CN102518431A - 基于可控中子源的随钻多参数测井方法 - Google Patents

基于可控中子源的随钻多参数测井方法 Download PDF

Info

Publication number
CN102518431A
CN102518431A CN2011104390826A CN201110439082A CN102518431A CN 102518431 A CN102518431 A CN 102518431A CN 2011104390826 A CN2011104390826 A CN 2011104390826A CN 201110439082 A CN201110439082 A CN 201110439082A CN 102518431 A CN102518431 A CN 102518431A
Authority
CN
China
Prior art keywords
gamma
neutron
detector
formation
neutron source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011104390826A
Other languages
English (en)
Other versions
CN102518431B (zh
Inventor
张锋
袁超
刘军涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum East China
Original Assignee
China University of Petroleum East China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum East China filed Critical China University of Petroleum East China
Priority to CN201110439082.6A priority Critical patent/CN102518431B/zh
Publication of CN102518431A publication Critical patent/CN102518431A/zh
Application granted granted Critical
Publication of CN102518431B publication Critical patent/CN102518431B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本发明涉及一种基于可控中子源的随钻多参数测井方法。所述测井方法利用D-T可控中子源以及2个热中子和2个伽马探测器的多探测器测量系统,采用特殊的脉冲和测量时序设计,充分利用可控中子源发射的快中子与地层元素原子核发生作用,同时记录不同位置处的伽马能谱和伽马时间谱及热中子时间谱,通过不同的谱解析和数据处理方法,实现在随钻过程中利用一支核测井仪器可以进行地层密度、孔隙度、流体饱和度以及元素含量等多参数同时测量,实现随钻地层岩性、孔隙度和流体饱和度评价,可对地层孔隙度及流体饱和度实现同一参数多种方法测量,降低测井解释多解性,提高测井资料解释的精确度和可信度。

Description

基于可控中子源的随钻多参数测井方法
技术领域
本发明涉及随钻测井系统技术领域,尤其涉及一种基于可控中子源的随钻多参数测井方法。
背景技术
近年来,随着大斜度井和水平井不断增加,随钻测井技术发展迅速。在随钻测井过程中,地层刚被钻开,此时地层基本上未受泥浆侵入或者侵入较浅,测量结果能更真实的反映地层参数。若随钻过程中能同时测量多个地层参数,则利用测井资料准确进行地层评价,降低测井解释的多解性。
可控中子源在随钻测井中发挥着越来越重要的作用,其发射中子的高能量和高产额特性有利于增加测井信息以及提高测井探测深度,另外利用可控中子源可以避免对工作人员和环境都存在潜在危害,符合HSE管理要求。可控中子源发射的快中子进入地层后,与地层元素原子核发生非弹性散射、弹性散射、辐射俘获和活化等核反应,利用不同的核反应可以测量不同地层物理参数。目前,可控中子源在测井中应用可实现四种地层参数测量:(1)地层密度测量,快中子进入地层后与地层元素发生非弹性散射和俘获反应,同时放出相应的非弹和俘获伽马射线,伽马射线在地层中的分布与地层含氢指数和密度有关,可以利用不同源距处的伽马射线计数来确定地层密度;(2)地层孔隙度测量,在距离中子源不同距离处放两个热中子探测器,两个探测器计数率比值主要反映地层中含氢量,而氢通常含于地层流体中,所以含氢量与地层孔隙度有关,据此计算出地层孔隙度;(3)地层流体饱和度测量,中子进入地层后发生一系列反应,利用伽马或热中子探测器探测器记录伽马能谱或者热中子时间谱,利用非弹伽马能谱中C窗计数和O窗计数的比值可反映地层含油饱和度,利用从热中子时间谱中得出的地层宏观俘获截面可以反映地层含水饱和度;(4)地层元素含量测量,利用中子与地层元素原子核发生作用放出的非弹性散射和俘获伽马能谱,以实验标准谱为基础,利用谱分析技术得到地层元素含量,并利用氧化物闭合模型和聚类因子分析等方法确定地层矿物类型及含量。但是,目前可控中子源的随钻测井仪器中仅限于补偿中子孔隙度测量,测量参数单一,不能充分利用可控中子源发射出的快中子与地层相互作用的核反应,在地层刚被钻开时获取尽可能多的地层参数测量;即使利用多种仪器简单组合也能实现多参数测量,但测量时间及位置不同,测量结果不具可比性。
发明内容
本发明的目的是设计一种基于可控中子源的随钻多参数测井方法,充分利用可控中子源发射的快中子进入地层后与地层元素原子核发生核反应,在随钻过程中利用一支仪器一次下井进行多个地层参数测量,实现随钻测井多参数测量以及对同一参数多种方式测量,降低测井解释多解性,提高测井结果可信度。
本发明的技术方案为:一种基于可控中子源的随钻多参数测井方法,采用可控中子源和多探测器系统,利用脉冲和测量时序设计,记录不同位置处的伽马能谱和伽马时间谱及热中子时间谱,通过谱解析和数据处理方法,在随钻过程中同时测量地层密度、孔隙度、流体饱和度以及元素含量,实现随钻地层综合评价。
优选的是,所述可控中子源采用D-T脉冲中子源,脉冲宽度为40μs。
优选的是,所述多探测器系统包括2个热中子探测器和2个伽马探测器;所述热中子探测器利用He-3计数管,所述2个热中子探测器距离可控中子源的距离分别为20~30cm和55~65cm,近热中子探测器长度为5cm,远热中子探测器长度为10cm;所述伽马探测器利用NaI探测器,所述2个伽马探测器距离所述可控中子源的距离分别为40~50cm和75~85cm,近伽马探测器长度为5cm,远伽马探测器长度为10cm。
优选的是,所述脉冲测量时序设计中一个大周期为100ms,包含T1和T2两个时间段;第一个时间段T1时长98ms,包含98个短周期ST1,每个短周期ST1包含三个时间门G1、G2和G3;所述第一个时间门G1为0~40μs,为所述可控中子源脉冲发射快中子时间以及所述伽马探测器记录非弹性散射伽马能谱时间门,所述非弹性散射能谱记录256道;所述第二个时间门G2为50~1000μs,为所述伽马探测器记录俘获伽马能谱时间谱门,所述俘获伽马能谱记录256道;所述第三个时间门G3为0~1000μs,为所述近伽马和远热中子探测器记录伽马和热中子时间谱时间门,所述时间谱记录100道;所述第二个时间段T2时长2000μs,为时间门G498000~100000μs,为所述伽马探测器记录本底自然伽马能谱时间门,所述本底自然伽马能谱记录256道。
所述地层密度测量通过利用所述谱解析方法从所述记录的非弹性散射伽马能谱中获得所述近伽马探测器和所述远伽马探测器的非弹性散射伽马总计数比值,并且利用所述谱解析方法从所述记录的俘获伽马能谱中获得所述近伽马探测器和所述远伽马探测器的俘获伽马总计数比值对含氢指数进行校正实现。
所述地层孔隙度测量可实现所述的同一参数多种方式测量,可通过三种方式实现:(1)利用所述谱解析方法从所述记录的热中子时间谱中获得所述近热中子探测器和所述远热中子探测器的热中子总计数比值;(2)利用所述谱解析方法从所述记录的俘获伽马能谱中获得所述近伽马探测器和所述远伽马探测器的俘获伽马总计数比值;(3)利用上面所述的地层密度测量结果,结合岩石骨架密度和地层流体密度获得地层孔隙度。
所述地层流体饱和度可实现所述的同一参数多种方式测量,可通过三种方式实现:(1)利用所述谱解析方法从所述记录的非弹性散射伽马能谱中获得所述伽马探测器C窗非弹性散射伽马计数与O窗非弹性散射伽马计数比值(C/O),利用所述C/O值可以确定地层含油饱和度;(2)利用所述谱解析方法从所述记录的伽马时间谱中获取地层宏观俘获截面,利用地层宏观俘获截面可以确定地层含水饱和度;(3)利用所述谱解析方法从所述记录的热中子时间谱中获取地层宏观俘获截面,利用地层宏观俘获截面可以确定地层含水饱和度。
所述地层元素含量测量利用所述记录的非弹性散射和俘获伽马能谱,以实际测量实验标准谱为基础,利用所述谱处理和谱分析技术得到地层元素含量,并利用氧化物闭合模型和聚类因子分析等方法确定地层矿物类型及含量实现。
所述随钻过程中多参数测量是在随钻过程中利用所述可控中子源和多探测器测量系统,并采用所述的特殊脉冲和测量时序设计,利用一支测井仪器同时实现上面所述地层密度测量、地层孔隙度测量、地层流体饱和度测量以及地层元素含量测量。
所述对同一参数进行重复测量是对所述地层孔隙度测量和所述地层流体饱和度测量利用不同的方法实现,并且对比利用不同方法得出的测量结果,提高测量结果精度和可信度。
本发明的有益效果为:本发明可以利用一支仪器同时测量地层密度、地层孔隙度、地层流体饱和度以及地层元素含量,使测井仪器长度降低、结构简单,可实现多参数测量,且对同一参数进行多种方式测量,降低测井解释的多解性,提高测井结果精度和可信度,更好用于随钻地层评价。
附图说明
图1为本发明测量时仪器探测器相对位置及结构剖面示意图,图中:1为钻铤,2为可控中子源,3为主屏蔽体,4为副屏蔽体,5为近热中子探测器,6为远热中子探测器,7为近伽马探测器,8为远伽马探测器,9为电子线路部分;
图2为脉冲和测量时序设计示意图:
图3蒙特卡罗计算模型示意图,建立模型的条件为:井眼直径为20cm,井眼内充满淡水;地层尺寸为300cm×300cm×300cm,把整个地层划分442个栅元,地层分别填充不同岩性和流体物质;仪器直径为85mm,置于钻铤内;钻铤直径为17.145cm,钻铤上偏心开两个泥浆导流通道、直径都为3.536cm,且泥浆导流通道内充满淡水;中子源采用D-T脉冲中子源,脉冲宽度为20μs,位于距仪器下端25cm处;仪器采用2个热中子探测器和2个伽马探测器;
图4为含氢指数相同时非弹和俘获伽马计数比值与地层密度变化关系,计算条件为:地层为砂岩,孔隙中饱含天然气和水,天然气密度为0.1g/cm3,改变地层含气饱和度从0到100%、间隔为10%,调整地层孔隙度使地层含氢指数保持0.2不变,分别记录近伽马探测器7和远伽马探测器8的非弹性散射伽马能谱和俘获伽马能谱;
图5为地层密度相同时非弹和俘获伽马计数比值与含氢指数变化关系,计算条件为:地层为砂岩,孔隙中饱含天然气和水,天然气密度为0.1g/cm3,改变地层含气饱和度从0到100%、间隔为10%,调整地层孔隙度使地层密度保持1.99g/cm3不变,分别记录近伽马探测器7和远伽马探测器8的非弹性散射伽马能谱和俘获伽马能谱;
图6为非弹伽马计数比值与地层密度关系,计算条件为:地层为砂岩,孔隙中饱含水,改变地层孔隙度为20%、22.86%、30.32%、35.31%、41.56%、49.62%、60.41%、75.60%和98.57%,分别记录近伽马探测器7和远伽马探测器8的非弹性散射伽马能谱;
图7为非弹伽马计数比确定地层密度含氢指数校正前后对比图;
图8为不同岩性地层热中子计数比值随孔隙度变化曲线,计算条件为:地层岩性分别为砂岩和石灰岩,孔隙饱含淡水,改变地层孔隙度从0到40%、间隔5%,分别记录近热中子探测器5和远热中子探测器6的热中子时间谱;
图9为不同岩性地层俘获伽马总计数比值随孔隙度变化曲线,计算条件为:地层岩性分别为砂岩和石灰岩,孔隙饱含淡水,改变地层孔隙度从0到40%、间隔5%,分别记录近伽马探测器7和远伽马探测器8的俘获伽马能谱;
图10为C/O与含油饱和度的关系曲线,计算条件为:井眼直径为20cm、充满淡水,地层为砂岩或石灰岩,地层孔隙度为30%,孔隙中含淡水和油,改变地层含油饱和度为0、10%、20%、30%、40%、50%、60%、70%、80%、90%和100%,记录伽马探测器非弹性散射伽马能谱;
图11为地层宏观俘获截面与含水饱和度关系曲线,计算条件为:井眼直径为20cm、充满淡水,地层为砂岩或石灰岩,地层孔隙度为30%,孔隙中含3%矿化水和油,改变地层含水饱和度为0、10%、20%、30%、40%、50%、60%、70%、80%、90%和100%,记录热中子探测器的热中子时间谱;
图12为地层常见元素标准俘获伽马能谱,计算条件为:井眼直径为20cm,井眼充满淡水,地层填充分别填充SiO2、CaCO3、Al2O3、TiO2、K2O、Fe2O3和CuS,分别记录近伽马探测器7和远伽马探测器8的俘获伽马能谱;
图13为模拟已知地层俘获伽马能谱图,计算条件为:运用蒙特卡罗模拟矿物成分已知孔隙度为20%饱含水的地层,地层骨架由SiO2、CaCO3、TiO2、Fe2O3组成,体积百分比为40%、20%、20%、20%,记录伽马探测器的俘获伽马能谱。
具体实施方式
下面结合附图说明本发明的具体实施方式:
一种基于可控中子源的随钻多参数测井方法,是采用可控中子源以及多探测器测量系统,并利用特殊的脉冲和测量时序设计,充分利用可控中子源发射的快中子进入地层以后与地层元素原子核发生的核反应,利用伽马探测器和热中子探测器记录不同位置处的伽马能谱和伽马时间谱及热中子时间谱,通过不同的谱解析方法和不同数据处理方法,实现在随钻过程中利用一支仪器可同时测量地层密度、地层孔隙度、地层流体饱和度以及地层元素含量,并可对地层孔隙度以及地层流体饱和度实现同一参数多种方式测量。
下面将结合附图对本发明作进一步详细描述。
图1为本发明测量时仪器探测器相对位置及结构剖面示意图,如图1所示,随钻过程中测井仪器安装在钻铤上,其中,可控中子源1采用D-T脉冲中子源,其发射中子的高能量和高产额特性有利于增加测井测量参数以及提高测井探测深度,另外利用可控中子源可以避免对工作人员和环境都存在潜在危害;近热中子探测器5和远热中子探测器6都采用He-3计数管,距离可控中子源1的距离分别为20~30cm和55~65cm,长度分别为5cm和10cm;近热中子探测器7和远热中子探测器8都采用NaI探测器,距离可控中子源1的距离分别为40~50cm和75~85cm,长度分别为5cm和10cm;主屏蔽体长度为10cm,副屏蔽体长度为5cm。
所述的特殊脉冲和测量时序设计示意图如图2所示,一个大周期为100ms,共包含两个时间段(T1和T2);所述第一个时间段T1时长98ms,包含98个短周期ST1,每个短周期ST1包含三个时间门(G1、G2和G3);所述第一个时间门G1为0~40μs,为所述D-T脉冲中子源脉冲发射快中子时间以及所述伽马探测器记录非弹性散射伽马能谱时间门,所述非弹性散射能谱记录256道;所述第二个时间门G2为50~1000μs,为所述伽马探测器记录俘获伽马能谱时间谱门,所述俘获伽马能谱记录256道;所述第三个时间门G3为0~1000μs,为所述近伽马和远热中子探测器记录伽马和热中子时间谱时间门,所述时间谱记录100道;所述第二个时间段T2时长2000μs,为时间门G4(98000~100000μs),为所述伽马探测器记录本底自然伽马能谱时间门,所述本底自然伽马能谱记录256道。
利用蒙特卡罗方法根据图1仪器结构和图2特殊脉冲和测量时序设计建立随钻条件下计算模型,模型示意图如图3所示。利用数值模拟方法说明所述实现地层密度测量、地层孔隙度测量、地层流体饱和度测量以及地层元素含量测量的多参数测量以及同一参数多种方式测量。
1.地层密度测量
利用图3所示的计算模型,改变计算条件,地层含氢指数相同时根据所述伽马探测器记录的非弹性散射伽马能谱和俘获伽马能谱,利用谱解析方法得出所述近伽马探测器7和远伽马探测器8的非弹性散射伽马计数比值和俘获伽马计数比值与地层密度变化曲线如图4所示;地层含密度相同时根据所述伽马探测器记录的非弹性散射伽马能谱和俘获伽马能谱,利用谱解析方法得出所述近伽马探测器7和远伽马探测器8的非弹性散射伽马计数比值和俘获伽马计数比值与地层含氢指数变化曲线如图5所示。由图4和图5可以看出,地层密度不同时引起非弹伽马射线计数比值要比俘获伽马计数比值要大,即利用俘获伽马计数确定地层密度不如非弹伽马射线灵敏,因此选用非弹伽马计数比值确定密度;含氢指数不同时引起俘获伽马射线计数比值明显比非弹伽马计数比值大,因此选用俘获伽马射线对含氢指数校正。
同样利用图3所示计算模型,改变计算条件,根据所述伽马探测器记录的非弹性散射伽马能谱,利用谱解析方法得出所述近伽马探测器7和远伽马探测器8的非弹性散射伽马计数比值与地层密度变化曲线如图6所示。由图6可以看出,含氢指数不同时会对利用非弹伽马计数比值确定地层密度造成影响,且含氢指数越大影响越大,利用非弹伽马计数比值确定地层密度时需要对含氢指数校正才能得到较为准确的地层密度。
由图6中含氢指数相同(HI=0.2)地层密度与非弹伽马计数比值的关系,拟合得到含氢指数校正后地层密度与非弹伽马计数比值关系为:
ρ = - 0.79845 + 1.25257 * ln ( N S N L ) i
当地层含氢指数变化时,利用俘获伽马计数比值对含氢指数进行校正,利用二元回归得到校正后公式为:
ρ a = - 0.79845 + 1.25257 * { ln [ ( N S N L ) i - 0.33 * ( N S N L ) c ] + 0.211229 }
利用地层密度和含氢指数不同条件下模拟得到的非弹和俘获伽马计数比值,利用确定地层密度校正公式,得到模拟校正前后的结果对比示于图7。
利用校正公式得出的视密度ρa和真密度ρ及相对误差(ρa-ρ)/ρ列于表1。
表1含氢指数校正前后的对比
Figure BSA00000643134700071
由图7和表1可以看出,直接利用近远探测器非弹伽马计数比确定地层密度时,在含氢指数较大时含氢指数会使视密度与真密度偏离较大;地层孔隙度越大,含氢指数越高,视密度值与真值相差越大,相对误差越大;含氢指数校正后视密度和真密度值相差很小,在误差范围之内几乎接近地层真值。
2.地层孔隙度测量
所述地层孔隙度测量中可实现所述的同一参数多种方式测量,可通过三种方式实现。
(1)利用热中子时间谱获取地层孔隙度
利用图3所示计算模型,改变计算条件,根据所述热中子探测器记录的热中子时间谱,利用谱解析方法得出所述近热中子探测器5和远热中子探测器6的热中子计数比值与地层孔隙度变化曲线如图8所示。从图8可以看出,不同岩性地层中近远探测器热中子计数比值都随着孔隙度的增加而增加,且孔隙度相同时石灰岩地层比值要比砂岩地层大;随着孔隙度的增加,近远探测器热中子计数比值变化率减小,即对孔隙度的灵敏度下降。
(2)利用俘获伽马能谱获取地层孔隙度
利用图3所示计算模型,改变计算条件,根据所述伽马探测器记录的俘获伽马能谱,利用谱解析方法得出所述近伽马探测器7和远伽马探测器8的俘获伽马计数比值与地层孔隙度变化曲线如图9所示。从图9可以看出,不同岩性地层中近远探测器俘获伽马计数比值都随孔隙度增加而增加,且孔隙度相同时石灰岩地层比值要比砂岩地层大;随孔隙度增加,近远探测器俘获伽马计数比值变化率减小,即对孔隙度的灵敏度下降。
(3)利用所述地层密度测量结果获取地层孔隙度
利用所述地层密度测量结果,再结合岩石骨架密度和地层流体密度,可根据以下公式获取地层孔隙度:
φ = ρ ma - ρ ρ ma - ρ f
式中,φ为地层孔隙度;
ρ为所述地层密度测量值;
ρma为地层骨架密度值;
ρf为地层流体密度值。
3.地层流体饱和度测量
所述地层流体饱和度测量中可实现所述的同一参数多种方式测量,可通过两种方式实现。
(1)利用非弹伽马能谱获取地层流体饱和度
利用图3所示计算模型,改变计算条件,根据所述伽马探测器记录的非弹伽马能谱,利用谱解析方法得出C窗非弹伽马计数与O窗非弹伽马计数(C/O)与含油饱和度的关系曲线如图10所示。由图10中可以看出,随着含油饱和度的增加,同一岩性地层的C/O值随着含油饱和度的增加而增加;同一含油饱和度条件下,石灰岩地层的C/O值比砂岩高;随着含油饱和度的增加,C/O值反映含油饱和度的灵敏度增加。
(2)利用热中子时间谱获取地层流体饱和度
利用图3所示计算模型,改变计算条件,根据所述热中子探测器记录的热中子时间谱,利用谱解析方法得出地层宏观俘获截面与含水饱和度的关系曲线如图11所示。由图11以看出,不同岩性地层中宏观俘获截面随着含水饱和度的增加几乎呈线性增加;在同一含油饱和度下,石灰岩的地层宏观吸收截面比砂岩的要大;岩性对利用宏观俘获截面确定地层含水饱和度灵敏度的影响很小。
(3)利用伽马时间谱获取地层流体饱和度
类似于所述的利用热中子时间谱获取地层流体饱和度,根据所述伽马探测器记录的伽马时间谱,利用谱解析方法得出的地层宏观俘获截面可以测量地层流体饱和度。
4.地层元素含量测量
利用图3所示计算模型,改变计算条件,得到不同地层中俘获伽马能谱,进而得出地层中常见元素28Si、40Ca、27Al、48Ti、39K、56Fe和65Cu标准俘获伽马能谱,如图12所示;改变地层条件,模拟已知地层俘获能谱如图13所示。
利用模拟的实验标准谱,采用谱解析方法对模拟已知地层俘获伽马能谱进行解谱,得到解谱结果列于表2。从表2可以看出,对俘获伽马能谱得出的元素含量值与理论设定模型中元素含量值很接近。
表2模拟已知地层俘获伽马能谱解谱结果
Figure BSA00000643134700091
综上所述,本发明是一种利用可控中子源和多探测器测量系统,并利用特殊的脉冲和测量时序设计,在随钻过程中利用一支仪器同时测量地层密度、地层孔隙度、地层流体饱和度以及地层元素含量,使测井仪器长度降低、结构简单,可实现多参数测量,且对同一参数进行多种方式测量,降低测井解释的多解性,提高测井结果精度和可信度,更好用于随钻地层评价。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的计数人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (9)

1.一种基于可控中子源的随钻多参数测井方法,其特征在于,采用可控中子源和多探测器系统,利用脉冲和测量时序设计,记录不同位置处的伽马能谱和伽马时间谱及热中子时间谱,通过谱解析和数据处理方法,在随钻过程中同时测量地层密度、孔隙度、流体饱和度以及元素含量,实现随钻地层综合评价。
2.根据权利要求1所述的基于可控中子源的随钻多参数测井方法,其特征在于,所述可控中子源采用D-T脉冲中子源,脉冲宽度为40μs。
3.根据权利要求1所述的基于可控中子源的随钻多参数测井方法,其特征在于,所述多探测器系统包括2个热中子探测器和2个伽马探测器;所述热中子探测器利用He-3计数管,所述2个热中子探测器距离可控中子源的距离分别为20~30cm和55~65cm,近热中子探测器长度为5cm,远热中子探测器长度为10cm;所述伽马探测器利用NaI探测器,所述2个伽马探测器距离所述可控中子源的距离分别为40~50cm和75~85cm,近伽马探测器长度为5cm,远伽马探测器长度为10cm。
4.根据权利要求1所述的基于可控中子源的随钻多参数测井方法,其特征在于,所述脉冲测量时序设计中一个大周期为100ms,包含T1和T2两个时间段;第一个时间段T1时长98ms,包含98个短周期ST1,每个短周期ST1包含三个时间门G1、G2和G3;所述第一个时间门G1为0~40μs,为所述可控中子源脉冲发射快中子时间以及所述伽马探测器记录非弹性散射伽马能谱时间门,所述非弹性散射能谱记录256道;所述第二个时间门G2为50~1000μs,为所述伽马探测器记录俘获伽马能谱时间谱门,所述俘获伽马能谱记录256道;所述第三个时间门G3为0~1000μs,为所述近伽马和远热中子探测器记录伽马和热中子时间谱时间门,所述时间谱记录100道;所述第二个时间段T2时长2000μs,为时间门G498000~100000μs,为所述伽马探测器记录本底自然伽马能谱时间门,所述本底自然伽马能谱记录256道。
5.根据权利要求1所述的基于可控中子源的随钻多参数测井方法,其特征在于,所述地层密度测量是利用近伽马探测器和远伽马探测器记录的非弹性散射伽马计数和俘获伽马计数。
6.根据权利要求1所述的基于可控中子源的随钻多参数测井方法,其特征在于,所述地层孔隙度测量可通过利用热中子计数、俘获伽马计数以及所述地层密度测量结果三种方式实现。
7.根据权利要求1所述的基于可控中子源的随钻多参数测井方法,其特征在于,所述地层流体饱和度测量可通过利用伽马探测器记录的非弹性散射伽马能谱、伽马探测器记录的俘获伽马时间谱以及热中子探测器记录的热中子时间谱三种方式实现。
8.根据权利要求1所述的基于可控中子源的随钻多参数测井方法,其特征在于,所述地层元素含量测量是利用伽马探测器记录的非弹性散射伽马能谱和俘获伽马能谱。
9.根据权利要求1所述的基于可控中子源的随钻多参数测井方法,其特征在于,可对地层孔隙度和地层流体饱和度实现同一参数多种方式测量。
CN201110439082.6A 2011-12-26 2011-12-26 基于可控中子源的随钻多参数测井方法 Active CN102518431B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110439082.6A CN102518431B (zh) 2011-12-26 2011-12-26 基于可控中子源的随钻多参数测井方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110439082.6A CN102518431B (zh) 2011-12-26 2011-12-26 基于可控中子源的随钻多参数测井方法

Publications (2)

Publication Number Publication Date
CN102518431A true CN102518431A (zh) 2012-06-27
CN102518431B CN102518431B (zh) 2015-04-22

Family

ID=46289469

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110439082.6A Active CN102518431B (zh) 2011-12-26 2011-12-26 基于可控中子源的随钻多参数测井方法

Country Status (1)

Country Link
CN (1) CN102518431B (zh)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103527181A (zh) * 2012-07-05 2014-01-22 中国石油天然气集团公司 一种随钻可控源中子测井方法及仪器
CN104379869A (zh) * 2013-06-14 2015-02-25 雷米技术有限责任公司 多伽玛控制器组件
CN104747179A (zh) * 2013-12-31 2015-07-01 中国石油化工集团公司 基于氘-氚加速器中子源的地层密度随钻测量仪
CN103696765B (zh) * 2013-11-06 2016-08-17 中国石油大学(华东) 基于可控中子源的双LaBr3探测器元素能谱测井仪及测井方法
CN106405668A (zh) * 2016-08-30 2017-02-15 西安奥华电子仪器股份有限公司 一种用于地层参数测量的中子爆发及测量时序控制方法
CN106597560A (zh) * 2016-11-30 2017-04-26 中国石油大学(华东) 一种利用快中子场分布表征的中子伽马密度测井方法
CN106646642A (zh) * 2016-12-29 2017-05-10 中国石油大学(华东) 一种扫描式放射性井径测量设备及方法
CN106761675A (zh) * 2016-12-16 2017-05-31 中国石油天然气股份有限公司 脉冲中子测井方法及装置
CN107288607A (zh) * 2017-07-25 2017-10-24 中国石油大学(华东) 一种利用Gd中子示踪产额成像评价近井压裂裂缝的方法
CN107462929A (zh) * 2017-07-25 2017-12-12 中国石油大学(华东) 一种井中铜镍矿产品位测量装置及方法
CN107479101A (zh) * 2017-08-09 2017-12-15 徐彬 含油饱和度分析装置
CN107505661A (zh) * 2017-07-25 2017-12-22 中国石油大学(华东) 一种可控中子三探测器元素测井装置及方法
CN107532983A (zh) * 2015-04-29 2018-01-02 通用电气(Ge)贝克休斯有限责任公司 使用脉冲中子测量平台上的检测器进行的密度测量
CN108457644A (zh) * 2017-12-26 2018-08-28 中国石油天然气股份有限公司 一种元素俘获能谱测井的伽马能谱解谱方法及装置
CN108548833A (zh) * 2018-03-27 2018-09-18 深圳市中核共创科技有限公司 一种混凝土脱空检测方法、装置及终端设备
CN108643890A (zh) * 2018-03-14 2018-10-12 中国石油大学(北京) 一种确定地层孔隙度的方法
CN109239106A (zh) * 2018-11-09 2019-01-18 中国石油大学(华东) 一种井中地层水矿化度测量装置及方法
CN109521487A (zh) * 2018-11-08 2019-03-26 中国石油大学(华东) 一种利用元素伽马能谱测井识别气层的方法
CN109870717A (zh) * 2019-03-22 2019-06-11 中国原子能科学研究院 放射性检测装置
CN109915127A (zh) * 2019-04-04 2019-06-21 山东科技大学 一种基于d-d可控中子源的密度测量方法
CN110056341A (zh) * 2018-01-18 2019-07-26 中石化石油工程技术服务有限公司 一种随钻可控源密度测井装置
CN110454147A (zh) * 2019-07-31 2019-11-15 中国石油天然气集团有限公司 一种可控源一体化核测井仪及测井方法
CN110469324A (zh) * 2019-07-31 2019-11-19 中国石油天然气集团有限公司 一种基于脉冲中子测井的计算地层密度方法
CN110486002A (zh) * 2019-08-26 2019-11-22 中国石油大学(北京) 中子伽马密度测井中地层体积密度确定方法及设备
CN110894785A (zh) * 2019-08-21 2020-03-20 中国石油大学(北京) 超热中子孔隙度测井方法及设备
CN111335886A (zh) * 2020-02-06 2020-06-26 长江大学 一种中子伽马密度测井测量装置及方法
CN112065377A (zh) * 2020-08-31 2020-12-11 中国海洋石油集团有限公司 一种随钻中子数据处理方法和装置
CN112302622A (zh) * 2020-10-29 2021-02-02 大庆油田有限责任公司 一种脉冲中子全谱测井综合解释剩余油饱和度的方法
CN112377180A (zh) * 2020-11-30 2021-02-19 中国石油天然气集团有限公司 可控中子源测井中地层孔隙度确定方法、装置、设备和存储介质
CN112593923A (zh) * 2020-12-16 2021-04-02 中国海洋石油集团有限公司 一种基于脉冲中子预测含气饱和度的方法和装置
CN115012920A (zh) * 2022-06-08 2022-09-06 中国石油大学(华东) 基于双clyc双粒子探测器的可控中子源多谱测井仪及测井方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105510986B (zh) * 2015-12-30 2017-11-07 中国石油天然气股份有限公司 一种确定海绿石砂岩中海绿石含量的方法和装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4879463A (en) * 1987-12-14 1989-11-07 Schlumberger Technology Corporation Method and apparatus for subsurface formation evaluation
USRE36012E (en) * 1994-09-16 1998-12-29 Schlumberger Technology Corporation Accelerator-based methods and apparatus for measurement-while-drilling
CN1206837A (zh) * 1997-03-04 1999-02-03 安娜钻机国际有限公司 测定地球岩层密度的方法
US20050028568A1 (en) * 2003-08-06 2005-02-10 Boris Koch Externally supported lye tank
US20050028586A1 (en) * 2003-08-07 2005-02-10 Smits Jan Wouter Integrated logging tool for borehole
CN1595202A (zh) * 2003-09-10 2005-03-16 中国石油集团测井有限公司技术中心 一种氯能谱测井方法
CN201835828U (zh) * 2010-07-23 2011-05-18 中国石油化工集团公司 双脉冲中子伽马谱测井仪

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4879463A (en) * 1987-12-14 1989-11-07 Schlumberger Technology Corporation Method and apparatus for subsurface formation evaluation
USRE36012E (en) * 1994-09-16 1998-12-29 Schlumberger Technology Corporation Accelerator-based methods and apparatus for measurement-while-drilling
CN1206837A (zh) * 1997-03-04 1999-02-03 安娜钻机国际有限公司 测定地球岩层密度的方法
US20050028568A1 (en) * 2003-08-06 2005-02-10 Boris Koch Externally supported lye tank
US20050028586A1 (en) * 2003-08-07 2005-02-10 Smits Jan Wouter Integrated logging tool for borehole
CN1595202A (zh) * 2003-09-10 2005-03-16 中国石油集团测井有限公司技术中心 一种氯能谱测井方法
CN201835828U (zh) * 2010-07-23 2011-05-18 中国石油化工集团公司 双脉冲中子伽马谱测井仪

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
黄志洁: "储层性能监测仪(RPM)及其应用", 《石油仪器》, vol. 18, no. 2, 30 April 2004 (2004-04-30), pages 43 - 46 *

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103527181A (zh) * 2012-07-05 2014-01-22 中国石油天然气集团公司 一种随钻可控源中子测井方法及仪器
CN103527181B (zh) * 2012-07-05 2016-12-21 中国石油天然气集团公司 一种随钻可控源中子测井方法及仪器
CN104379869A (zh) * 2013-06-14 2015-02-25 雷米技术有限责任公司 多伽玛控制器组件
CN103696765B (zh) * 2013-11-06 2016-08-17 中国石油大学(华东) 基于可控中子源的双LaBr3探测器元素能谱测井仪及测井方法
CN104747179A (zh) * 2013-12-31 2015-07-01 中国石油化工集团公司 基于氘-氚加速器中子源的地层密度随钻测量仪
CN107532983B (zh) * 2015-04-29 2020-03-03 通用电气(Ge)贝克休斯有限责任公司 使用脉冲中子测量平台上的检测器进行的密度测量
CN107532983A (zh) * 2015-04-29 2018-01-02 通用电气(Ge)贝克休斯有限责任公司 使用脉冲中子测量平台上的检测器进行的密度测量
CN106405668B (zh) * 2016-08-30 2019-06-14 西安奥华电子仪器股份有限公司 一种用于地层参数测量的中子爆发及测量时序控制方法
CN106405668A (zh) * 2016-08-30 2017-02-15 西安奥华电子仪器股份有限公司 一种用于地层参数测量的中子爆发及测量时序控制方法
CN106597560A (zh) * 2016-11-30 2017-04-26 中国石油大学(华东) 一种利用快中子场分布表征的中子伽马密度测井方法
CN106597560B (zh) * 2016-11-30 2018-09-04 中国石油大学(华东) 一种利用快中子场分布表征的中子伽马密度测井方法
CN106761675A (zh) * 2016-12-16 2017-05-31 中国石油天然气股份有限公司 脉冲中子测井方法及装置
CN106646642A (zh) * 2016-12-29 2017-05-10 中国石油大学(华东) 一种扫描式放射性井径测量设备及方法
CN107462929B (zh) * 2017-07-25 2019-04-26 中国石油大学(华东) 一种井中铜镍矿产品位测量装置及方法
CN107505661A (zh) * 2017-07-25 2017-12-22 中国石油大学(华东) 一种可控中子三探测器元素测井装置及方法
CN107288607A (zh) * 2017-07-25 2017-10-24 中国石油大学(华东) 一种利用Gd中子示踪产额成像评价近井压裂裂缝的方法
CN107462929A (zh) * 2017-07-25 2017-12-12 中国石油大学(华东) 一种井中铜镍矿产品位测量装置及方法
CN107479101A (zh) * 2017-08-09 2017-12-15 徐彬 含油饱和度分析装置
CN108457644B (zh) * 2017-12-26 2020-04-10 中国石油天然气股份有限公司 一种元素俘获能谱测井的伽马能谱解谱方法及装置
US11313223B2 (en) 2017-12-26 2022-04-26 Petrochina Company Limited Gamma ray spectrum unfolding method for elemental capture spectroscopy logging and device therefor
CN108457644A (zh) * 2017-12-26 2018-08-28 中国石油天然气股份有限公司 一种元素俘获能谱测井的伽马能谱解谱方法及装置
CN110056341A (zh) * 2018-01-18 2019-07-26 中石化石油工程技术服务有限公司 一种随钻可控源密度测井装置
CN108643890B (zh) * 2018-03-14 2020-05-22 中国石油大学(北京) 一种确定地层孔隙度的方法
CN108643890A (zh) * 2018-03-14 2018-10-12 中国石油大学(北京) 一种确定地层孔隙度的方法
WO2019183996A1 (zh) * 2018-03-27 2019-10-03 深圳市中核共创科技有限公司 一种混凝土脱空检测方法、装置、终端设备及介质
CN108548833A (zh) * 2018-03-27 2018-09-18 深圳市中核共创科技有限公司 一种混凝土脱空检测方法、装置及终端设备
CN109521487A (zh) * 2018-11-08 2019-03-26 中国石油大学(华东) 一种利用元素伽马能谱测井识别气层的方法
CN109239106A (zh) * 2018-11-09 2019-01-18 中国石油大学(华东) 一种井中地层水矿化度测量装置及方法
CN109870717A (zh) * 2019-03-22 2019-06-11 中国原子能科学研究院 放射性检测装置
CN109915127A (zh) * 2019-04-04 2019-06-21 山东科技大学 一种基于d-d可控中子源的密度测量方法
CN110469324A (zh) * 2019-07-31 2019-11-19 中国石油天然气集团有限公司 一种基于脉冲中子测井的计算地层密度方法
CN110454147A (zh) * 2019-07-31 2019-11-15 中国石油天然气集团有限公司 一种可控源一体化核测井仪及测井方法
CN110894785A (zh) * 2019-08-21 2020-03-20 中国石油大学(北京) 超热中子孔隙度测井方法及设备
CN110486002A (zh) * 2019-08-26 2019-11-22 中国石油大学(北京) 中子伽马密度测井中地层体积密度确定方法及设备
CN111335886A (zh) * 2020-02-06 2020-06-26 长江大学 一种中子伽马密度测井测量装置及方法
CN112065377A (zh) * 2020-08-31 2020-12-11 中国海洋石油集团有限公司 一种随钻中子数据处理方法和装置
CN112065377B (zh) * 2020-08-31 2023-10-24 中国海洋石油集团有限公司 一种随钻中子数据处理方法和装置
CN112302622A (zh) * 2020-10-29 2021-02-02 大庆油田有限责任公司 一种脉冲中子全谱测井综合解释剩余油饱和度的方法
CN112377180A (zh) * 2020-11-30 2021-02-19 中国石油天然气集团有限公司 可控中子源测井中地层孔隙度确定方法、装置、设备和存储介质
CN112593923A (zh) * 2020-12-16 2021-04-02 中国海洋石油集团有限公司 一种基于脉冲中子预测含气饱和度的方法和装置
CN112593923B (zh) * 2020-12-16 2023-10-20 中国海洋石油集团有限公司 一种基于脉冲中子预测含气饱和度的方法和装置
CN115012920A (zh) * 2022-06-08 2022-09-06 中国石油大学(华东) 基于双clyc双粒子探测器的可控中子源多谱测井仪及测井方法

Also Published As

Publication number Publication date
CN102518431B (zh) 2015-04-22

Similar Documents

Publication Publication Date Title
CN102518431B (zh) 基于可控中子源的随钻多参数测井方法
Dong et al. Research on recognition of gas saturation in sandstone reservoir based on capture mode
US7538319B2 (en) Use of thorium-uranium ratio as an indicator of hydrocarbon source rock
US7615741B2 (en) Determining organic carbon downhole from nuclear spectroscopy
US7365307B2 (en) Sigma/porosity tools with neutron monitors
US4937446A (en) Carbon/oxygen well logging method and apparatus
CN103696765B (zh) 基于可控中子源的双LaBr3探测器元素能谱测井仪及测井方法
US9268056B2 (en) Neutron porosity based on one or more gamma ray detectors and a pulsed neutron source
AU6563001A (en) Neutron burst timing method and system for multiple measurement pulsed neutron formation evaluation
CN106250619B (zh) 一种确定地层矿物含量的方法和装置
CN104297810A (zh) 一种地层元素测井中净非弹性散射伽马能谱的获取方法
CN104316971A (zh) 一种非弹性散射和俘获伽马能谱联合解析方法
CN103760182A (zh) 一种评价烃源岩有机质丰度的方法及装置
NO343806B1 (no) Uelastisk bakgrunnskorreksjon for et pulset nøytroninstrument
US20110218735A1 (en) Real-Time Lithology and Mineralogy Interpretation
US5045693A (en) Carbon/oxygen well logging method and apparatus
CA2616108A1 (en) Measurement of formation gas pressure in cased wellbores using pulsed neutron instrumentation
Liu et al. Methods for evaluating elemental concentration and gas saturation by a three-detector pulsed-neutron well-logging tool
Xu et al. Spectral gamma-ray measurement while drilling
Ajayi et al. Fast numerical simulation of logging-while-drilling gamma-ray spectroscopy measurements
Bouchou et al. Integration of nuclear spectroscopy technology and core data results for through-casing TOC measurement and saturation analysis: A case study in Najmah-Sargelu reservoir, South Kuwait
Yuan et al. Can the evaluation accuracy of elemental concentration be further enhanced in geochemical logging?—A break attempt to obtain purer inelastic gamma spectrum
WO2009082552A2 (en) Azimuthal elemental imaging
EP0348260B1 (en) Carbon/oxygen well logging method and apparatus
US3246152A (en) Method of compensating for the iron casing effect in radioactive well logging

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant