CN107462929B - 一种井中铜镍矿产品位测量装置及方法 - Google Patents

一种井中铜镍矿产品位测量装置及方法 Download PDF

Info

Publication number
CN107462929B
CN107462929B CN201710615018.6A CN201710615018A CN107462929B CN 107462929 B CN107462929 B CN 107462929B CN 201710615018 A CN201710615018 A CN 201710615018A CN 107462929 B CN107462929 B CN 107462929B
Authority
CN
China
Prior art keywords
cupro
gamma
well
metal products
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710615018.6A
Other languages
English (en)
Other versions
CN107462929A (zh
Inventor
张锋
田立立
刘军涛
赵靓
张泉滢
张笑瑒
遆永周
李向辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INSTITUTE OF ISOTOPE CO Ltd HENNA ACADEMY OF SCIENCES
China University of Petroleum East China
Original Assignee
INSTITUTE OF ISOTOPE CO Ltd HENNA ACADEMY OF SCIENCES
China University of Petroleum East China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INSTITUTE OF ISOTOPE CO Ltd HENNA ACADEMY OF SCIENCES, China University of Petroleum East China filed Critical INSTITUTE OF ISOTOPE CO Ltd HENNA ACADEMY OF SCIENCES
Priority to CN201710615018.6A priority Critical patent/CN107462929B/zh
Publication of CN107462929A publication Critical patent/CN107462929A/zh
Application granted granted Critical
Publication of CN107462929B publication Critical patent/CN107462929B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity
    • G01V5/04Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity specially adapted for well-logging
    • G01V5/08Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays
    • G01V5/10Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays using neutron sources
    • G01V5/104Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays using neutron sources and detecting secondary Y-rays as well as reflected or back-scattered neutrons

Abstract

本发明公开了一种井中铜镍矿产品位测量装置及方法。该装置包括井下设备和地面数据处理设备,井下设备和地面数据处理设备通过电缆相连,井下设备包括壳体,壳体为钛钢筒状壳体,壳体内自下而上依次设置有D‑T可控中子源、钨屏蔽体、CLYC双粒子探测器和遥测短节。该方法主要包括:首先根据测量得到的俘获伽马能谱,选取高能段伽马计数信息,计算不同金属元素的伽马产额,然后对伽马产额与热中子计数做比值,消除热中子通量不稳定对伽马产额的影响,最后根据伽马产额‑热中子计数比值与金属矿产品位的线性关系,计算金属矿产品位。该方法可在井中提供连续深度的金属矿产品位,有益于金属矿产勘探的定量化,提升了金属矿产勘探效率。

Description

一种井中铜镍矿产品位测量装置及方法
技术领域
本发明涉及金属矿产勘探领域,尤其涉及一种井中铜镍矿产品位测量装置及方法。
背景技术
目前对金属矿产勘探的手段主要包括航空物探、地面物探及综合测井方法,利用这些方法可对矿体可能埋藏的位置、规模和产状做出判断,了解矿体在地下的分布和延伸情况。针对金属矿产品位确定方法,常采用对矿体和围岩进行系统的取样和分析,了解矿体和围岩的物质成分。
瞬发伽马中子活化分析技术(PGNAA)常应用于地面的在线金属矿产品位计算,利用PGNAA技术在井中测量过程中,中子源发射快中子进入井眼和地层,与矿产金属元素发生辐射俘获反应,产生俘获特征伽马射线,被探测器记录,通过在俘获伽马能谱上截取特征能窗的方法获取金属元素特征伽马计数,利用伽马能窗计数与金属品位的拟合关系,最终计算得到金属矿产品位。常见铜镍金属矿产中,铜镍铁元素常相互伴生聚集成矿,以铜镍硫化物矿床为例,其矿石中的金属矿物以磁黄铁矿、镍黄铁矿和黄铜矿为主。因此,利用能窗法获取不同元素特征俘获伽马计数的过程中,易受到相互之间特征伽马射线的影响,特别是,铁、铜、镍三种金属元素产生的俘获伽马射线均集中于7.0-9.5MeV处,会对伽马产额计算结果产生较大影响。
发明内容
本发明的目的是针对上述不足,提出了一种通过在井中采集不同深度的伽马能谱和热中子计数信息,根据特征伽马产额与热中子计数的比值确定金属矿产品位井中铜镍矿产品位测量装置及方法。
本发明具体采用如下技术方案:
一种井中铜镍矿产品位测量装置,包括井下设备和地面数据处理设备,所述井下设备包括壳体,壳体内自下而上依次设置有D-T可控中子源、钨屏蔽体、CLYC双粒子探测器和遥测短节。
优选地,所述壳体为钛钢筒状壳体。
一种井中铜镍矿产品位测量方法,采用如上所述的一种井中铜镍矿产品位测量装置,包括以下步骤:
步骤一:D-T可控中子源以脉冲形式向地层发射快中子,CLYC双粒子探测器同时探测俘获伽马能谱和热中子计数,遥测短节将测量得到的数据上传至地面数据处理设备;
步骤二:截取7.0-9.5MeV处的俘获伽马能谱,利用最小二乘方法,计算得到铜和镍元素的伽马产额,将测量得到的7.0-9.5MeV能量范围伽马计数设为向量X,按照式(1)计算各金属元素伽马产额Y:
Y=(ATA)-1ATX (1)
其中,元素标准谱矩阵A;
步骤三:根据伽马产额-热中子计数比值与铜镍金属矿产品位的线性关系,计算得到铜镍金属矿产品位。
优选地,所述步骤一中的D-T可控中子源脉冲周期为400μs,一个脉冲周期内,0-40μs发射快中子,40-400μs快中子停止发射。
优选地,所述步骤一中的CLYC双粒子探测器探测周期和D-T可控中子源脉冲周期一致,探测周期为400μs,一个探测周期内,0-50μs停止探测,50-400μs探测热中子和俘获伽马能谱。
优选地,所述步骤三中的铜镍金属矿产品位计算时,伽马产额-热中子计数比值与铜镍金属矿产品位的线性关系在刻度井中获取。
本发明具有如下有益效果:本发明利用可控D-T可控中子源,一个CLYC双粒子探测器,同时测量俘获伽马能谱和热中子计数,避免了化学中子源对操作人员的,减少了热中子通量对伽马产额的影响,克服了铜、镍、铁等元素产生的俘获伽马计数之间的相互影响,可提供连续深度的铜和镍金属矿产品位,有益于金属矿产勘探的定量化,提升了金属矿产勘探效率。
附图说明
图1为井中铜镍金属矿产品位测量结构原理示意图;
图2为铜、镍、铁三种金属元素在7.0-9.5MeV处的俘获伽马能谱;
图3为模拟井条件下,伽马产额-热中子计数比与铜镍金属矿产品位的关系图;
图4为铜镍金属矿产品位井中测量效果图。
其中,1为D-T可控中子源,2为钨屏蔽体,3为CLYC双粒子探测器,4为井眼,5为遥测短节,6为金属矿藏,7为矿藏围岩,8为壳体,9为地面数据处理设备。
具体实施方式
下面结合附图和具体实施例对本发明的具体实施方式做进一步说明:
如图1所示,一种井中铜镍矿产品位测量装置,包括井下设备和地面数据处理设备9,井下设备和地面数据处理设备9通过电缆相连,井下设备包括壳体8,壳体8为钛钢筒状壳体,壳体8内自下而上依次设置有D-T可控中子源1、钨屏蔽体2、CLYC双粒子探测器3和遥测短节5。
上述测量装置在井眼4中进行连续深度的测量,井眼4周围为金属矿藏6,或者金属矿藏围岩7。
上述D-T可控中子源1发射中子的平均能量约为14MeV。
上述CLYC双粒子探测器3对伽马光子探测的能量分辨率约为4.1%(相对Cs-137的0.662MeV伽马射线)。
上述CLYC双粒子探测器3利用晶体中的6Li同位素与热中子作用产生带电粒子,实现热中子的测量。
一种井中铜镍矿产品位测量方法,采用如上所述的一种井中铜镍矿产品位测量装置,包括以下步骤:
步骤一:D-T可控中子源1以脉冲形式向地层发射快中子,CLYC双粒子探测器3同时探测俘获伽马能谱和热中子计数,遥测短节5将测量得到的数据上传至地面数据处理设备9;
步骤二:截取7.0-9.5MeV处的俘获伽马能谱,利用最小二乘方法,计算得到铜和镍元素的伽马产额;
步骤三:根据伽马产额-热中子计数比值与铜镍金属矿产品位的线性关系,计算得到铜镍金属矿产品位。
步骤一中的D-T可控中子源1脉冲周期为400μs,一个脉冲周期内,0-40μs发射快中子,40-400μs快中子停止发射。
步骤一中的CLYC双粒子探测器3探测周期和D-T可控中子源1脉冲周期一致,探测周期为400μs,一个探测周期内,0-50μs停止探测,50-400μs探测热中子和俘获伽马能谱。
步骤三中的铜镍金属矿产品位计算时,伽马产额-热中子计数比值与铜镍金属矿产品位的线性关系在刻度井中获取。
如图2所示,铜、镍、铁三种金属元素在7.0-9.5MeV能量范围伽马计数分布的不同,建立元素标准谱矩阵A,矩阵的每列数据代表某种金属元素在不同能量道的伽马计数,矩阵每行数据代表不同金属元素。将测量得到的7.0-9.5MeV能量范围伽马计数设为向量X,按照式(1)计算各金属元素伽马产额Y。
Y=(ATA)-1ATX (1)
计算得到各元素的伽马产额之后,可以利用式(2)计算同一深度点处的各金属矿品位。
其中,Gi为第i种金属矿产品位,yi为第i种金属元素伽马产额,Nn为热中子计数,K1和K2为线性拟合系数。
如图3所示,利用上述金属矿产测量方法与装置,在模拟井条件下,测量得到的伽马产额-热中子计数比值与不同铜镍金属矿产品位的线性关系图,可以看出,伽马-热中子计数比与金属矿产品位具有较高的线性关系,根据该线性关系,可计算得到金属矿产品位。
如图4所示,为本发明的井中测量效果图,第一道为深度;第二道为地层岩性剖面,第三道为计算得到铜和镍金属元素伽马产额和热中子计数,第四道为计算得到的镍金属矿产品位(虚线)和理论镍金属矿产品位(灰度充填),第五道为计算得到的铜金属矿产品位(虚线)和理论铜金属矿产品位(灰度充填)。
当然,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。

Claims (4)

1.一种井中铜镍矿产品位测量方法,采用的井中铜镍矿产品位测量装置包括井下设备和地面数据处理设备,所述井下设备包括钛钢筒状壳体,壳体内自下而上依次设置有D-T可控中子源、钨屏蔽体、CLYC双粒子探测器和遥测短节,其特征在于,包括以下步骤:
步骤一:D-T可控中子源以脉冲形式向地层发射快中子,CLYC双粒子探测器同时探测俘获伽马能谱和热中子计数,遥测短节将测量得到的数据上传至地面数据处理设备;
步骤二:截取7.0-9.5MeV处的俘获伽马能谱,利用最小二乘方法,计算得到铜和镍元素的伽马产额,将测量得到的7.0-9.5MeV能量范围伽马计数设为向量X,按照式(1)计算各金属元素伽马产额Y:
Y=(ATA)-1ATX (1)
其中,元素标准谱矩阵A;
步骤三:根据伽马产额-热中子计数比值与铜镍金属矿产品位的线性关系,计算得到铜镍金属矿产品位。
2.如权利要求1所述的一种井中铜镍矿产品位测量方法,其特征在于,所述步骤一中的D-T可控中子源脉冲周期为400μs,一个脉冲周期内,0-40μs发射快中子,40-400μs快中子停止发射。
3.如权利要求1所述的一种井中铜镍矿产品位测量方法,其特征在于,所述步骤一中的CLYC双粒子探测器探测周期和D-T可控中子源脉冲周期一致,探测周期为400μs,一个探测周期内,0-50μs停止探测,50-400μs探测热中子和俘获伽马能谱。
4.如权利要求1所述的一种井中铜镍矿产品位测量方法,其特征在于,所述步骤三中的铜镍金属矿产品位计算时,伽马产额-热中子计数比值与铜镍金属矿产品位的线性关系在刻度井中获取。
CN201710615018.6A 2017-07-25 2017-07-25 一种井中铜镍矿产品位测量装置及方法 Active CN107462929B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710615018.6A CN107462929B (zh) 2017-07-25 2017-07-25 一种井中铜镍矿产品位测量装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710615018.6A CN107462929B (zh) 2017-07-25 2017-07-25 一种井中铜镍矿产品位测量装置及方法

Publications (2)

Publication Number Publication Date
CN107462929A CN107462929A (zh) 2017-12-12
CN107462929B true CN107462929B (zh) 2019-04-26

Family

ID=60547135

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710615018.6A Active CN107462929B (zh) 2017-07-25 2017-07-25 一种井中铜镍矿产品位测量装置及方法

Country Status (1)

Country Link
CN (1) CN107462929B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114264681A (zh) * 2021-12-29 2022-04-01 清华大学 分析金矿石品位的方法和系统
CN115291288B (zh) * 2022-09-29 2022-12-30 中石化经纬有限公司 基于铁中子标记的随钻脉冲中子孔隙度智能处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3947683A (en) * 1973-06-05 1976-03-30 Texaco Inc. Combination of epithermal and inelastic neutron scattering methods to locate coal and oil shale zones
CN201835828U (zh) * 2010-07-23 2011-05-18 中国石油化工集团公司 双脉冲中子伽马谱测井仪
CN102518431A (zh) * 2011-12-26 2012-06-27 中国石油大学(华东) 基于可控中子源的随钻多参数测井方法
WO2013059394A1 (en) * 2011-10-21 2013-04-25 Schlumberger Canada Limited Elpasolite scintillator-based neutron detector for oilfield applications
CN103513287A (zh) * 2012-06-19 2014-01-15 王新光 一种利用直流可控中子源计算地层密度的测井方法
CN103696765A (zh) * 2013-11-06 2014-04-02 中国石油大学(华东) 基于可控中子源的双LaBr3探测器元素能谱测井仪及测井方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9804290B2 (en) * 2013-04-02 2017-10-31 Morpho Detection, Llc Cross-correlated gamma ray and neutron detector

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3947683A (en) * 1973-06-05 1976-03-30 Texaco Inc. Combination of epithermal and inelastic neutron scattering methods to locate coal and oil shale zones
CN201835828U (zh) * 2010-07-23 2011-05-18 中国石油化工集团公司 双脉冲中子伽马谱测井仪
WO2013059394A1 (en) * 2011-10-21 2013-04-25 Schlumberger Canada Limited Elpasolite scintillator-based neutron detector for oilfield applications
CN103890615A (zh) * 2011-10-21 2014-06-25 普拉德研究及开发股份有限公司 用于油田应用的基于钾冰晶石闪烁体的中子探测器
CN102518431A (zh) * 2011-12-26 2012-06-27 中国石油大学(华东) 基于可控中子源的随钻多参数测井方法
CN103513287A (zh) * 2012-06-19 2014-01-15 王新光 一种利用直流可控中子源计算地层密度的测井方法
CN103696765A (zh) * 2013-11-06 2014-04-02 中国石油大学(华东) 基于可控中子源的双LaBr3探测器元素能谱测井仪及测井方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Ce3+激活的钾冰晶石类非氟卤化物闪烁晶体的研发现状";张明荣;《中国稀土学会2017学术年会摘要集》;20170511;第221页
"MC法模拟地层元素测井仪优化中子屏蔽体";朱力 等;《核电子学与探测技术》;20160930;第36卷(第9期);第974-977页

Also Published As

Publication number Publication date
CN107462929A (zh) 2017-12-12

Similar Documents

Publication Publication Date Title
US7718956B2 (en) Use of elemental pulse neutron spectroscopy measurements for indexing bitumen viscosity in the well
CN108825220B (zh) 融合自然γ能谱与中子时间谱的铀矿测井仪及铀定量方程
EP2810104A1 (en) Pulsed-neutron tool methods and systems for monitoring casing corrosion
CN109521487B (zh) 一种利用元素伽马能谱测井识别气层的方法
US20190011596A1 (en) Water saturation determination using an oxygen estimate and formation lithology
GB2485948A (en) Apparatus and method for well logging utilizing associate particle imaging
CN107462929B (zh) 一种井中铜镍矿产品位测量装置及方法
CN103748486A (zh) 使用多个标准和空间区域的核频谱分析校正
US8847170B2 (en) Measurement of formation porosity using a single gamma ray detector
CN106250619B (zh) 一种确定地层矿物含量的方法和装置
CN109915127A (zh) 一种基于d-d可控中子源的密度测量方法
Bryman et al. Muon geotomography—bringing new physics to orebody imaging
CN109239106A (zh) 一种井中地层水矿化度测量装置及方法
US3792253A (en) Method and apparatus for detection of copper
Cui et al. The Heat Source Origin of Geothermal Resources in Xiong’an New Area, North China, in View of the Influence of Igneous Rocks
CN110469324A (zh) 一种基于脉冲中子测井的计算地层密度方法
EP3066298B1 (en) Improved measurement of downhole gamma radiation by reduction of compton scattering
US11703611B2 (en) Computer-implemented method of using a non-transitory computer readable memory device with a pre programmed neural network and a trained neural network computer program product for obtaining a true borehole sigma and a true formation sigma
CN107075939A (zh) 自然伽马射线工具的增益稳定
CN112630849A (zh) 一种基于能谱测井特征谱峰的铀矿定量剥离系数求法
Iakovleva et al. Study of the magnetic permeability of mountain rocks based on the comprehensive analysis of the pulsed electromagnetic field parameters
Ley-Cooper et al. Inversion of SPECTREM AEM data for conductivity and system geometry
Keys et al. Well logging with californium-252
CN109779611A (zh) 石油孔固井水泥环属性参数在老井伽玛复测系数修正中的应用
US11733421B2 (en) Method for obtaining near-wellbore true borehole sigma and true formation sigma by using a nuclear logging tool during oil and gas exploration

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant