CN102584536B - 不对称催化合成(r)-(+)-3-氯-苯丙醇的方法 - Google Patents
不对称催化合成(r)-(+)-3-氯-苯丙醇的方法 Download PDFInfo
- Publication number
- CN102584536B CN102584536B CN201210014453.0A CN201210014453A CN102584536B CN 102584536 B CN102584536 B CN 102584536B CN 201210014453 A CN201210014453 A CN 201210014453A CN 102584536 B CN102584536 B CN 102584536B
- Authority
- CN
- China
- Prior art keywords
- reaction
- chlorine
- phenylpropanol
- spiroborate
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- JNNYMZKOSPJAGF-UHFFFAOYSA-O C(C1)C[NH2+]C1C(c1ccccc1)(c1ccccc1)OB1Oc(cccc2)c2O1 Chemical compound C(C1)C[NH2+]C1C(c1ccccc1)(c1ccccc1)OB1Oc(cccc2)c2O1 JNNYMZKOSPJAGF-UHFFFAOYSA-O 0.000 description 1
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
本发明提供一种不对称催化合成(R)-(+)-3-氯-苯丙醇的方法,是以金属硼氢化合物为还原剂,有机酸为辅助剂不对称催化还原3-氯-苯丙酮。用四氢呋喃溶剂将螺硼酸酯催化剂和硼氢化物混合,加入一定量有机酸搅拌至混合液澄清透明,在-50~30℃缓慢滴加原料3-氯-苯丙酮的四氢呋喃溶液搅拌反应,反应液经提纯处理得到(R)-(+)-3-氯-苯丙醇单旋体。未经拆分产品可达90%e.e.值以上光学纯度。
Description
技术领域
本发明涉及一种医药中间体的制备方法,具体是利用不对称催化还原方法,合成西汀类抗抑郁药的重要中间体(R)-(+)-3-氯-苯丙醇的方法。
背景技术
《2002年世界卫生报告》指出,抑郁症目前已成为世界上第四大常见的疾病,到2020年将可能成为仅次于心脏病的第二大疾病,抑郁症正在成为一个严重的全球问题。
抗抑郁药主要指针对抑郁症用于治疗情绪低落、抑郁消极的药物,其发展始于20世纪50年代的异烟麟(isoniazid)。异烟脱属单胺氧化酶抑制剂(MAOD,因为用药后易引起肝脏损害等严重毒副反应而逐渐被淘汰。随后,又发展了三环及四环类抗抑郁药物。目前,国际上对抑郁症的治疗主要是使用抗抑郁药物和心理干预综合治疗,中、重度抑郁症的最有效治疗法方法是使用药物治疗。目前,抗抑郁症的药物的种类主要有:单胺氧化酶抑制剂(MAOI)、三环类抗抑郁药(TCA)、选择性5-羟色胺(5-HT)再摄取抑制剂(SSRI)、选择性去甲肾上腺素再摄取剂(NARI)、选择性5-HT及去甲肾上腺素再摄取抑制剂(SNRI)、去肾上腺(NE)和专一性5-HT能抗抑郁剂(NASSA)、5-HT激动剂及植物类抗抑郁药等[7-11]。5-HT重摄取抑制/5-HT A受体拮抗双重作用抗抑郁药物的研究:本类药物是在单胺递质学说的基础上研发的新一代抗抑郁药,药物研发主要是通过分子拼合原理,在单一分子中引入2种药效团在体内共同发挥扰抑郁作用。初步的评价结果显示此类双重作用机制抗抑郁药在起效时间方面比SSIRS有明显的优势,疗效也有很大提高,有望成为替代SSIRS类药物的新一代抗抑郁药。莫西汀、氟西汀、度洛西汀及达泊西汀等非三环5-HT抗抑郁药物是目前临床应用最为有效的化学抗抑郁药物(US4868344)。
(R)-(+)-3-氯-苯丙醇是西汀类抗抑郁药莫西汀、氟西汀、度洛西汀及达泊西汀等抗抑郁药物的重要手性中间体。(R)-(+)-3-氯-苯丙醇的不对称合成方法很多,比较经典的是哈佛大学Cory所在课题组以杂硼恶唑烷为催化剂、甲硼烷不对称催化还原3-氯-苯丙酮合成所得。其后,有巴西专利BR2003006242利用手性杂硼恶唑烷进行(R)-(+)-3-氯-苯丙醇的合成,美国专利US.20080200672用螺硼酸酯催化剂体系合成其单旋体,反应体系均以甲硼烷溶液为还原剂,反应物来源和储备困难,且增加了反应成本。中国专利CN100591649C尝试了以硼氢化钠为还原剂与手性氨基酸衍生物、无机路易斯酸作用,不经拆分得到(R)-(+)-3-氯-苯丙醇,但产品收率不到50%。
发明内容
本发明目的在于提供一种利用不对称催化还原方法,合成西汀类抗抑郁药的重要中间体(R)-(+)-3-氯-苯丙醇的方法。
