CN102608092B - 高灵敏度的铜离子检测用荧光生物传感器及其检测方法 - Google Patents

高灵敏度的铜离子检测用荧光生物传感器及其检测方法 Download PDF

Info

Publication number
CN102608092B
CN102608092B CN201210085632.3A CN201210085632A CN102608092B CN 102608092 B CN102608092 B CN 102608092B CN 201210085632 A CN201210085632 A CN 201210085632A CN 102608092 B CN102608092 B CN 102608092B
Authority
CN
China
Prior art keywords
quantum dot
oxidase
copper ion
enzyme
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210085632.3A
Other languages
English (en)
Other versions
CN102608092A (zh
Inventor
郭彩欣
戴志飞
王金梁
成晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201210085632.3A priority Critical patent/CN102608092B/zh
Publication of CN102608092A publication Critical patent/CN102608092A/zh
Application granted granted Critical
Publication of CN102608092B publication Critical patent/CN102608092B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

高灵敏度的铜离子检测用荧光生物传感器及其检测方法,涉及一种生物传感器及利用其对水中铜离子进行检测的方法。为了解决目前铜检测中灵敏度低、选择性差等问题,本发明的铜离子检测用荧光生物传感器由量子点、酶和酶底物制成,将酶加入量子点溶液中,随后加入酶底物,测得量子点荧光强度的变化;将酶和不同浓度的铜离子先混合后再加入量子点溶液中,随后加入酶底物,测得量子点荧光强度的变化,以相对荧光强度-铜离子浓度作图,计算得到铜离子的检测限。本发明工艺简单,价格低廉,反应条件温和,易操作,重现性好,是一种很有前景的检测技术,适用于环境中甚至生物体系铜离子的痕量检测。

Description

高灵敏度的铜离子检测用荧光生物传感器及其检测方法
技术领域
本发明涉及一种荧光生物传感器及利用其对水中铜离子进行检测的方法。
背景技术
由于工农业废弃物和城市生活垃圾的剧增以及农药和化肥的大量使用, 人类赖以生存的土壤、水体等环境遭受到了严重的重金属污染, 并呈加剧趋势。在所有重金属离子中,铜离子是一种重要的痕量元素,在各种生理环境中发挥着重要的作用。然而,过量摄入铜离子可能导致人体出现湿疹,危害人的肾脏和中枢神经系统。所以对环境和生物样品中铜离子的分析检测变得越来越重要。人们采用多种手段来检测痕量铜离子的浓度,比如原子吸收光谱法,电感耦合等离子体质谱( ICP-MS) 、离子交换色谱等技术、电化学法、化学发光、吸收光谱和比色法等。这些技术灵敏度高、特异性强,但存在着样品前处理较为复杂、仪器费用高和需要专业人员进行操作等缺陷, 难以用于重金属的现场检测。由于铜离子可以抑制酶的活性,很多学者采用酶生物传感器来检测铜离子。酶生物传感器是一种很有前景的技术,具有检测时间短,简便、样品用量少等优点。但是酶传感器的一个缺点就是检测限高,难以实现痕量样品的检测。
虽然很多方法可以用来检测铜离子,基于有机染料的荧光型传感器以其较高的灵敏度和操作简单的特点优于其他方法。然而,有机染料的缺点也很明显,比如信号强度低,容易光漂白,激发光谱窄,发射光谱宽,难以在同一个样品中同时分析不同的物质。
荧光量子点能够克服有机荧光染料遇到的上述问题,在化学和生物检测中发挥了越来越大的作用。这些纳米晶材料具有尺寸可调的光学性质、宽吸收、窄发射、高量子效率、光稳定性等特点。由于量子点的光学性质强烈依靠其表面特性,分析物和量子点表面发生相互作用会导致其光学性质的巨大变化。所以功能化量子点被广泛用来检测离子、分子、生物识别和生物催化等。量子点的一个引人注目的特性是对过氧化氢非常敏感,过氧化氢能腐蚀量子点,使其表面产生缺陷,因而导致量子点的荧光猝灭。过氧化氢是所有氧化酶催化底物后的产物,因此通过过氧化氢来控制量子点的光学特性可以用来测定氧化酶活性、底物或酶抑制剂。到目前为止,还没有采用量子点的荧光性质结合酶抑制法来检测重金属离子的报道。
发明内容
本发明的目的是利用量子点荧光检测的高灵敏度结合酶催化反应的高效、专一性,解决目前铜检测中灵敏度低、选择性差等问题,提供一种高灵敏度的铜离子检测用荧光生物传感器及其检测方法。
本发明的铜离子检测用荧光生物传感器由量子点、酶和酶底物制成,其中量子点浓度为10-7~10-3 mol/L,酶浓度为0.01~10U/mL,酶底物浓度为10-4 ~1 mol/L。
本发明按照如下步骤对水中铜离子进行检测:一、将酶加入量子点溶液中,随后加入酶底物,测得量子点荧光强度的变化;二、将酶和不同浓度的铜离子先混合后再加入量子点溶液中,随后加入酶底物,测得量子点荧光强度的变化,以相对荧光强度-铜离子浓度作图,计算得到铜离子的检测限;上述步骤中量子点浓度为10-7~10-3 mol/L,酶浓度为0.01~10U/mL,酶底物浓度为10-4 ~1 mol/L
本发明采用的量子点为CdSe、CdTe、CdS、PbS、CdSeZnS、CdSeCdS、CdSeS中的一种或几种的混合物;酶为甘油磷酸氧化酶、细胞色素C氧化酶、碱性磷酸酯酶、葡萄糖氧化酶、乙醇氧化酶、肌氨酸氧化酶、胆碱氧化酶、抗坏血酸氧化酶、黄嘌呤氧化酶、谷胱甘肽氧化酶、D-氨基酸氧化酶中的一种;酶底物为甘油磷酸、细胞色素C、葡萄糖、甲醇、肌氨酸、胆碱、抗坏血酸、嘌呤、谷胱甘肽、D-氨基酸中的一种。
本发明具有以下优点:
一、本发明得到的检测铜离子的荧光生物传感器,由于量子点具有高的荧光量子产率,结合荧光检测的高灵敏度,使得检测灵敏度提高,检测限降低。
二、本发明得到的检测铜离子的荧光生物传感器,采用量子点荧光猝灭结合酶抑制法来检测铜离子,由于酶的活性被铜离子选择性猝灭,提高了检测的选择性。
三、本发明得到的检测铜离子的荧光生物传感器,是基于铜离子对酶活性的抑制作用,从而使量子点猝灭程度降低,荧光强度增强。与以往量子点检测主要是基于分析物对量子点的荧光猝灭作用相比,这种检测模式可以避免环境中其他分析物的干扰,提高检测的抗干扰能力。
四、本发明工艺简单,价格低廉,反应条件温和,易操作,重现性好,是一种很有前景的检测技术,适用于环境中甚至生物体系铜离子的痕量检测。
附图说明
图1表示在量子点溶液中加入酶和底物后,荧光光谱随反应时间的变化图。(a)为量子点初始荧光光谱;(b)为加入酶后的荧光光谱;(c-j)为在量子点和酶体系中加入底物1、3、4、5、6、7、8和10分钟后的荧光光谱。
图2表示在铜离子存在下,量子点、酶、底物体系的相对荧光强度随时间变化图。
图3表示荧光相对强度F/F0与铜离子浓度线性关系曲线。
图4表示本发明的生物传感器的抗干扰能力。
具体实施方式
具体实施方式一:本实施方式的铜离子检测用荧光生物传感器由量子点、酶和酶底物制成,其中量子点浓度为10-7~10-3 mol/L,酶浓度为0.01~10U/mL,酶底物浓度为10-4 ~1 mol/L。
本实施方式中,量子点为CdSe、CdTe、CdS、PbS、CdSeZnS、CdSeCdS、CdSeS中的一种或几种的混合物,其中CdSeZnS表示是一种核壳结构的量子点,CdSe为内核,外边包覆一层ZnS的量子点。
本实施方式中,酶为甘油磷酸氧化酶、细胞色素C氧化酶、碱性磷酸酯酶、葡萄糖氧化酶、乙醇氧化酶、肌氨酸氧化酶、胆碱氧化酶、抗坏血酸氧化酶、黄嘌呤氧化酶、谷胱甘肽氧化酶、D-氨基酸氧化酶中的一种。
本实施方式中,酶底物为甘油磷酸、细胞色素C、葡萄糖、甲醇、肌氨酸、胆碱、抗坏血酸、嘌呤、谷胱甘肽、D-氨基酸中的一种。
具体实施方式二:本实施方式按照如下步骤对水中铜离子进行检测:一、将酶加入量子点溶液中,随后加入酶底物,测得量子点荧光强度的变化。二、将酶和不同浓度的铜离子先混合后再加入量子点溶液中,随后加入酶底物,测得量子点荧光强度的变化。以相对荧光强度-铜离子浓度作图,计算得到铜离子的检测限。其中量子点浓度为10-7~10-3 mol/L,酶浓度为0.01~10U/mL,酶底物浓度为10-4 ~1 mol/L。
本实施方式的两个步骤分别是酶促反应(以及酶活性的抑制)和量子点荧光猝灭,第一步是酶和底物反应产生产物过氧化氢,第二步是用上一步产生的过氧化氢去猝灭量子点的荧光(荧光降低),这样在酶促反应下得到量子点荧光的变化值(I)。
当环境中存在铜离子的时候,铜离子会抑制酶的活性,使第一步中产生的过氧化氢的量减少,进而参与到第二步中的过氧化氢量减少,量子点的荧光猝灭程度减小或不被猝灭,可得含有铜离子条件下的酶促反应使量子点荧光发生变化的变化值(II)
比较I和II,便可定性定量的检测出环境中是否有铜离子,有多少铜离子。
本实施方式中量子点为CdSe、CdTe、CdS、PbS、CdSeZnS、CdSeCdS、CdSeS中的一种或几种的混合物;酶为甘油磷酸氧化酶、细胞色素C氧化酶、碱性磷酸酯酶、葡萄糖氧化酶、乙醇氧化酶、肌氨酸氧化酶、胆碱氧化酶、抗坏血酸氧化酶、黄嘌呤氧化酶、谷胱甘肽氧化酶、D-氨基酸氧化酶中的一种;酶底物为甘油磷酸、细胞色素C、葡萄糖、甲醇、肌氨酸、胆碱、抗坏血酸、嘌呤、谷胱甘肽、D-氨基酸中的一种。
具体实施方式三:本实施方式的铜离子检测用荧光生物传感器中量子点浓度为3.9 × 10-5 mol/L,酶浓度为1U/mL,酶底物浓度为4.92× 10-3mol/L。
本实施方式中,当酶和底物加入量子点溶液中后,量子点的荧光明显降低,如图1所示。但酶和底物本身对量子点荧光强度没有明显影响,如图1(b)所示,因此量子点荧光猝灭应该是由于酶催化底物产生的过氧化氢导致的。
具体实施方式四:本实施方式的铜离子检测用荧光生物传感器中量子点浓度为3.9 × 10-5 mol/L,酶浓度为0.1U/mL,酶底物浓度为2.46× 10-3mol/L,铜离子浓度分别为0、0.24 ng/mL、0.96 ng/mL、1.44 ng/mL、1.92 ng/mL、2.4 ng/mL。
本实施方式中,加入铜离子后,酶活性降低,因此量子点荧光猝灭被抑制,即相对荧光强度(F/F0,F和F0分别代表加入甲醇前后量子点的荧光强度)升高。如图2所示。且随着铜离子浓度增加,抑制效果越显著,F/F0值越大。当铜离子浓度为2.4 ng/mL时,F/F0接近于1,说明酶活性基本被完全抑制。铜离子浓度在0 ~2.4 ng/mL范围内,相对荧光强度F/F0与铜离子浓度呈现线性关系,如图3所示,当信噪比=3时,我们得出此荧光生物传感器的检测限为0.176 ng/mL,远远低于美国环境保护局规定的饮用水中铜离子的最高含量1.3 μg/mL。 
具体实施方式五:本实施方式的荧光生物传感器由量子点、酶、底物、铜离子和其他干扰离子制成,其中量子点浓度为3.9 × 10-5 mol/L,酶浓度为0.1U/mL,底物浓度为2.46× 10-3 mol/L,铜离子浓度为2.4ng/mL,Hg2+浓度为24ng/mL,其余离子浓度为240ng/mL。
本实施方式中,当其他干扰离子和铜离子共存时,酶活性被大大抑制。但如果只存在干扰离子时,酶活性变化不大,如图4所示。表明这种生物传感器对铜离子具有很好的选择性,高于其他碱金属、碱土金属和重金属离子。
具体实施方式六:本实施方式按照如下步骤对水中铜离子进行检测:(一)将酶加入量子点溶液中,随后加入酶底物,测得量子点荧光强度的变化。其中量子点是CdTe量子点,浓度3.9 × 10-5 mol/L,酶是乙醇氧化酶,浓度0.1U/mL,底物是甲醇,浓度为2.46mM。(二)将酶和不同浓度的铜离子先混合后再加入量子点溶液中,随后加入酶底物,测得量子点荧光强度的变化。以相对荧光强度-铜离子浓度作图,计算得到铜离子的检测限。
具体实施方式七:本实施方式按照如下步骤对水中铜离子进行检测:(一)将酶加入量子点溶液中,随后加入酶底物,测得量子点荧光强度的变化。其中量子点是CdTe量子点,浓度3.9 × 10-5 mol/L,酶是乙醇氧化酶,浓度0.1U/mL,底物是甲醇,浓度为2.46mM。(二)将0.1U/mL乙醇氧化酶分别与浓度为240ng/mL 的Na+, K+, Ca2+, Mg2+, Zn2+, Fe3+, Co2+, Ni2+, Cd2+,Pb2+ ,以及浓度为24ng/mL的Hg2+的背景离子混合。将存在和不存在2.4ng/mLCu2+的酶-金属离子混合物,加入到量子点溶液中,随后加入底物甲醇,测得量子点荧光强度的变化。存在Cu2+的情况下,乙醇氧化酶的活性被有效地抑制了,而仅存在背景离子的情况下,即使这些离子的浓度是Cu2+的100倍,对量子点荧光的影响也是非常小的。表明这种生物传感器对铜离子具有很好的选择性,高于其他碱金属、碱土金属和重金属离子。
具体实施方式八:本实施方式按照如下步骤对水中铜离子进行检测:(一)将葡萄糖氧化酶加入到CdSeZnS量子点溶液中,随后加入酶底物葡萄糖,测得量子点荧光强度的变化。其中量子点浓度5.0 × 10-4 mol/L,葡萄糖氧化酶浓度0.5U/mL,葡萄糖浓度为1mM。(二)将酶和不同浓度的铜离子先混合后再加入量子点溶液中,随后加入酶底物,测得量子点荧光强度的变化。以相对荧光强度-铜离子浓度作图,计算得到铜离子的检测限。
具体实施方式九:本实施方式按照如下步骤对水中铜离子进行检测:(一)将甘油磷酸氧化酶加入到CdS量子点溶液中,随后加入酶底物甘油磷酸,测得量子点荧光强度的变化。其中量子点浓度7.5 × 10-6 mol/L,甘油磷酸氧化酶浓度0.1 U/mL,甘油磷酸浓度为2 mM。(二)将酶和不同浓度的铜离子先混合后再加入量子点溶液中,随后加入酶底物,测得量子点荧光强度的变化。以相对荧光强度-铜离子浓度作图,计算得到铜离子的检测限。

Claims (8)

1.高灵敏度的铜离子检测用荧光生物传感器,其特征在于所述荧光生物传感器由量子点、酶和酶底物制成,其中量子点浓度为10-7~10-3 mol/L,酶浓度为0.01~10U/mL,酶底物浓度为10-4 ~1 mol/L。
2.根据权利要求1所述的高灵敏度的铜离子检测用荧光生物传感器,其特征在于所述量子点为CdSe、CdTe、CdS、PbS、CdSeZnS、CdSeCdS、CdSeS中的一种或几种的混合物。
3.根据权利要求1所述的高灵敏度的铜离子检测用荧光生物传感器,其特征在于所述酶为甘油磷酸氧化酶、细胞色素C氧化酶、碱性磷酸酯酶、葡萄糖氧化酶、乙醇氧化酶、肌氨酸氧化酶、胆碱氧化酶、抗坏血酸氧化酶、黄嘌呤氧化酶、谷胱甘肽氧化酶、D-氨基酸氧化酶中的一种。
4.根据权利要求1所述的高灵敏度的铜离子检测用荧光生物传感器,其特征在于所述酶底物为甘油磷酸、细胞色素C、葡萄糖、甲醇、肌氨酸、胆碱、抗坏血酸、嘌呤、谷胱甘肽、D-氨基酸中的一种。
5.权力要求1所述的高灵敏度的铜离子检测用荧光生物传感器检测方法,其特征在于所述检测方法包括如下两个步骤:一、将酶加入量子点溶液中,随后加入酶底物,测得量子点荧光强度的变化;二、将酶和不同浓度的铜离子先混合后再加入量子点溶液中,随后加入酶底物,测得量子点荧光强度的变化,以相对荧光强度-铜离子浓度作图,计算得到铜离子的检测限。
6.根据权利要求5所述的高灵敏度的铜离子检测用荧光生物传感器检测方法,其特征在于所述量子点为CdSe、CdTe、CdS、PbS、CdSeZnS、CdSeCdS、CdSeS中的一种。
7.根据权利要求5所述的高灵敏度的铜离子检测用荧光生物传感器检测方法,其特征在于所述酶为甘油磷酸氧化酶、细胞色素C氧化酶、碱性磷酸酯酶、葡萄糖氧化酶、乙醇氧化酶、肌氨酸氧化酶、胆碱氧化酶、抗坏血酸氧化酶、黄嘌呤氧化酶、谷胱甘肽氧化酶、D-氨基酸氧化酶中的一种。
8.根据权利要求5所述的高灵敏度的铜离子检测用荧光生物传感器检测方法,其特征在于所述酶底物为甘油磷酸、细胞色素C、葡萄糖、甲醇、肌氨酸、胆碱、抗坏血酸、嘌呤、谷胱甘肽、D-氨基酸中的一种。
CN201210085632.3A 2012-03-28 2012-03-28 高灵敏度的铜离子检测用荧光生物传感器及其检测方法 Expired - Fee Related CN102608092B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210085632.3A CN102608092B (zh) 2012-03-28 2012-03-28 高灵敏度的铜离子检测用荧光生物传感器及其检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210085632.3A CN102608092B (zh) 2012-03-28 2012-03-28 高灵敏度的铜离子检测用荧光生物传感器及其检测方法

Publications (2)

Publication Number Publication Date
CN102608092A CN102608092A (zh) 2012-07-25
CN102608092B true CN102608092B (zh) 2014-03-12

Family

ID=46525643

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210085632.3A Expired - Fee Related CN102608092B (zh) 2012-03-28 2012-03-28 高灵敏度的铜离子检测用荧光生物传感器及其检测方法

Country Status (1)

Country Link
CN (1) CN102608092B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109613266A (zh) * 2018-12-30 2019-04-12 吉林大学 一种检测糖化白蛋白及其浓度的方法、检测糖化氨基酸氧化酶-酮胺氧化酶及其浓度的方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104877662A (zh) * 2015-04-17 2015-09-02 西北师范大学 巯基聚乙烯醇量子点复合材料的制备及在检测水样中痕量Cu2+的应用
CN105628659A (zh) * 2015-12-21 2016-06-01 大连理工大学 一种检测铅离子和锌离子的方法
CN106018365B (zh) * 2016-05-19 2019-08-06 南京林业大学 山奈酚与环糊精的复配液及其应用
CN109046453B (zh) * 2018-07-03 2020-11-20 山东交通学院 一种CdSeS点配合物复合材料的制备方法及应用
CN110628427A (zh) * 2019-10-15 2019-12-31 东北林业大学 一种双峰发射碳量子点及其制备方法和应用
CN115047055B (zh) * 2022-05-27 2023-09-12 长垣烹饪职业技术学院 一种传感器检测铅离子方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101750486A (zh) * 2008-12-19 2010-06-23 苏州纳凯科技有限公司 用一类基于与组氨酸结合生成荧光基团的铱配合物标记抗体
EP2260108A2 (en) * 2008-03-03 2010-12-15 Kansas State University Research Foundation Protease assay
CN101963581A (zh) * 2010-07-22 2011-02-02 合肥学院 对痕量TNT检测的ZnS:Cu2+纳米晶荧光探针的制备方法
WO2011069997A2 (en) * 2009-12-09 2011-06-16 Iti Scotland Limited Detecting analytes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2260108A2 (en) * 2008-03-03 2010-12-15 Kansas State University Research Foundation Protease assay
CN101750486A (zh) * 2008-12-19 2010-06-23 苏州纳凯科技有限公司 用一类基于与组氨酸结合生成荧光基团的铱配合物标记抗体
WO2011069997A2 (en) * 2009-12-09 2011-06-16 Iti Scotland Limited Detecting analytes
CN101963581A (zh) * 2010-07-22 2011-02-02 合肥学院 对痕量TNT检测的ZnS:Cu2+纳米晶荧光探针的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
《牛血清蛋白修饰的CdTe 量子点作为铜离子检测探针的实验研究》;郑元青等;《工业卫生与职业病》;20090430;193-197 *
《食品安全快速检测方法的研究进展》;周思等;《色谱》;20110731;580-586 *
周思等.《食品安全快速检测方法的研究进展》.《色谱》.2011,
郑元青等.《牛血清蛋白修饰的CdTe 量子点作为铜离子检测探针的实验研究》.《工业卫生与职业病》.2009,193-197.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109613266A (zh) * 2018-12-30 2019-04-12 吉林大学 一种检测糖化白蛋白及其浓度的方法、检测糖化氨基酸氧化酶-酮胺氧化酶及其浓度的方法
CN109613266B (zh) * 2018-12-30 2021-11-05 吉林大学 一种检测糖化白蛋白及其浓度的方法、检测糖化氨基酸氧化酶-酮胺氧化酶及其浓度的方法

Also Published As

Publication number Publication date
CN102608092A (zh) 2012-07-25

Similar Documents

Publication Publication Date Title
CN102608092B (zh) 高灵敏度的铜离子检测用荧光生物传感器及其检测方法
Sheng et al. Silver nanoclusters-catalyzed luminol chemiluminescence for hydrogen peroxide and uric acid detection
Gerardi et al. Analytical applications of tris (2, 2′-bipyridyl) ruthenium (III) as a chemiluminescent reagent
Liu et al. Smartphone based platform for ratiometric fluorometric and colorimetric determination H2O2 and glucose
Yu et al. Iodophenol blue-enhanced luminol chemiluminescence and its application to hydrogen peroxide and glucose detection
Yi et al. Smartphone-based ratiometric fluorescent definable system for phosphate by merged metal− organic frameworks
Zheng et al. Flow-injection electrogenerated chemiluminescence determination of epinephrine using luminol
Liu et al. Determination of nitrite based on its quenching effect on anodic electrochemiluminescence of CdSe quantum dots
Fereja et al. Highly sensitive and selective non-enzymatic glucose detection based on indigo carmine/hemin/H 2 O 2 chemiluminescence
Wang et al. Electrochemical strategy for pyrophosphatase detection Based on the peroxidase-like activity of G-quadruplex-Cu2+ DNAzyme
Jiangzhou et al. Dissimilatory Fe (III) reduction characteristics of paddy soil extract cultures treated with glucose or fatty acids
CN106191042A (zh) 基于核酸外切酶iii辅助的双循环串联信号放大dna组合探针组合物及制备方法与应用
Price et al. Hydrogen peroxide in the marine environment: cycling and methods of analysis
CN107607507B (zh) 一种有机磷农药残留的荧光检测方法
CN104316503A (zh) 一种基于石墨烯量子点(GQDs)的传感器的用途以及检测方法
CN110596061A (zh) 基于BPEI-CuNCs荧光探针快速检测铜离子的方法
Wang et al. A reusable ratiometric fluorescent biosensor with simple operation for cysteine detection in biological sample
Azmi et al. An optical based biosensor for the determination of ammonium in aqueous environment
Niu et al. Pyrophosphate-Mediated On–Off–On Oxidase-Like Activity Switching of Nanosized MnFe 2 O 4 for Alkaline Phosphatase Sensing
Yang et al. Development of a novel nitrite amperometric sensor based on poly (toluidine blue) film electrode
US20220390377A1 (en) Technique for quantitatively detecting alkaline phosphatase activity in seawater based on surface-enhanced raman spectroscopy
Nie et al. Determination of urea in milk based on N-bromosuccinimide–dichlorofluorescein postchemiluminescence method
CN105891182B (zh) 一种对过氧化氢酶定量的方法
Chen et al. Selective detection of uric acid in the presence of ascorbic acid based on electrochemiluminescence quenching
Pérez-Ruiz et al. Chemiluminescent determination of oxalate based on its enhancing effect on the oxidation of methyl red by dichromate

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140312

Termination date: 20150328

EXPY Termination of patent right or utility model