CN102607607B - 一种h形微纳米光纤表面等离激元传感器及其制备方法 - Google Patents

一种h形微纳米光纤表面等离激元传感器及其制备方法 Download PDF

Info

Publication number
CN102607607B
CN102607607B CN201210043679.3A CN201210043679A CN102607607B CN 102607607 B CN102607607 B CN 102607607B CN 201210043679 A CN201210043679 A CN 201210043679A CN 102607607 B CN102607607 B CN 102607607B
Authority
CN
China
Prior art keywords
optical fiber
micro
fiber
nano
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210043679.3A
Other languages
English (en)
Other versions
CN102607607A (zh
Inventor
闫海涛
巩晓阳
赵晓艳
甄志强
夏立新
李立本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Science and Technology
Original Assignee
Henan University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Science and Technology filed Critical Henan University of Science and Technology
Priority to CN201210043679.3A priority Critical patent/CN102607607B/zh
Publication of CN102607607A publication Critical patent/CN102607607A/zh
Application granted granted Critical
Publication of CN102607607B publication Critical patent/CN102607607B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明涉及一种H形微纳米光纤表面等离基元传感器及其制备方法,所述传感器包括H形微光纤和封装在外部的玻璃套管,H形光纤由单模光纤加工而成,具有上、下敞口的双凹槽结构,其中凹槽的槽底与光纤纤芯的外表面相切,且在上、下凹槽的槽底均镀有金属薄膜。其制备方法包括:(1)光纤腐蚀处理;(2)H形微纳米光纤成形处理;(3)金属镀膜处理;(4)玻璃套管封装;本发明的光纤传感器应用广泛,可以应用于所用需要由外部因素导致结构特征变化的场合,并实时监控,且灵敏度高、检测距离远,采用偏振耦合的相干检测,是所有光纤传感器中较高灵敏的,采用窄线宽光源,检测距离远;成本较低,由单模光纤加工而成,制作成本较低,便于推广使用。

Description

一种H形微纳米光纤表面等离激元传感器及其制备方法
技术领域
本发明涉及一种光纤传感器,具体涉及一种H形微纳米光纤表面等离激元传感器及其制备方法。
背景技术
近年来,传感器在朝着灵敏、精确、适应性强、小巧和智能化的方向发展。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能;绝缘、无感应的电气性能;耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方,或者对人有害的地区,起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。
光纤传感器的基本工作原理是将来自光源的光经过光纤送入调制器,使待测参数与进入调制区的光相互作用后,导致光的光学性质,如光的强度、波长、频率、相位、偏正态等发生变化,称为被调制的信号光,在经过光纤送入光探测器,经解调后,获得被测参数。
基于表面等离激元光纤传感器是最近出现的新型传感器,设计表面等离激元激发的结构,产生表面等离激元的激发,因其对外部折射率的变化非常敏感,因此在生物化学方面的传感得到了高度的关注。
发明内容
本发明的目的是为解决上述技术问题的不足,提供一种H形微纳米光纤表面等离激元传感器及其制备方法,将普通单模光纤研磨成H形,提供一种光纤中光波的偏振状态,并在H形侧面镀金属薄膜,成为表面等离激元激发结构,是一种紧凑、简易的光纤传感器。
本发明为解决上述技术问题的不足,所采用的技术方案是:一种H形微纳米光纤表面等离激元传感器,所述传感器包括玻璃套管和封装在玻璃套管内的H形微纳米光纤,所述H形微纳米光纤由单模光纤加工而成,在光纤的圆周面上,沿垂直于光纤轴向的方向对称设有两个凹槽,构成上、下对称敞口的双凹槽结构,凹槽的槽底与光纤纤芯的外表面相切,并且在上、下两个凹槽的槽底均镀有金属薄膜。
所述金属薄膜为金、银、铝或铂金属薄膜。
一种H形微纳米光纤表面等离激元传感器的制备方法,包括如下步骤:
(1)、光纤腐蚀处理:用氢氟酸溶液、氟化铵和水配制氢氟酸缓冲溶液,取单模光纤对其圆周面上对称的两侧进行腐蚀处理,腐蚀深度使内腐蚀平面距离纤芯20μm处,两侧的内腐蚀平面相互平行,腐蚀宽度为246.8μm;
其中,氢氟酸缓冲溶液的配比为按质量比氢氟酸溶液:氟化铵: 水=3:7:10;
(2)、H形微纳米光纤成形处理:将经过氢氟酸缓冲溶液腐蚀过的光纤固定在夹具上,使用研磨机对光纤腐蚀过的两个侧面进行研磨和抛光,在光纤的表面形成两个沿垂直于光纤轴向方向设置的凹槽,构成具有上、下对称敞口的双凹槽结构,两个凹槽的槽底相互平行,研磨深度使凹槽的槽底与光纤纤芯的外表面相切,凹槽宽度为246.8μm;
(3)、金属镀膜处理:在H形微纳米光纤的上、下凹槽的槽底上采用磁控溅射的方法沉积金属薄膜,其中金属薄膜厚度为30~100nm;
(4)、玻璃套管封装:用开放型的玻璃套管封装经过金属镀膜处理的H形微纳光纤,制成H形微纳米光纤表面等离激元传感器。
所述步骤(1)中使用到的氢氟酸的浓度为40%。
所述步骤(3)中的金属薄膜为金、银、铝或铂金属薄膜。
本发明的有益效果是:
1、H形微纳光纤具有很好的偏振效应,激发的表面等离激元能形成偏振干涉,能极大的增加现有的光纤表面等离激元响应传感器的灵敏度。
2、灵敏度高,响应速度快,感应区域小,采用窄线宽光源,检测距离远。
3、本发明的传感器由单模光纤加工而成,制作成本较低,便于推广使用。
4、本发明使用的单模光纤,直径很小,可以用在很小容积的情况下,且能适应于较复杂的工作环境里,应用广泛。
附图说明
图1是本发明的结构示意图。
图2是本发明的侧视结构示意图。
图3是本发明的俯视结构示意图。
图4是本发明的剖视结构示意图。
图5是本发明在应用中的的示例光谱。
图中标记:1、纤芯,2、包层,3、金属薄膜,4、玻璃套管。
具体实施方式
以下是本发明的具体实施例:
实施例1
(1)、光纤腐蚀处理:用氢氟酸溶液、氟化铵和水配制氢氟酸缓冲溶液,取单模光纤对其圆周面上对称的两侧进行腐蚀处理,腐蚀深度使内腐蚀平面距离纤芯20μm处,两侧的内腐蚀平面相互平行,腐蚀宽度为246.8μm;
其中,氢氟酸缓冲溶液的配比为按体积比氢氟酸溶液:氟化铵: 水=3:7:10;其中氢氟酸的浓度为40%。
(2)、H形微纳米光纤成形处理:将经过氢氟酸缓冲溶液腐蚀过的光纤固定在夹具上,使用研磨机对光纤腐蚀过的两个侧面进行研磨和抛光,在光纤的表面形成两个沿垂直于光纤轴向方向设置的凹槽,构成具有上、下对称敞口的双凹槽结构,两个凹槽的槽底相互平行,研磨深度使凹槽的槽底与光纤纤芯的外表面相切,凹槽宽度为246.8μm;
(3)、金属镀膜处理:在H形微纳米光纤的上、下凹槽的槽底上采用采用SJT 31273-1994 EVP-13480型磁控溅射机,直流溅射,电流设置为1.5A,真空度为10-6托,时间为1.5—4分钟,沉积Au金属薄膜,其中Au金属薄膜厚度为30nm;
(4)、玻璃套管封装:用开放型的玻璃套管封装经过金属镀膜处理的H形微纳光纤,制成H形微纳米光纤表面等离激元传感器。
本发明的H形微纳米光纤表面等离激元传感器,当光波通过H形微纳光纤传播时,在研磨掉的位置,光波会形成消逝场,在没研磨的位置,光波正常传输,因此光线中的光波讲具有明显的偏振态。光波在H形的位置,光波得到传输,消逝场中的光波将在金属中产生表面等离激元的激发并耦合在光纤中,与光纤中的光波进行耦合和干涉。图5是H形微纳光纤表面等离激元传感器的光谱图,从图谱可以看出:由于表面等离激元与光纤中的光波形成偏振干涉,在1nm的波长上可以形成3个干涉峰。这也是区别于其它光纤SPR响应传感器的最大特点。因此,通过表面等离激元的干涉形成的传感很高的灵敏度,且是一种紧凑、简易的光纤传感器。
实施例2
(1)、光纤腐蚀处理:用氢氟酸溶液、氟化铵和水配制氢氟酸缓冲溶液,取单模光纤对其圆周面上对称的两侧进行腐蚀处理,腐蚀深度使内腐蚀平面距离纤芯20μm处,两侧的内腐蚀平面相互平行,腐蚀宽度为246.8μm;
其中,氢氟酸缓冲溶液的配比为按体积比氢氟酸溶液:氟化铵: 水=3:7:10;其中氢氟酸的浓度为40%。
(2)、H形微纳米光纤成形处理:将经过氢氟酸缓冲溶液腐蚀过的光纤固定在夹具上,使用研磨机对光纤腐蚀过的两个侧面进行研磨和抛光,在光纤的表面形成两个沿垂直于光纤轴向方向设置的凹槽,构成具有上、下对称敞口的双凹槽结构,两个凹槽的槽底相互平行,研磨深度使凹槽的槽底与光纤纤芯的外表面相切,凹槽宽度为246.8μm;
(3)、金属镀膜处理:在H形微纳米光纤的上、下凹槽的槽底上采用磁控溅射的方法沉积Ag金属薄膜,其中Ag金属薄膜厚度为50nm;
(4)、玻璃套管封装:用开放型的玻璃套管封装经过金属镀膜处理的H形微纳光纤,制成H形微纳米光纤表面等离激元传感器。
实施例3
(1)、光纤腐蚀处理:用氢氟酸溶液、氟化铵和水配制氢氟酸缓冲溶液,取单模光纤对其圆周面上对称的两侧进行腐蚀处理,腐蚀深度使内腐蚀平面距离纤芯20μm处,两侧的内腐蚀平面相互平行,腐蚀宽度为246.8μm;
其中,氢氟酸缓冲溶液的配比为按体积比氢氟酸溶液:氟化铵: 水=3:7:10;其中氢氟酸的浓度为40%。
(2)、H形微纳米光纤成形处理:将经过氢氟酸缓冲溶液腐蚀过的光纤固定在夹具上,使用研磨机对光纤腐蚀过的两个侧面进行研磨和抛光,在光纤的表面形成两个沿垂直于光纤轴向方向设置的凹槽,构成具有上、下对称敞口的双凹槽结构,两个凹槽的槽底相互平行,研磨深度使凹槽的槽底与光纤纤芯的外表面相切,凹槽宽度为246.8μm;
(3)、金属镀膜处理:在H形微纳米光纤的上、下凹槽的槽底上采用磁控溅射的方法沉积Al金属薄膜,其中Al金属薄膜厚度为80nm;
(4)、玻璃套管封装:用开放型的玻璃套管封装经过金属镀膜处理的H形微纳光纤,制成H形微纳米光纤表面等离激元传感器。
实施例4
(1)、光纤腐蚀处理:用氢氟酸溶液、氟化铵和水配制氢氟酸缓冲溶液,取单模光纤对其圆周面上对称的两侧进行腐蚀处理,腐蚀深度使内腐蚀平面距离纤芯20μm处,两侧的内腐蚀平面相互平行,腐蚀宽度为246.8μm;
其中,氢氟酸缓冲溶液的配比为按体积比氢氟酸溶液:氟化铵: 水=3:7:10;其中氢氟酸的浓度为40%。
(2)、H形微纳米光纤成形处理:将经过氢氟酸缓冲溶液腐蚀过的光纤固定在夹具上,使用研磨机对光纤腐蚀过的两个侧面进行研磨和抛光,在光纤的表面形成两个沿垂直于光纤轴向方向设置的凹槽,构成具有上、下对称敞口的双凹槽结构,两个凹槽的槽底相互平行,研磨深度使凹槽的槽底与光纤纤芯的外表面相切,凹槽宽度为246.8μm;
(3)、金属镀膜处理:在H形微纳米光纤的上、下凹槽的槽底上采用磁控溅射的方法沉积Pt金属薄膜,其中Pt金属薄膜厚度为100nm;
(4)、玻璃套管封装:用开放型的玻璃套管封装经过金属镀膜处理的H形微纳光纤,制成H形微纳米光纤表面等离激元传感器。

Claims (2)

1.一种H形微纳米光纤表面等离激元传感器,其特征在于:所述传感器包括玻璃套管和封装在玻璃套管内的H形微纳米光纤,所述H形微纳米光纤由单模光纤加工而成,在光纤的圆周面上,沿垂直于光纤轴向的方向对称设有两个凹槽,构成上、下对称敞口的双凹槽结
构,凹槽的槽底与光纤纤芯的外表面相切,并且在上、下两个凹槽的槽底均镀有金属薄膜,所述金属薄膜为金、银、铝或铂金属薄膜。
2.一种H形微纳米光纤表面等离激元传感器的制备方法,其特征在于:包括如下步骤:
    (1)、光纤腐蚀处理:用浓度为40%的氢氟酸溶液、氟化铵和水配制氢氟酸缓冲溶液, 取单模光纤对其圆周面上对称的两侧进行腐蚀处理,腐蚀深度使内腐蚀平面距离纤芯20μm处,两侧的内腐蚀平面相互平行,腐蚀宽度为246.8μm;其中,氢氟酸缓冲溶液的配比为按质量比氢氟酸溶液:氟化铵:水=3:7:10;
    (2)、H形微纳米光纤成形处理:将经过氢氟酸缓冲溶液腐蚀过的光纤固定在夹具上,使用研磨机对光纤腐蚀过的两个侧面进行研磨和抛光,在光纤的表面形成两个沿垂直于光纤轴向方向设置的凹槽,构成具有上、下对称敞口的双凹槽结构,两个凹槽的槽底相互平行,研磨深度使凹槽的槽底与光纤纤芯的外表面相切,凹槽宽度为246.8μm;
    (3)、金属镀膜处理:在H形微纳米光纤的上、下凹槽的槽底上采用磁控溅射的方法沉积金属薄膜,其中金属薄膜厚度为30~ 100nm,金属薄膜为金、银、铝或铂金属薄膜;
    (4)、玻璃套管封装:用开放型的玻璃套管封装经过金属镀膜处理的H形微纳光纤,制成H形微纳米光纤表面等离激元传感器。
CN201210043679.3A 2012-02-24 2012-02-24 一种h形微纳米光纤表面等离激元传感器及其制备方法 Expired - Fee Related CN102607607B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210043679.3A CN102607607B (zh) 2012-02-24 2012-02-24 一种h形微纳米光纤表面等离激元传感器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210043679.3A CN102607607B (zh) 2012-02-24 2012-02-24 一种h形微纳米光纤表面等离激元传感器及其制备方法

Publications (2)

Publication Number Publication Date
CN102607607A CN102607607A (zh) 2012-07-25
CN102607607B true CN102607607B (zh) 2014-10-29

Family

ID=46525198

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210043679.3A Expired - Fee Related CN102607607B (zh) 2012-02-24 2012-02-24 一种h形微纳米光纤表面等离激元传感器及其制备方法

Country Status (1)

Country Link
CN (1) CN102607607B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104792746B (zh) * 2014-12-09 2018-06-26 中国科学院微电子研究所 一种利用表面等离激元散射对纳米物质进行成像的检测方法
WO2017079882A1 (zh) * 2015-11-09 2017-05-18 杨天 一种端面具有金属微纳米结构的光纤及其制备方法和应用方法
CN105738325B (zh) * 2016-02-29 2019-03-29 北京交通大学 一种多包层光纤双边研磨型spr双参量传感器
CN108279208B (zh) * 2018-03-21 2023-05-05 南京信息工程大学 基于表面等离激元效应的45度光纤传感器及制备方法
CN110132893B (zh) * 2019-05-16 2021-12-28 江苏科信光电科技有限公司 一种基于光纤结构的气体探测器
CN113009718A (zh) * 2019-12-18 2021-06-22 北京交通大学 基于二维材料涂覆的工字型微结构光纤电光调制器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105670A (ja) * 2004-10-01 2006-04-20 Seikoh Giken Co Ltd 表面プラズモン共鳴センサプローブ、及びその製造方法
CN101017116A (zh) * 2006-10-09 2007-08-15 南京师范大学 法布里-珀罗型光纤压力传感器及其制作方法
CN101349779A (zh) * 2008-09-04 2009-01-21 南京师范大学 一种纤芯型的胶体晶体微结构光纤及其制备方法
CN101551330A (zh) * 2009-05-15 2009-10-07 南京大学 一种表面等离激元晶体传感器及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105670A (ja) * 2004-10-01 2006-04-20 Seikoh Giken Co Ltd 表面プラズモン共鳴センサプローブ、及びその製造方法
CN101017116A (zh) * 2006-10-09 2007-08-15 南京师范大学 法布里-珀罗型光纤压力传感器及其制作方法
CN101349779A (zh) * 2008-09-04 2009-01-21 南京师范大学 一种纤芯型的胶体晶体微结构光纤及其制备方法
CN101551330A (zh) * 2009-05-15 2009-10-07 南京大学 一种表面等离激元晶体传感器及其制备方法

Also Published As

Publication number Publication date
CN102607607A (zh) 2012-07-25

Similar Documents

Publication Publication Date Title
CN102607607B (zh) 一种h形微纳米光纤表面等离激元传感器及其制备方法
Chen et al. Optical biosensors: An exhaustive and comprehensive review
An et al. Ultra-stable D-shaped optical fiber refractive index sensor with graphene-gold deposited platform
Niu et al. Sensitivity enhanced D-type large-core fiber SPR sensor based on Gold nanoparticle/Au film co-modification
Zhao et al. Fiber optic SPR sensor for liquid concentration measurement
CN208705231U (zh) 基于氧化石墨烯和金纳米棒增敏的光纤spr传感器
Liu et al. Specialty optical fibers and 2D materials for sensitivity enhancement of fiber optic SPR sensors: A review
Memon et al. A review of optical fibre ethanol sensors: Current state and future prospects
Zhang et al. Multichannel fiber optic SPR sensors: Realization methods, application status, and future prospects
CN203824907U (zh) 一种表面等离子体共振光纤pH传感芯片及检测系统
CN102621104A (zh) 石墨烯薄膜增敏的d型光纤spr传感器及其制备方法
Montaño-Priede et al. Near-electric-field tuned plasmonic Au@ SiO2 and Ag@ SiO2 nanoparticles for efficient utilization in luminescence enhancement and surface-enhanced spectroscopy
Wang et al. Barium titanate film based fiber optic surface plasmon sensor with high sensitivity
Han et al. Comprehensive study of phase-sensitive SPR sensor based on metal–ITO hybrid multilayer
CN108572141B (zh) 复合增强型光纤生物传感器及生物蛋白分子浓度检测方法
CN103064145A (zh) 一种湿度传感光纤及其制备方法与应用
Wang et al. pM level and large dynamic range glucose detection based on a sandwich type plasmonic fiber sensor
CN112268873A (zh) 一种基于双芯双侧抛型pcf-spr传感器
Yin et al. Highly sensitive fiber SPR sensor based on InSe nanosheets
Wang et al. High sensitivity coreless fiber surface plasmon resonance sensor based on Au Nano biconical particles
CN209459675U (zh) 一种三层结构d型光纤spr传感器
CN112432929A (zh) 一种v槽结构塑料光纤spr传感器及其制备方法
Bing et al. Theoretical and experimental researches on a PCF-based SPR sensor
CN209559757U (zh) 一种基于多层金纳米棒的光纤spr传感器
Peng et al. In situ plasmonic & electrochemical fiber-optic sensor for multi-metal-ions detection

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141029

Termination date: 20160224

CF01 Termination of patent right due to non-payment of annual fee