本发明所述的(R)-(+)-3-氯-苯丙醇制备方法是以手性螺硼酸酯为催化剂、金属硼氢化物为还原剂,有机酸为辅助剂不对称催化还原3-氯-苯丙酮,制得(R)-(+)-3-氯-苯丙醇。
反应方程式如下:
式中,Cat.——手性螺硼酸酯 M——Li,Na,K等金属离子
合成过程包括以下反应步骤:
1)将螺硼酸酯催化剂和金属硼化物还原剂加入四氢呋喃,在冰浴条件下混合,滴加有机酸辅助剂,调节反应液PH值为0.1~5,搅拌反应至混合液澄清透明;
2)将原料3-氯-苯丙酮加入四氢呋喃中溶解,得到溶解液;
3)将2)的溶解液添加到1)的混合液中,在-50~30℃温度下进行还原反应5h,分离提纯,得到(R)-(+)-3-氯-苯丙醇白色晶体;
所述的螺硼酸酯催化剂,其结构为如下化学式中的其中一种:
所述的金属硼氢化物是指硼氢化钠、硼氢化钾或硼氢化锂中的一种;
所述的有机酸指甲酸、乙酸、乙二酸或苯甲酸中的一种。
所述的3-氯-苯丙酮与螺硼酸酯、金属硼氢化物的摩尔比为1∶0.05~0.5∶0.2~2;
所述的螺硼酸酯、金属硼氢化物与四氢呋喃的摩尔比为1∶0.5~5∶1~10;
所述的3-氯-苯丙酮的四氢呋喃溶液的摩尔浓度为0.8~1.5mol/L;
选用适宜的反应条件和反应物配比,得到产品光学纯度96%、收率85%以上。...
本发明的有益效果是:
以杂硼化合物为催化剂、甲硼烷为还原剂的CBS催化体系一直是手性芳香醇的首选研究方向,但其也存有催化剂易中毒失活、甲硼烷溶液有毒且不利于运输保存等不足。本发明提供的(R)-(+)-3-氯-苯丙醇制备方法选用螺硼酸酯为催化剂,因硼酸酯的B-O键中氧的吸电子关系,使得B原子的SP2轨道非常活跃,提高了中心原子的催化活性。此外,本发明最大的优点在于用金属硼氢化物在有机酸辅助剂条件下取代还原剂甲硼烷,大大降低了还原剂的生产和储存成本,同时加强了反应过程的安全性。本发明提供的制备方法,具备较高的收率和产品光学纯度。
具体实施方式
下面通过实施例进一步说明本发明,但并不因此而限制本发明的内容。
实施例1
称量催化剂Cat.2,0.544g(1.75nmol)和KBH40.55g(12.5mmol)于100ml三颈烧瓶,加入15ml四氢呋喃溶液混合,向瓶中滴加冰醋酸至反应液PH值为1.0,搅拌反应使混合液变为澄清透明液体。将3-氯-苯丙酮的四氢呋喃溶液(0.8mol/L)25ml加入恒压漏斗,以2S/滴的速度缓慢滴加至反应瓶,约0.5h滴加完毕,反应4h后加冰水终止反应。所得溶液进行手性柱气相色谱分析得转化率92%,光学纯度e.e.值96%。
将反应液用2.0mol/L盐酸溶液清洗,留有机层过柱,有效洗脱液减压旋蒸除溶剂的(R)-(+)-3-氯-苯丙醇灰白色固体3.0g,收率71%。
实施例2
称量催化剂Cat.6,0.81g(2.5nmol)和NaBH4,0.95g(25mmol)于100ml三颈烧瓶,加入15ml四氢呋喃溶液混合,向瓶中滴加冰醋酸至反应液PH值为5.0,搅拌反应使混合液变为澄清透明液体。将3-氯-苯丙酮四氢呋喃溶液(1.25mol/L)20ml加入恒压漏斗,以2S/滴的速度缓慢滴加至反应瓶,约0.5h滴加完毕,反应5h后加冰水终止反应。所得溶液进行手性柱气相色谱分析得转化率95%,光学纯度e.e.值94%。
将反应液用2.0mol/L盐酸溶液清洗,留有机层减压旋蒸所得粗品用环己烷重结晶,得(R)-(+)-3-氯-苯丙醇白色固体3.2g,收率76%
所得(R)-(+)-3-氯-苯丙醇的熔点mp为57~58℃,
实施例3
称量催化剂Cat.3(见化学式)1.6275g(7.5nmol)和LiBH41.1g(50mmol)于100ml三颈 烧瓶,加入15ml四氢呋喃溶液混合,向瓶中滴加冰醋酸至反应液PH值为0.2,搅拌反应使混合液变为澄清透明液体。将3-氯-苯丙酮的四氢呋喃溶液(1.5mol/L)18ml加入恒压漏斗,以2S/滴的速度缓慢滴加至反应瓶,约0.5h滴加完毕,反应2h后加冰水终止反应。所得溶液进行手性柱气相色谱分析得转化率98%,光学纯度e.e.值93%。
将反应液用2.0mol/L盐酸溶液清洗,留有机层脱色后减压旋蒸所得粗品用己烷重结晶,得(R)-(+)-3-氯-苯丙醇白色固体3.7g,收率88%。
实施例4
称量催化剂Cat.4,0.4663g(1.25nmol)和LiBH40.11g(5mmol)于100ml三颈烧瓶,加入15ml四氢呋喃溶液混合,向瓶中滴加冰醋酸至反应液PH值为0.1,搅拌反应使混合液变为澄清透明液体。将3-氯-苯丙酮的四氢呋喃溶液(1.5mol/L)18ml加入恒压漏斗,以2S/滴的速度缓慢滴加至反应瓶,约0.5h滴加完毕,反应9h后加冰水终止反应。所得溶液进行手性柱气相色谱分析得转化率87%,光学纯度e.e.值86%。
将反应液用2.0mol/L盐酸溶液清洗,留有机层脱色后减压旋蒸所得粗品用己烷重结晶,得(R)-(+)-3-氯-苯丙醇白色固体2.8g,收率67%。
所得(R)-(+)-3-氯-苯丙醇的熔点mp为57~58℃,
实施例5
称量催化剂Cat.1,0.7220g(2.0nmol)和NaBH40.76g(20mmol)于100ml三颈烧瓶,加入15ml四氢呋喃溶液混合,向瓶中滴加冰醋酸至反应液PH值为3.0,搅拌反应使混合液变为澄清透明液体。将3-氯-苯丙酮的四氢呋喃溶液(1.5mol/L)18ml加入恒压漏斗,以2S/滴的速度缓慢滴加至反应瓶,约0.5h滴加完毕,反应6h后加冰水终止反应。所得溶液进行手性柱气相色谱分析得转化率98%,光学纯度e.e.值95%。
将反应液用2.0mol/L盐酸溶液清洗,留有机层过硅胶柱脱色除酮,有效洗脱液减压旋蒸除溶剂的(R)-(+)-3-氯-苯丙醇灰白色固体3.4g,收率81.0%。
Claims (3)
1.不对称催化合成(R)-(+)-3-氯-苯丙醇的方法,其特征在于:其合成方法如下:称量螺硼酸酯催化剂Cat.2,0.544g和KBH40.55g于100ml三颈烧瓶,加入15ml四氢呋喃溶液混合,向瓶中滴加冰醋酸至反应液pH值为1.0,搅拌反应使混合液变为澄清透明液体,将0.8mol/L的3-氯-苯丙酮的四氢呋喃溶液25ml加入恒压漏斗,以2S/滴的速度缓慢滴加至反应瓶,约0.5h滴加完毕,反应4h后加冰水终止反应,将反应液用2.0mol/L盐酸溶液清洗,留有机层过柱,有效洗脱液减压旋蒸除溶剂得(R)-(+)-3-氯-苯丙醇灰白色固体,所述的螺硼酸酯催化剂Cat.2的结构如下:
3.不对称催化合成(R)-(+)-3-氯-苯丙醇的方法,其特征在于:其合成方法如下:称量螺硼酸酯催化剂Cat.1,0.7220g和NaBH40.76g于100ml三颈烧瓶,加入15ml四氢呋喃溶液混合,向瓶中滴加冰醋酸至反应液pH值为3.0,搅拌反应使混合液变为澄清透明液体,将1.5mol/L的3-氯-苯丙酮的四氢呋喃溶液18ml加入恒压漏斗,以2S/滴的速度缓慢滴加至反应瓶,约0.5h滴加完毕,反应6h后加冰水终止反应,将反应液用2.0mol/L盐酸溶液清洗,留有机层过硅胶柱脱色除酮,有效洗脱液减压旋蒸除溶剂得(R)-(+)-3-氯-苯丙醇灰白色固体,所述的螺硼酸酯催化剂Cat.l结构如下:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210014453.0A CN102584536B (zh) | 2012-01-18 | 2012-01-18 | 不对称催化合成(r)-(+)-3-氯-苯丙醇的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210014453.0A CN102584536B (zh) | 2012-01-18 | 2012-01-18 | 不对称催化合成(r)-(+)-3-氯-苯丙醇的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102584536A CN102584536A (zh) | 2012-07-18 |
CN102584536B true CN102584536B (zh) | 2014-06-11 |
Family
ID=46473872
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210014453.0A Active CN102584536B (zh) | 2012-01-18 | 2012-01-18 | 不对称催化合成(r)-(+)-3-氯-苯丙醇的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102584536B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102850153B (zh) * | 2012-07-27 | 2014-11-05 | 四川大学 | 一种催化α,β-不饱和烯酮及饱和酮的不对称还原反应方法 |
KR101644016B1 (ko) * | 2014-04-08 | 2016-08-11 | 한국화학연구원 | 중간체로서 광학 활성 3-아미노-1-페닐프로판올 유도체의 제조방법 및 상기 중간체를 이용한 광학 활성 약학적 산물의 제조방법 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5801280A (en) * | 1995-04-07 | 1998-09-01 | Sumitomo Chemical Company, Limited | Processes for preparing optically active alcohols and optically active amines |
US5831132A (en) * | 1994-10-28 | 1998-11-03 | Sumika Fine Chemicals Company, Ltd. | Process for producing optically active carbinols |
CN101012147A (zh) * | 2007-02-09 | 2007-08-08 | 陈天度 | R-(+)-3-氯苯丙醇的制备方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080200672A1 (en) * | 2005-08-30 | 2008-08-21 | Margarita Ortiz-Marciales | Highly enantioselective carbonyl reduction with borane catalyzed by chiral spiroborate esters derived from chiral beta-aminoalcohols |
-
2012
- 2012-01-18 CN CN201210014453.0A patent/CN102584536B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5831132A (en) * | 1994-10-28 | 1998-11-03 | Sumika Fine Chemicals Company, Ltd. | Process for producing optically active carbinols |
US5801280A (en) * | 1995-04-07 | 1998-09-01 | Sumitomo Chemical Company, Limited | Processes for preparing optically active alcohols and optically active amines |
CN101012147A (zh) * | 2007-02-09 | 2007-08-08 | 陈天度 | R-(+)-3-氯苯丙醇的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102584536A (zh) | 2012-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bai et al. | Highly Regio‐and Enantioselective Hydrosilylation of gem‐Difluoroalkenes by Nickel Catalysis | |
Lv et al. | Catalytic atroposelective synthesis of axially chiral benzonitriles via chirality control during bond dissociation and CN group formation | |
Afanasyev et al. | Reductive amination in the synthesis of pharmaceuticals | |
Walsh | Titanium-catalyzed enantioselective additions of alkyl groups to aldehydes: mechanistic studies and new concepts in asymmetric catalysis | |
Guo et al. | A practical electrophilic nitrogen source for the synthesis of chiral primary amines by copper-catalyzed hydroamination | |
Zhao et al. | Cascade copper-catalyzed 1, 2, 3-trifunctionalization of terminal allenes | |
Ju et al. | Silver-catalyzed enantioselective propargylic C–H bond amination through rational ligand design | |
Ross et al. | Development and mechanistic interrogation of interrupted chain-walking in the enantioselective relay Heck reaction | |
Silverio et al. | Simple organic molecules as catalysts for enantioselective synthesis of amines and alcohols | |
Chen et al. | Palladium (II)‐Catalyzed Enantioselective Aminotrifluoromethoxylation of Unactivated Alkenes using CsOCF3 as a Trifluoromethoxide Source | |
Ghosh et al. | Metal‐free one‐pot synthesis of benzofurans | |
Marques et al. | Advances in the Catalytic Asymmetric Arylation of Imines using Organoboron Reagents: An Approach to Chiral Arylamines | |
Chen et al. | Synthesis of indanones and spiroindanones by diastereoselective annulation based on a hydrogen autotransfer strategy | |
Li et al. | Catalytic Asymmetric Total Synthesis of (+)-and (−)-Paeoveitol via a Hetero-Diels–Alder Reaction | |
Nguyen et al. | Phosphoric Acid‐Catalyzed Enantioselective Transfer Hydrogenation of N‐Aryl‐ortho‐Hydroxybenzophenone Ketimines | |
Roddan et al. | Acceptance and kinetic resolution of α-methyl-substituted aldehydes by norcoclaurine synthases | |
Zhu et al. | Recent advances for the synthesis of chiral sulfones with the sulfone moiety directly connected to the chiral center | |
Xu et al. | Photoinduced C (sp2)–H/C (sp2)–H Cross-Coupling of Alkenes: Direct Synthesis of 1, 3-Dienes | |
Deschamp et al. | Simple Chiral Diaminobinaphthyl Dilithium Salts for Intramolecular Catalytic Asymmetric Hydroamination of Amino‐1, 3‐dienes | |
Wu et al. | Enantioselective allenation of terminal alkynes catalyzed by copper halides of mixed oxidation states and its application to the total synthesis of scorodonin | |
Johnson et al. | Palladium-catalyzed synthesis of N-tert-prenylindoles | |
Garcıa-Delgado et al. | Enantioselective addition of dimethylzinc to aldehydes: assessment of optimal N, N-substitution for 2-dialkylamino-1, 1, 2-triphenylethanol ligands | |
Yu et al. | Regioselective Addition of Organometallic Reagents to 2‐(1‐Alkynyl)‐2‐alken‐1‐ones for an Efficient Synthesis of Substituted 1, 2‐Allenyl Ketones | |
Tilby et al. | Exploiting Configurational Lability in Aza‐Sulfur Compounds for the Organocatalytic Enantioselective Synthesis of Sulfonimidamides | |
CN102584536B (zh) | 不对称催化合成(r)-(+)-3-氯-苯丙醇的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |