. Enhanced photoelectrochemical cathodic protection performance of the In2O3/TiO2 composite
Jing et al. Photoelectrochemical cathodic protection induced from nanoflower-structured WO3 sensitized with CdS nanoparticles
Deutsch et al. Photoelectrochemical characterization and durability analysis of GaInPN epilayers
CN103594248A (zh) 一种Bi2S3量子点敏化TiO2的太阳能电池的制备方法
Iwai et al. α-PbO2 Formation on the Cathode of Lead Acid Battery due to the Local Cell Reaction
Halima et al. Metal-free black silicon for solar-powered hydrogen generation
Yae et al. Electrochemical deposition of fine Pt particles on n-Si electrodes for efficient photoelectrochemical solar cells
McKone et al. Unassisted HI photoelectrolysis using n-WSe 2 solar absorbers
Yae et al. Solar to chemical conversion using metal nanoparticle modified microcrystalline silicon thin film photoelectrode
Wang et al. Single crystalline ordered silicon wire/Pt nanoparticle hybrids for solar energy harvesting
Jawad et al. An alternative method to grow Ge thin films on Si by electrochemical deposition for photonic applications
CN104947165B (zh) 一种氟掺杂的n型氧化亚铜半导体薄膜的制备方法
CN102610873A (zh) 多孔纳米硅化学电池及其制备方法
Dadwal et al. Silicon-silver dendritic nanostructures for the enhanced photoelectrochemical splitting of natural water

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120725