CN102594456A - Self-phase differential interference optical signal receiving device - Google Patents
Self-phase differential interference optical signal receiving device Download PDFInfo
- Publication number
- CN102594456A CN102594456A CN2012100874410A CN201210087441A CN102594456A CN 102594456 A CN102594456 A CN 102594456A CN 2012100874410 A CN2012100874410 A CN 2012100874410A CN 201210087441 A CN201210087441 A CN 201210087441A CN 102594456 A CN102594456 A CN 102594456A
- Authority
- CN
- China
- Prior art keywords
- polarization beam
- polarization
- light
- wave plate
- photodetector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 40
- 230000010287 polarization Effects 0.000 claims abstract description 103
- 210000001747 pupil Anatomy 0.000 claims abstract description 8
- 238000003384 imaging method Methods 0.000 claims abstract description 6
- 230000005540 biological transmission Effects 0.000 claims description 11
- 239000013078 crystal Substances 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 5
- 239000005304 optical glass Substances 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 230000000295 complement effect Effects 0.000 claims 1
- 238000004891 communication Methods 0.000 abstract description 8
- 238000000034 method Methods 0.000 description 5
- 238000011160 research Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
Images
Landscapes
- Polarising Elements (AREA)
- Optical Communication System (AREA)
Abstract
一种自相位差分干涉光信号接收装置,该装置由块状偏振合束器件、反射镜、光瞳成像透镜组、波片、光电探测器组成,本发明采用光的平衡接收和稳相相位的实时控制,而且时间延迟距离较短、差分回路光程可调,能够满足高速率通信的要求。
A self-phase differential interference optical signal receiving device, which is composed of a block polarization beam combining device, a mirror, a pupil imaging lens group, a wave plate, and a photodetector. Real-time control, short time delay distance, and adjustable optical path of the differential circuit can meet the requirements of high-speed communication.
Description
技术领域 technical field
本发明涉及光信号解调,特别是一种自相位差分干涉光信号接收装置。The invention relates to optical signal demodulation, in particular to a self-phase differential interference optical signal receiving device.
背景技术 Background technique
在自由空间激光通信中,激光传输通过大气信道时受大气湍流等因素的影响,光束波面产生畸变,质量严重下降。激光信号接收需要克服大气湍流。目前采用的方法主要有减小接收口径、自适应光学波前校正、DPSK调制信号自差动接收等方法。本发明采用DPSK调制自差动接收,不需要加入本振信号,结构简单紧凑,易于实现,是未来激光通信中光接收信号的发展方向。In free space laser communication, when the laser transmits through the atmospheric channel, it is affected by factors such as atmospheric turbulence, and the wavefront of the beam is distorted and the quality is seriously degraded. Laser signal reception needs to overcome atmospheric turbulence. The methods currently used mainly include reducing the receiving aperture, adaptive optical wavefront correction, and self-differential reception of DPSK modulated signals. The invention adopts DPSK modulation for self-differential reception, does not need to add a local oscillator signal, has a simple and compact structure, is easy to realize, and is the development direction of optical receiving signals in laser communication in the future.
先前的技术研究[1](参见High-data-rate systems for space applications,Proc.SPIE,Vol.2381,38,1995)中所描述的星地激光通信中采用DPSK调制,接收机采用光纤放大和光纤型马赫曾德尔干涉仪解调平衡接收,灵敏度比开关键控(OOK)调制直接探测方法高3dB。但是经大气湍流扰动后的波面质量下降,光纤耦合效率较低,影响灵敏度,使DPSK调制方法抗扰动能力得不到充分的利用。The previous technical research [1] (see High-data-rate systems for space applications, Proc.SPIE, Vol.2381, 38, 1995) described in the satellite-to-ground laser communication uses DPSK modulation, and the receiver uses optical fiber amplification and The fiber-optic Mach-Zehnder interferometer demodulates the balanced receiver, and its sensitivity is 3dB higher than that of the on-off keying (OOK) modulation direct detection method. However, the quality of the wave surface after the disturbance of the atmospheric turbulence decreases, the coupling efficiency of the fiber is low, and the sensitivity is affected, so that the anti-disturbance ability of the DPSK modulation method cannot be fully utilized.
先前的技术研究[2](参见Adaptive optics and ESA′s optical ground station,Proc.SPIE,Vol.7464,746406,2009)中所描述的星地激光通信采用DPSK调制,其装置是马赫曾德尔干涉仪或者麦克尔逊干涉仪结构,工作中应保证两臂长之差的控制精度远远优于四分之一波长,约为0.2微米。但是这种结构缺少精密调整器件和锁相环,无法保证系统精度,也不能实时调整。同时没有平衡接收,无法去除直流分量。此外,在技术研究[2]中,用到两组4f透镜组,对波面引入较大的像差,技术实现上有难度,不利于降低通信信号的误码率。The satellite-ground laser communication described in previous technical research [2] (see Adaptive optics and ESA's optical ground station, Proc. SPIE, Vol.7464, 746406, 2009) adopts DPSK modulation, and its device is Mach-Zehnder interference Instrument or Michelson interferometer structure, the control accuracy of the difference between the lengths of the two arms should be guaranteed to be far better than a quarter wavelength, about 0.2 microns. However, this structure lacks precision adjustment devices and phase-locked loops, and cannot guarantee system accuracy, nor can it be adjusted in real time. At the same time, there is no balanced reception, and the DC component cannot be removed. In addition, in the technical research [2], two sets of 4f lens groups are used, which introduce a large aberration to the wavefront, which is difficult in technical implementation and is not conducive to reducing the bit error rate of communication signals.
先前的技术研究[3](相位补偿偏振分光2×4 90°自由空间光学桥接器,光学学报,Vol.29,3291~3294,2009)中所描述的自由空间桥接器,将本振光和信号光合成后,输出四束,其中两两组成同相通道和正交通道,平衡接收,并且需要同相通道和正交通道之间像差90度,产生锁相所需的误差信号,本发明改进了这点。在本发明中,信号光和延迟的信号光自身合成,实现平衡接收和锁相。The free-space bridge described in the previous technical research [3] (Phase
发明内容 Contents of the invention
本发明是针对自由空间激光通信中光接收端接收光信号而采取的方案,要解决的技术问题是克服已有的技术上的困难,提供一种自相位差分干涉光信号接收装置,该装置利用差分相移键控为机制来解调光信号。The present invention is a solution for receiving optical signals at the optical receiving end in free space laser communication. The technical problem to be solved is to overcome the existing technical difficulties and provide a self-phase differential interference optical signal receiving device. Differential phase shift keying is the mechanism to demodulate the optical signal.
本新型发明技术的解决方案这样实现的。The solution of the novel inventive technology is realized like this.
一种自相位差分干涉光信号接收装置,其特点在于其构成包括:A self-phase differential interference optical signal receiving device is characterized in that its composition includes:
第一偏振分束器,该第一偏振分束器的第一偏振分束面与输入的圆偏振光的前进方向呈45°,该第一偏振分束器将所述的输入的圆偏振光分为偏振面相互垂直的反射光和透射光,沿所述的反射光方向经过第一透镜、第一反射镜、第二反射镜、第二透镜、位相精密控制器、第一四分之一波片、第二偏振分束器,入射到第二偏振分束器的偏振分束面上;所述的透射光经过第一偏振分束器、第一二分之一波片、第二偏振分束器,入射到第二偏振分束器的第二偏振分束面上;这两束光在经过第二偏振分束面产生水平支路光束和竖直支路光束,所述的竖直支路光束经第三二分之一波片后被第四偏振分束器的第四偏振分束面分为偏振面相互垂直的反射光和透射光,分别由第三光电探测器和第四光电探测器接收,所述的第三光电探测器和第四光电探测器的输出端与正交平衡电路的输入端相连;该正交平衡电路的输出端与乘法电路第二输入端相连;The first polarizing beam splitter, the first polarizing beam splitting surface of the first polarizing beam splitter is 45° to the advancing direction of the input circularly polarized light, and the first polarizing beam splitter divides the input circularly polarized light It is divided into reflected light and transmitted light whose polarization planes are perpendicular to each other, and passes through the first lens, the first mirror, the second mirror, the second lens, the phase precision controller, and the first quarter along the reflected light direction. The wave plate and the second polarization beam splitter are incident on the polarization beam splitting surface of the second polarization beam splitter; the transmitted light passes through the first polarization beam splitter, the first half-wave plate, and the second polarization The beam splitter is incident on the second polarization beam splitting surface of the second polarization beam splitter; the two beams of light generate a horizontal branch light beam and a vertical branch light beam after passing through the second polarization beam splitter surface, and the vertical branch light beam The branch light beam is divided into reflected light and transmitted light whose polarization planes are perpendicular to each other by the fourth polarization beam splitting plane of the fourth polarization beam splitter after passing through the third half-wave plate, which are respectively detected by the third photodetector and the fourth polarization beam splitter. The photodetector receives, the output terminals of the third photodetector and the fourth photodetector are connected to the input terminal of the quadrature balance circuit; the output terminal of the quadrature balance circuit is connected to the second input terminal of the multiplication circuit;
所述的水平支路光束经第二二分之一波片和第三偏振分束器,被第三偏振分束器的第三偏振分束面分为偏振面相互垂直的反射光和透射光,分别由第一光电探测器和第二光电探测器接收,所述的第一光电探测器和第二光电探测器的输出端与同相平衡电路的输入端相连;该同相平衡电路的输出端分别与数据处理电路的输入端、所述的乘法电路第一输入端相连,所述的乘法电路的输出端经锁相电路(20)与精密相位调制器的控制端相连;The horizontal branch light beam passes through the second half-wave plate and the third polarization beam splitter, and is divided into reflected light and transmitted light whose polarization planes are perpendicular to each other by the third polarization beam splitting plane of the third polarization beam splitter , are respectively received by the first photodetector and the second photodetector, the output terminals of the first photodetector and the second photodetector are connected with the input terminals of the non-inverting balanced circuit; the output terminals of the non-phase balanced circuit are respectively It is connected with the input terminal of the data processing circuit and the first input terminal of the multiplication circuit, and the output terminal of the multiplication circuit is connected with the control terminal of the precision phase modulator through the phase-lock circuit (20);
由所述的第一二分之一波片、第一四分之一波片、第二偏振分束器、第二二分之一波片、第三二分之一波片、第三偏振分束器和第四偏振分束器构成2×490°自由空间光学桥接器,所述的第一二分之一波片、第二二分之一波片、第三二分之一波片的光轴方向与入射光的偏振方向成22.5度,偏振光经过二分之一波片后,偏振方向旋转45度。By the first half-wave plate, the first quarter-wave plate, the second polarization beam splitter, the second half-wave plate, the third half-wave plate, the third polarization The beam splitter and the fourth polarization beam splitter constitute a 2×490° free-space optical bridge, the first half-wave plate, the second half-wave plate, and the third half-wave plate The optical axis direction of the incident light is 22.5 degrees to the polarization direction of the incident light. After the polarized light passes through the half-wave plate, the polarization direction is rotated by 45 degrees.
所述的第一透镜和第二透镜具有相同焦距f,构成光瞳成像透镜组,为共焦透镜组,其间距为2倍焦距2f;所述的第一透镜、第一反射镜、第二透镜、第二反射镜组成光程模块,从所述的第一偏振分束面开始,经所述的第一透镜、第一反射镜、第二透镜、第二反射镜至所述的第二偏振面的光路称为差分支路,所述的光程模块安装在同一平台上,该平台下设导轨,以调整所述差分支路的光程,所述的光程模块与数据传输速率G相匹配,不同光程模块的焦距f不同,对应不同的数据传输速率,并满足下列关系式:The first lens and the second lens have the same focal length f, forming a pupil imaging lens group, which is a confocal lens group, and its spacing is 2 times the focal length 2f; the first lens, the first mirror, the second The lens and the second mirror form an optical path module, starting from the first polarization beam splitting surface, passing through the first lens, the first mirror, the second lens, and the second mirror to the second The optical path of the polarization plane is called a differential branch. The optical path modules are installed on the same platform, and guide rails are set under the platform to adjust the optical path of the differential branch. The optical path module and the data transmission rate G Matching, the focal length f of different optical path modules is different, corresponding to different data transmission rates, and satisfying the following relationship:
其中:f为透镜组的焦距,c为光速,G为数据传输速率,L1为所述的反射光从第一偏振分束面沿差分支路到第二偏振面的距离,L2为所述的透射光从第一偏振分束面到第二偏振面的距离。Wherein: f is the focal length of the lens group, c is the speed of light, G is the data transmission rate, L 1 is the distance from the first polarization beam splitting plane to the second polarization plane along the difference branch path of the reflected light, and L 2 is the distance The above-mentioned distance of transmitted light from the first polarization beam splitting plane to the second polarization plane.
所述的精密位相控制器为一个由电光调制晶体或者通过电机制动、可以旋转的两表面平行光学玻璃平板构成的相位控制装置,其旋转精度为1微弧度。The precise phase controller is a phase control device composed of an electro-optical modulation crystal or a two-surface parallel optical glass plate that can rotate through motor braking, and its rotation accuracy is 1 microrad.
所述的精密位相控制器、光电探测器、同相平衡电路、正交平衡电路、数据处理电路和锁相电路等电子学部分为成熟产品或技术,可以购买。The electronic parts such as the precision phase controller, photoelectric detector, in-phase balance circuit, quadrature balance circuit, data processing circuit and phase-locked circuit are mature products or technologies and can be purchased.
假定接收的信号光为圆偏振光(如果是其它偏振状态,需要转换为圆偏振光)。在经过偏振分束器时,反射光为垂直偏振光,透射光为水平偏振光。It is assumed that the received signal light is circularly polarized light (if it is in other polarization states, it needs to be converted into circularly polarized light). When passing through the polarizing beam splitter, the reflected light is vertically polarized and the transmitted light is horizontally polarized.
本发明的技术效果如下:Technical effect of the present invention is as follows:
本发明装置采用差分相移键控调制的自相位差分干涉光信号装置,创新之处首先在于由偏振器件和光瞳成像透镜组组成透射式差分光回路,自相位和延迟相位进行自身合成差分干涉解码信息,克服了绝对的相位畸变对信号接收的影响,降低误码率。其次,该装置只引入一组4f透镜,结构简单,减少透镜表面误差对光束相位的扰动。该入射光信号通过偏振干涉后,输出的四路偏振干涉光由两路平衡接收器来接收,组成同相通道和正交通道,二者之间相差90度,一路信号产生锁相所需的误差信号,通过相位精密控制器来保持差分两支路的光程差稳定,提高干涉光对比度,并且保持系统的精度。另外一路通道输出自相位解码的数据信号。此外,该装置实现光的平衡接收和稳相相位的实时控制,而且时间延迟距离较短、差分回路光程可调,能够满足高速率通信的要求。The device of the present invention adopts a self-phase differential interference optical signal device modulated by differential phase shift keying. The innovation is firstly that a transmission differential optical circuit is composed of a polarizing device and a pupil imaging lens group, and self-synthesized differential interference decoding is performed by self-phase and delayed phase. information, overcome the influence of absolute phase distortion on signal reception, and reduce the bit error rate. Secondly, the device only introduces a set of 4f lenses, which has a simple structure and reduces the disturbance of the beam phase caused by lens surface errors. After the incident light signal undergoes polarization interference, the output four-way polarization interference light is received by two balanced receivers to form an in-phase channel and a quadrature channel. The difference between the two is 90 degrees. Signal, through the phase precision controller to keep the optical path difference of the two differential branches stable, improve the contrast of interference light, and maintain the accuracy of the system. The other channel outputs the data signal from the phase decoding. In addition, the device realizes balanced reception of light and real-time control of stable phase, and the time delay distance is short, and the optical path of the differential circuit is adjustable, which can meet the requirements of high-speed communication.
附图说明Description of drawings
图1为本发明自相位差分干涉光信号接收装置的具体结构示意图。FIG. 1 is a schematic diagram of the specific structure of the self-phase differential interference optical signal receiving device of the present invention.
具体实施方式 Detailed ways
下面结合附图和实施例对本发明作进一步详细说明,但不应以此限制本发明的保护范围。The present invention will be described in further detail below in conjunction with the accompanying drawings and embodiments, but the protection scope of the present invention should not be limited thereby.
先参阅图1,图1为本发明自相位差分干涉光信号接收装置的具体结构示意图。也是本发明实施例的主结构示意图。由图可见,本发明一种自相位差分干涉光信号接收装置,其构成包括:Referring to FIG. 1 first, FIG. 1 is a schematic structural diagram of a self-phase differential interference optical signal receiving device of the present invention. It is also a schematic diagram of the main structure of the embodiment of the present invention. It can be seen from the figure that a self-phase differential interference optical signal receiving device of the present invention comprises:
第一偏振分束器1,该第一偏振分束器1的第一偏振分束面1a与输入的圆偏振光的前进方向呈45°,该第一偏振分束器1将所述的输入的圆偏振光分为偏振面相互垂直的反射光和透射光,沿所述的反射光方向经过第一透镜7a、第一反射镜6、第二反射镜8、第二透镜7b、位相精密控制器21、第一四分之一波片3、第二偏振分束器5,入射到第二偏振分束器5的第二偏振分束面5a上;所述的透射光经过第一偏振分束器1、第一二分之一波片2、第二偏振分束器5,入射到第二偏振分束器5的第二偏振分束面5a上;这两束光在经过第二偏振分束面5a产生水平支路光束和竖直支路光束,所述的竖直支路光束经第三二分之一波片9后被第四偏振分束器14的第四偏振分束面14a分为偏振面相互垂直的反射光和透射光,分别由第三光电探测器15和第四光电探测器16接收,所述的第三光电探测器15和第四光电探测器16的输出端与正交平衡电路17的输入端相连;该正交平衡电路17的输出端与乘法电路18第二输入端相连;所述的水平支路光经第二二分之一波片4和第三偏振分束器10,被第三偏振分束器的第三偏振分束面10a分为偏振面相互垂直的反射光和透射光,分别由第一光电探测器11和第二光电探测器12接收,所述的第一光电探测器11和第二光电探测器12的输出端与同相平衡电路13的输入端相连;该同相平衡电路13的输出端分别与数据处理电路19的输入端、所述的乘法电路18第一输入端相连,所述的乘法电路18的输出端经锁相电路20与精密相位调制器21的控制端相连;The first polarizing beam splitter 1, the first polarizing beam splitting surface 1a of the first polarizing beam splitter 1 is 45° to the advancing direction of the input circularly polarized light, and the first polarizing beam splitter 1 converts the input The circularly polarized light is divided into reflected light and transmitted light whose polarization planes are perpendicular to each other, and passes through the
由所述的第一二分之一波片2、第一四分之一波片3,第二偏振分束器5、第二二分之一波片4、第三二分之一波片9、第三偏振分束器10、第四偏振分束器14构成2×490°自由空间光学桥接器,所述的第一二分之一波片2、第二二分之一波片4、第三二分之一波片9的光轴方向与入射光的偏振方向成22.5度。By the first half-
本发明的工作过程是:Working process of the present invention is:
接收到的信号光入射到第一偏振分束器1,第一偏振分束器1的第一偏振分束面1a与输入的圆偏振光的前进方向呈45°。该第一偏振分束器1将所述的输入圆偏振光分为偏振面相互垂直的反射光和透射光。垂直偏振态的反射光经过第一反射镜6、第一透镜7a、第二反射镜8、第二透镜7b、第一四分之一波片3、第二偏振分束器5,入射到第二偏振分束器5的第二偏振分束面5a上;所述的水平偏振态的透射光经过第一二分之一波片2、第二偏振分束器5,入射到第二偏振分束器5的第二分束面5a上。这两束光在经过第二偏振分束面5a产生水平分量(其中包括水平偏振态的信号光和垂直偏振态的信号光)支路和竖直分量(其中包括水平偏振态的信号光和垂直偏振态的信号光)支路的两束光。The received signal light is incident on the first polarizing beam splitter 1 , and the first polarizing beam splitting surface 1 a of the first polarizing beam splitter 1 is at 45° to the advancing direction of the input circularly polarized light. The first polarizing beam splitter 1 splits the input circularly polarized light into reflected light and transmitted light whose polarization planes are perpendicular to each other. The reflected light of the vertical polarization state passes through the
其中竖直分量支路(其中包括水平偏振态的信号光和垂直偏振态的信号光)光依次经过第三二分之一波片9、第四偏振分束器14,第四偏振分束面14a把竖直分量分为偏振面相互垂直的反射光和透射光,偏振干涉后分别由第三光电探测器15和第四光电探测器16接收干涉光强,分别将光信号转化两路电信号,输入到正交平衡电路17;Wherein the vertical component branch (including the signal light of the horizontal polarization state and the signal light of the vertical polarization state) light sequentially passes through the third half-
另外一支水平分量(其中包括水平偏振态的信号光和垂直偏振态的信号光)支路经过第二二分之一波片4、第三偏振分束器10,第三偏振分束面10a把水平分量支路光分为偏振面相互垂直的反射光和透射光,偏振干涉后,分别将光信号转化两路电信号,分别由第一光电探测器11和第二光电探测器12接收干涉光强,传输到同相平衡电路13。经过同相平衡电路13处理的电信号数据一部分通过数据处理电路19后,得到解码出的数据信息;另一部分电信号数据和经正交平衡电路17处理过的电信号一起接入乘法电路18,该乘法电路18将两路电信号做处理后反馈到锁相电路20,锁相电信号作为精密相位调制器21的控制信号。精密位相调制器可以采用电光调制器,那么锁相信号通过控制晶体两端电压改变晶体折射率,来改变光束通过晶体的光程,微调支路相位;也可以采用两表面平行的光学玻璃平板,那么锁相信号通过精密旋转平行玻璃平板微小角度,改变光束通过平板的光程差,微调支路相位。Another branch of the horizontal component (which includes the signal light of the horizontal polarization state and the signal light of the vertical polarization state) passes through the second half-wave plate 4, the third
所述的第一偏振分束器1、第三偏振分束器10、第四偏振分束器14和第二偏振分束器5都胶合粘贴在一起,形状都为正方体,其边长均为L。The first polarizing beam splitter 1, the third
所述的第一透镜7a和第二透镜7b具有相同焦距f,一起构成光瞳成像透镜组,为共焦透镜组,其间距为2倍的焦距2f。该光瞳成像透镜组出瞳位置在第二偏振分束面5a,出瞳的物距为一倍焦距,即第二透镜7b到第二偏振分束面5a的距离为f。The
所述的第一反射镜6、第一透镜7a、第二反射镜8、第二透镜7b组成的光程模块集成在同一块平台上。该平台下面铺设导轨,以供该平台沿垂直于透射水平支路的方向精密移动。光程模块要与数据传输速率G相匹配,不同光程模块的焦距f不同,对应不同的数据传输速率,并满足下列关系式:The optical path module composed of the
其中f为透镜组的焦距,c为光速,G为数据传输速率,令L1为反射光从第一偏振分束面1a经过光程粗调整支路到第二偏振分束面5a所经过的衍射距离;L2为透射光从第一偏振分束面1a经过第一二分之一波片2到第二偏振分束面5a所经过的衍射距离,且L2=L。Among them, f is the focal length of the lens group, c is the speed of light, G is the data transmission rate, let L1 be the distance that the reflected light passes through from the first polarization beam splitting surface 1a to the second polarization beam splitting surface 5a through the coarse adjustment branch of the optical path Diffraction distance; L 2 is the diffraction distance traveled by the transmitted light from the first polarizing beam splitting surface 1 a through the first half-
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210087441.0A CN102594456B (en) | 2012-03-29 | 2012-03-29 | Self-phase differential interference optical signal receiving device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210087441.0A CN102594456B (en) | 2012-03-29 | 2012-03-29 | Self-phase differential interference optical signal receiving device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102594456A true CN102594456A (en) | 2012-07-18 |
CN102594456B CN102594456B (en) | 2014-10-15 |
Family
ID=46482696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210087441.0A Active CN102594456B (en) | 2012-03-29 | 2012-03-29 | Self-phase differential interference optical signal receiving device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102594456B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104601247B (en) * | 2014-12-22 | 2017-04-05 | 中国科学院上海光学精密机械研究所 | Local oscillator enhancement mode differential signal reception device |
CN108286939A (en) * | 2018-02-10 | 2018-07-17 | 北京工业大学 | A kind of laser traces measurement optical system Energy Analysis for High based on ZEMAX emulation |
CN115542564A (en) * | 2022-11-03 | 2022-12-30 | 北京中科国光量子科技有限公司 | Polarization-independent space light self-homodyne interferometer |
CN115955280A (en) * | 2023-03-13 | 2023-04-11 | 万事通科技(杭州)有限公司 | Optical fiber channel eavesdropping detection device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6788420B1 (en) * | 2002-01-29 | 2004-09-07 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Heterodyne interferometer with a phase modulated source |
CN1815930A (en) * | 2005-01-31 | 2006-08-09 | 富士通株式会社 | Optical receiver and optical reception method compatible with differential quadrature phase shift keying |
CN102022977A (en) * | 2010-10-26 | 2011-04-20 | 中国航天科工集团第三研究院第八三五八研究所 | Double-shaft MEMS scanning-based heterodyne interference system and method |
CN102158286A (en) * | 2011-01-21 | 2011-08-17 | 中国科学院上海光学精密机械研究所 | Reflective Differential Phase Shift Keying Coherent Receiver |
CN102236232A (en) * | 2010-04-29 | 2011-11-09 | 中国科学院上海光学精密机械研究所 | Wave surface differential interference space light demodulator |
-
2012
- 2012-03-29 CN CN201210087441.0A patent/CN102594456B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6788420B1 (en) * | 2002-01-29 | 2004-09-07 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Heterodyne interferometer with a phase modulated source |
CN1815930A (en) * | 2005-01-31 | 2006-08-09 | 富士通株式会社 | Optical receiver and optical reception method compatible with differential quadrature phase shift keying |
CN102236232A (en) * | 2010-04-29 | 2011-11-09 | 中国科学院上海光学精密机械研究所 | Wave surface differential interference space light demodulator |
CN102022977A (en) * | 2010-10-26 | 2011-04-20 | 中国航天科工集团第三研究院第八三五八研究所 | Double-shaft MEMS scanning-based heterodyne interference system and method |
CN102158286A (en) * | 2011-01-21 | 2011-08-17 | 中国科学院上海光学精密机械研究所 | Reflective Differential Phase Shift Keying Coherent Receiver |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104601247B (en) * | 2014-12-22 | 2017-04-05 | 中国科学院上海光学精密机械研究所 | Local oscillator enhancement mode differential signal reception device |
CN108286939A (en) * | 2018-02-10 | 2018-07-17 | 北京工业大学 | A kind of laser traces measurement optical system Energy Analysis for High based on ZEMAX emulation |
CN108286939B (en) * | 2018-02-10 | 2020-04-03 | 北京工业大学 | Energy analysis method of laser tracking measurement optical system based on ZEMAX simulation |
CN115542564A (en) * | 2022-11-03 | 2022-12-30 | 北京中科国光量子科技有限公司 | Polarization-independent space light self-homodyne interferometer |
CN115542564B (en) * | 2022-11-03 | 2023-03-24 | 北京中科国光量子科技有限公司 | Polarization-independent space light self-homodyne interferometer |
CN115955280A (en) * | 2023-03-13 | 2023-04-11 | 万事通科技(杭州)有限公司 | Optical fiber channel eavesdropping detection device |
CN115955280B (en) * | 2023-03-13 | 2023-06-20 | 万事通科技(杭州)有限公司 | Optical fiber channel eavesdropping detection device |
Also Published As
Publication number | Publication date |
---|---|
CN102594456B (en) | 2014-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5737874B2 (en) | Demodulator and optical transceiver | |
US8229254B2 (en) | Systems and methods for polarization mode dispersion mitigation | |
US9236940B2 (en) | High bandwidth demodulator system and method | |
CN102624447B (en) | Dual optical path real-time control differential interference receiving device | |
CN101561560B (en) | Polarization beam splitting double refraction space light bridge | |
CN102594456B (en) | Self-phase differential interference optical signal receiving device | |
CN107132663B (en) | Spatial light 90° mixer with adaptive control of splitting ratio | |
CN115225163B (en) | Polarization-independent self-coherent device based on double MZ interferometers | |
CN102098095B (en) | Transmission type differential phase shift keying coherent receiver | |
CN102158286B (en) | Reflective Differential Phase Shift Keying Coherent Receiver | |
CN101561554A (en) | Phase-controllable birefringent spatial optical bridge | |
CN107919912A (en) | A kind of same frequency range palarization multiplexing laser space communication optical transmitter and receiver | |
CN104601247B (en) | Local oscillator enhancement mode differential signal reception device | |
CN102236232B (en) | Wave surface differential interference space light demodulator | |
CN101860397B (en) | Photoelectric receptor for continuously compensating equilibrium path and compensation method thereof | |
CN104779996B (en) | Free space laser communication optical denoising method based on polarization mark | |
CN201464714U (en) | Birefringent Spatial Optical Bridge with Dual-Wave Plate Phase Adjustment | |
CN204086699U (en) | Free space 90-degree optical mixer | |
CN207924208U (en) | Light transmit-receive integrated optical device is realized under co-wavelength | |
CN102866510B (en) | 2*4 optical bridge for free space | |
CN204086698U (en) | 90-degree optical mixer based on transverse shearing interferometer | |
CN115047637B (en) | Broadband beam-splitting crystal birefringent multi-wavelength space optical bridge | |
Zheng et al. | Opto-mechanical structure design of the space optical hybrid | |
CN100383572C (en) | Electrically Controlled Phase Shift Spatial Optical Bridge | |
CN201425666Y (en) | Differential Grating Spatial Light Bridge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |