CN102508259A - 基于mems扫描微镜的小型化无镜头激光三维成像系统及其成像方法 - Google Patents

基于mems扫描微镜的小型化无镜头激光三维成像系统及其成像方法 Download PDF

Info

Publication number
CN102508259A
CN102508259A CN2011104117824A CN201110411782A CN102508259A CN 102508259 A CN102508259 A CN 102508259A CN 2011104117824 A CN2011104117824 A CN 2011104117824A CN 201110411782 A CN201110411782 A CN 201110411782A CN 102508259 A CN102508259 A CN 102508259A
Authority
CN
China
Prior art keywords
light
laser
blue
photelectric receiver
green
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011104117824A
Other languages
English (en)
Inventor
王焕钦
王莹
陈然
徐军
何德勇
赵天鹏
明海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Institutes of Physical Science of CAS
Original Assignee
Hefei Institutes of Physical Science of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Institutes of Physical Science of CAS filed Critical Hefei Institutes of Physical Science of CAS
Priority to CN2011104117824A priority Critical patent/CN102508259A/zh
Publication of CN102508259A publication Critical patent/CN102508259A/zh
Pending legal-status Critical Current

Links

Abstract

本发明公开了一种基于MEMS扫描微镜的小型化无镜头激光三维成像系统及其成像方法,该系统采用红、绿、蓝三色激光器作为照明光源,三色激光输出光功率经调制后组合为一束白光投射到目标表面;使用光电接收器组接收目标表面散射光中的红、绿、蓝光分量,并由测量电路获得单个被测像素的距离值和三色光分量的幅度值。微控制器根据三色光分量的幅度值计算单个被测像素的三色亮度值,并利用实时距离平方修正方法获得该像素的三色真实亮度值。微控制器控制MEMS微镜进行扫描,获得全部像素的距离值和真实亮度值,并组合生成目标的深度图像和灰度图像,最终获得目标的三维彩色图像。本发明无需光学镜头,成像分辨率高、速度快、结构简单、便于小型化。

Description

基于MEMS扫描微镜的小型化无镜头激光三维成像系统及其成像方法
 
技术领域
本发明涉及三维成像技术领域,特别涉及一种基于MEMS扫描微镜的小型化无镜头激光三维成像系统及其成像方法。
      
背景技术
与传统的二维成像技术相比,三维成像技术包含了第三维的距离或深度信息,能够更加充分地描述真实三维场景中物体的位置和运动信息,因此具有许多突出的优点和广阔的应用前景;特别是近年来,随着计算机视觉技术的不断发展,在目标识别、实物仿形、移动机器人防撞、无人车导航、立体电影、虚拟现实等应用领域对高性能三维成像的需求十分迫切。
基于光学测距的三维成像技术由于方向性好、测量范围大、分辨率高、无需接触、抗外界环境干扰强,而逐渐成为国内外的研究热点,而目前研究的大部分光学三维成像系统均是基于三角法或飞行时间原理来测量距离的。
基于三角法测距的三维成像系统,例如双目视觉系统和结构光成像系统,需要处理“阴影”效应(Shadow effects)或投影条纹“模糊”问题(Ambiguity problems),因此一般只能使用在对比度高的测量场合。与该类成像系统相比,基于飞行时间测距的三维成像系统由于光的发射和接收几乎在同一条直线上,可以明显“分辨”各个被测点的信息,因此不会出现三角法测距中存在的 “阴影”或投影“模糊”问题;此外,基于飞行时间测距的三维成像系统还具有原理简单、测距精度高、无需参考面等优点。
在传统的基于飞行时间测距的三维成像系统中,最典型的代表是扫描式激光成像雷达,它在单点飞行时间测距的基础上,通过二维扫描实现整个三维空间的测量,例如美国的HDL-64E扫描激光雷达。这种三维成像技术原理简单、可探测距离远、精度高,但是由于使用了精密、笨重且价格昂贵的宏观机械扫描装置和光学元件,该类系统一般抗振性能差、体积大、成本高;同时,由于宏观的机械扫描装置自身扫描速度慢,在长时间使用过程中存在老化和磨损现象,使用该方法获得的三维图像的套准精度低,实时性差,且常常不适用于动态目标或场景的测量;此外,传统的扫描激光成像雷达获取的三维图像往往都是单色的灰度图像,成像颜色真实感较差。
 
发明内容
本发明的目的是针对上述传统三维成像技术所存在的不足,提供一种基于MEMS扫描微镜的小型化无镜头激光三维成像系统,用于实现实时、高精度和低成本的彩色三维成像,满足现有诸多领域对高性能三维成像的迫切需求。
本发明解决其技术问题所采取的技术方案是:
一种基于MEMS扫描微镜的小型化无镜头激光三维成像系统,包括激光器组、光电调制电路、分束镜组、反射镜组、双轴MEMS微镜、微镜驱动电路、滤光片组、光电接收器组、幅度测量电路组和幅度-距离测量电路;所述光电调制电路与激光器组相连接,所述光电接收器组经幅度测量电路组和幅度-距离测量电路与微控制器相连接,所述微控制器与显示器交互连接;所述微控制器输出端与微镜驱动电路输入端相连接,并由微镜驱动电路驱动双轴MEMS微镜。
所述激光器组由蓝光激光器、绿光激光器和红光激光器构成,三者分别与光电调制电路连接并由光电调制电路对三者的输出光功率进行调制;所述分束镜组由第一分束镜、第二分束镜和第三分束镜构成;所述反射镜组由第一反射镜和第二反射镜构成;所述滤光片组由第一蓝光滤光片、红色滤光片、绿色滤光片和第二蓝色滤光片构成;所述光电接收器组由第一光电接收器、第二光电接收器、第三光电接收器和第四光电接收器构成;所述幅度测量电路组由第一幅度测量电路和第二幅度测量电路构成;所述蓝光激光器发射的调制光到达分束镜组中的第一分束镜后,被分成蓝光透射光和蓝光反射光,所述蓝光透射光经反射镜组中的第一反射镜反射到达滤光片组中的第一蓝光滤光片,并被光电接收器组中的第一光电接收器接收;所述绿光激光器和红光激光器发射的调制光分别经第二分束镜和第三分束镜获得绿光反射光和红光反射光;所述蓝光反射光与所述的绿光反射光以及所述的红光反射光合为一束白光;所述白光经第二反射镜到达双轴MEMS微镜,并被投射在目标的表面;所述滤光片组中的红色滤光片和光电接收器组中的第二光电接收器接收所述目标表面散射光的红光分量,所述滤光片组中的绿色滤光片和光电接收器组中的第三光电接收器接收所述目标表面散射光的绿光分量,所述滤光片组中的第二蓝色滤光片和光电接收器组中的第四光电接收器接收所述目标表面散射光的蓝光分量;所述第一幅度测量电路和第二幅度测量电路分别与第二光电接收器和第三光电接收器连接并处理二者的输出的光电信号,获得单个被测像素的所述散射光红光分量和绿光分量的幅度值;所述幅度-距离测量电路分别与第一光电接收器和第四光电接收器连接并分别处理二者输出的光电信号,同时获得所述单个被测像素的距离值和所述散射光蓝光分量的幅度值;所述的第一光电接收器的输出信号被作为幅度-距离测量电路测量像素距离值的参考信号;所述微控制器根据所述的红光、绿光和蓝光分量幅度值分别计算出所述单个被测像素的红、绿、蓝三色真实亮度值。
所述微控制器采用可编程单片机、可编程DSP芯片或高性能FPGA/CPLD芯片。
所述幅度-距离测量电路由依次连接的低噪声放大器组、带通滤波器组和模数转换器组构成;所述低噪声放大器组包括第一低噪声放大器和第二低噪声放大器; 所述带通滤波器组包括第一带通滤波器和第二带通滤波器;所述模数转换器组包括第一模数转换器和第二模数转换器。
本发明的另一目的是提供基于MEMS扫描微镜的小型化无镜头激光三维成像系统的成像方法,其包括下述步骤:
(a)、采用红、绿、蓝三色激光器作为照明光源,并分别对三色激光器的输出光功率进行调制,调制过的红、绿、蓝三色激光经反射镜组和分束镜组后合为一束白光,所述白光经双轴MEMS微镜投射到目标的表面;使用光电接收器组分别接收目标表面散射光中的红光、绿光和蓝光分量,并由幅度测量电路组和幅度-距离测量电路获得单个被测像素的距离值和红光、绿光、蓝光分量的幅度值;
(b)、微控制器获得单个被测像素的距离值后,利用实时距离平方修正方法计算单个被测像素的红、绿、蓝三色真实亮度值,完成单个像素值的测量;
(c)、微控制器控制微镜驱动电路,驱动双轴MEMS微镜进行二维扫描,重复所述单个像素值的测量过程,获取全部像素的距离值和真实亮度值,并组合生成目标的深度图像和灰度图像;
(d)、深度图像与灰度图像在微控制器中,通过图像处理算法,融合生成目标的三维彩色图像,并被发送至显示器进行显示。
由于成像过程中未使用透镜,单个被测像素的红、绿、蓝三色亮度值不能真实的反映被测目标的亮度信息,因此微控制器再根据测得的所述单个被测像素的距离值,利用实时距离平方修正方法计算获得所述单个被测像素的红、绿、蓝三色真实亮度值,完成单个像素值的测量。
所述实时距离平方修正方法为,首先,利用第一幅度测量电路和第二幅度测量电路获得单个被测像素的散射光红光分量和绿光分量的幅度值;同时,利用所述幅度-距离测量电路获得单个被测像素的距离值和散射光蓝光分量的幅度值;然后,根据无镜头成像辐射度学模型,目标成像的亮度值跟距离值的平方成反比,利用单个被测像素的距离值,对单个被测像素的红光分量、绿光分量和蓝光分量的亮度值进行实时平方修正,获得单个被测像素的红、绿、蓝三色真实亮度值。
与已有技术相比,本发明的有益效果体现在:
1、本发明的三维成像系统无需任何光学镜头,不存在传统光学成像技术中的景深和焦深问题,成像系统光路简单、体积小、抗震性能好;
2、与传统扫描激光成像雷达中使用的双摆镜、旋转多面体反射棱镜、双检流计镜或两轴的驱动旋转镜相比,本发明采用的双轴MEMS微镜不仅便于精确驱动和控制,同时也具有更小的体积、更低的功耗和成本;
3、本发明使用面积小、质量轻、共振频率高的双轴MEMS微镜作为高速二维扫描器件,三维成像的空间分辨率高、测量速度快,能适用于动态目标或场景的测量;
4、本发明成像系统获得的深度图像与二维图像套准精度高;
5、本发明能够实现彩色的三维成像,成像真实性更强;
6、本发明成像系统结构简单、体积小、功耗和成本低,便于小型化。
 
附图说明
图1为本发明的结构原理示意图。
图2为幅度-距离测量电路10的一个具体实施方案。
图中标号:1a、蓝光激光器;1b、绿光激光器;1c、红光激光器;2、光电调制电路;3a、第一分束镜;3b、第二分束镜;3c、第三分束镜;4a、第一反射镜;4b、第二反射镜;5、双轴MEMS微镜;6、微镜驱动电路;7a、第一蓝光滤光片;7b、红光滤光片;7c、绿光滤光片;7d、第二蓝光滤光片;8a、第一光电接收器;8b、第二光电接收器;8c、第三光电接收器;8d、第四光电接收器;9a、第一幅度测量电路;9b、第二幅度测量电路;10、幅度-距离测量电路;11、微控制器;12、显示器;13、目标;14、目标表面法线方向;15、激光入射方向与目标表面法线方向的夹角θ i;16a、第一低噪声放大器;16b、第二低噪声放大器;17a、第一带通滤波器;17b、第二带通滤波器;18a、第一模数转换器;18b、第二模数转换器。
 
具体实施方式
下面结合具体实施例,对本发明进行详细描述。
参见图1,设置光电调制电路2分别对激光器组中蓝光激光器1a、绿光激光器1b和红光激光器1c的输出光功率进行调制,蓝光激光器1a发射的调制光到达分束镜组中的第一分束镜3a后,被分成蓝光透射光和蓝光反射光,所述蓝光透射光经反射镜组中的第一反射镜4a反射达到滤光片组中的第一蓝光滤光片7a,并被光电接收器组中的第一光电接收器8a接收;所述绿光激光器(1b)和红光激光器(1c)发射的调制光分别经第二分束镜(3b)和第三分束镜(3c)获得绿光反射光和红光反射光;所述蓝光反射光与所述的绿光反射光以及所述的红光反射光合为一束白光;所述白光经第二反射镜4b到达双轴MEMS微镜5,并被投射在目标13的表面;使用滤光片组中的红色滤光片7b和光电接收器组中的第二光电接收器8b接收所述目标13表面散射光的红光分量,使用滤光片组中的绿色滤光片7c和光电接收器组中的第三光电接收器8c接收所述目标13表面散射光的绿光分量,以及使用滤光片组中的第二蓝色滤光片7d和光电接收器组中的第四光电接收器8d接收所述目标13表面散射光的蓝光分量;
设置幅度测量电路组中的第一幅度测量电路9a和第二幅度测量电路9b,以所述幅度测量电路9a和9b分别处理第二光电接收器8b和第三光电接收器8c输出的光电信号,获得单个被测像素的所述红光分量和所述绿光分量的幅度值;设置幅度-距离测量电路10,以所述幅度-距离测量电路10分别处理第一光电接收器8a和第四光电接收器8d输出的光电信号,同时获得所述单个被测像素的距离值和所述散射光蓝光分量的幅度值;微控制器11利用实时距离平方修正方法获得所述单个被测像素的红、绿、蓝三色真实亮度值,完成单个像素值的测量;
微控制器11控制微镜驱动电路6,驱动双轴MEMS微镜5进行二维扫描,重复所述单个像素值的测量过程,获得全部像素的距离值和亮度值,并组合生成目标13的深度图像和灰度图像;所述深度图像与灰度图像在微控制器11中融合生成目标13的三维彩色图像,并被发送至显示器12进行显示。
本实施例中,所述激光器组中绿光激光器1b和红光激光器1c为小功率激光器,可以选用常见小体积的半导体激光器,因此可以直接通过调制激光器的工作电流达到光强调制的目的;所述激光器组中蓝光激光器1a发射的调制光到达第一分束镜3a后,被分成蓝光透射光和蓝光反射光;所述的蓝光反射光在合成白光后,经双轴MEMS微镜5投射在目标13的表面,其散射光中的蓝光分量被用于目标13的距离测量;为了提高接收光电信号信噪比并改善最终成像系统的测距精度,所述激光器组中蓝光激光器1a需选用大功率激光器,例如小体积的固体激光器,同时需使用电光晶体对激光器的出射光进行光强调制;
所述光电调制电路2 产生的调制信号为三个不同频率f m1f m2f m3的连续正弦波,且分别对激光器组中蓝光激光器1a、绿光激光器1b和红光激光器1c的输出光功率进行调制;考虑到最大测距范围和提高接收光电信号信噪比的要求,所述调制频率f m1f m2f m3的取值范围一般在1 ~ 20 MHz之间;
所述的双轴MEMS微镜5是一个双轴扫描微镜,微镜的面积范围为10×10 ~ 1000×1000μm2,能在两个正交方向对所述目标13进行扫描,扫描速度范围为1帧/秒 ~  85帧/秒,扫描分辨率不低于800×600;在本实施例中,该微镜的面积大小为700×700μm2,二维扫描角度为52o×43o(水平角×垂直角),扫描速度为30帧/秒,分辨率为1024×768。
所述激光器组中蓝光激光器1a、绿光激光器1b和红光激光器1c的输出波长范围分别处于典型的蓝光波段(455 ~ 492nm)、绿光波段(492 ~ 577nm)和红光波段(622 ~ 770nm),在本实施例中,蓝光激光器1a、绿光激光器1b和红光激光器1c的波长分别为488nm、520nm和660nm;因此,所述滤光片组中的红色滤光片7b、绿色滤光片7c、蓝色滤光片7a和7d的透光中心波长选取应该分别与所选激光器的输出波长一致。在本实施例中,蓝色滤光片、绿色滤光片和红色滤光片的透光中心波长分别为488nm、520nm和660nm,且所有滤光片的带宽均为±10nm。
在本实施例中,所述幅度-距离测量电路10分别处理第一光电接收器8a和第四光电接收器8d输出的光电信号,使用基于“四点算法”(Four-bucket algorithm)的相移式飞行时间(TOF)测距方法,同时获得所述单个被测像素的距离值和所述散射光蓝光分量的幅度值。
所述TOF测距方法的原理是应用光速c不变和测量光的飞行时间t来获得被测距离的,而相移式TOF测距是使用频率为f m的连续正弦波对激光器的输出光功率进行调制,将直接测量光的往返飞行时间t转化为间接测量与t对应的调制电信号的相位延迟ΔΦ来获得被测距离d
Figure 2011104117824100002DEST_PATH_IMAGE002
                  (1)
所述“四点算法”原理为:对于一个正弦或余弦信号,如果在一个调制周期里被连续采样四次,相应采样点的幅值为(A 0A 1A 2A 3),并且每个采样点之间的时间间隔是严格的一个调制周期的四分之一(即“四点正交采样”),则该信号的相位Φ、幅度A可以表示为:
Figure 2011104117824100002DEST_PATH_IMAGE004
                                    (2)
Figure 2011104117824100002DEST_PATH_IMAGE006
                       (3)
为了获得所述单个被测像素的距离值和所述散射光蓝光分量的幅度值,在目标13的散射光接收端,首先使用“四点算法”同时处理第一光电接收器8a和第四光电接收器8d输出的正弦波光电信号,分别获得第一光电接收器8a输出的正弦波光电信号的相位值Φ 1,第四光电接收器8d输出的正弦波光电信号的相位值Φ 2和幅度值A b,然后计算对应于飞行时间的调制电信号的相位延迟ΔΦ Φ 2 – Φ 1,最后根据公式(1)获得单个被测像素的距离值d,而测得的A b即为所述散射光蓝光分量的幅度值; 
图2为所述幅度-距离测量电路10的一个具体实施方案:所述第四光电接收器8d接收目标13表面散射光的蓝光分量,在将其转化为相应的电信号后,首先使用低噪声放大器组中的第一低噪声放大器16a对该信号进行放大,然后送入带通滤波器组中的第一带通滤波器17a进行滤波处理,接着使用模数转换器组中的第一模数转换器18a(ADC)对该信号进行“四点正交采样”,最终将采样的数据送入微控制器11中,并根据公式(2)、(3)计算获得所述第四光电接收器8d输出的正弦波光电信号的相位值Φ 2和幅度值A b
所述的第一光电接收器8a输出信号的处理流程与所述第四光电接收器8d输出信号的处理流程相同,也是先经第二低噪声放大器16b放大,然后送入第二带通滤波器17b滤波,接着使用第二模数转换器18b(ADC)对该信号进行“四点正交采样”,但区别是,最后仅需要计算该光电信号的相位值Φ 1即可,无需计算该信号的幅度值;
所述的第一光电接收器8a的输出信号被作为幅度-距离测量电路10测量像素距离值的参考信号,其目的是为了减小电路的温漂对距离测量引入的误差。在本实施例中,如果电路的温漂对距离测量引入的误差不大,也可以在系统中去除第一光电接收器8a及其前端的第一蓝光滤光片7a,直接使用调制源2产生的正弦调制信号f m1作为距离测量的参考信号。
本实施例中,所述的低噪声放大器16a和16b可以选用TI生产的OPA642芯片,也可以选用Maxim生产的MAX4012等芯片;所述的模数转换器18a和18b可以选用ADI公司生产的型号为AD9251-65或AD9640-125等14bit模数转换芯片,而所述的带通滤波器17a和17b可以使用常见的LC无源滤波电路。在本实施例中,采用OPA642芯片、AD9251-65芯片和常见的LC无源滤波电路来构建幅度-距离测量电路10。
所述第二光电接收器8b和第三光电接收器8c输出信号的处理流程与所述第四光电接收器8d输出信号的处理流程也是相同的,但区别是,最后仅需要分别计算所述红光分量的幅度值A r和所述绿光分量的幅度值A g 即可,无需计算这两个信号的相位值。
在本实施例中,实时平方修正方法是依据无镜头成像辐射度学模型获得的,参见图1。对于无镜头成像,每个被测像素的亮度值I p由接收光电信号的幅度测量得到:
Figure 2011104117824100002DEST_PATH_IMAGE008
                    (4)
其中k 1为幅度值换算为亮度值时的比例系数,A m为光电信号幅度的测量值,k 2为光电接收功率到信号幅度的比例系数,S p为光电接收器的感光面积,E i为激光器光发射功率,ρ为目标13表面反射率,θ i为激光入射方向与目标13表面法线方向14的夹角,d为目标13的被测距离。从公式(4)可知,目标13成像的亮度值I p跟距离值d平方成反比;与有镜头成像系统相比,无镜头成像系统获得的亮度信号随目标13的距离d发生改变,不能真实的反映被测目标13的亮度信息。因此,必须用相移式TOF测距所得到的某一像素点距离值d对无镜头成像系统测量得到的光电信号幅度进行平方修正,即:
Figure 2011104117824100002DEST_PATH_IMAGE010
      (5)
其中I为某像素点根据所测距离d修正后的真实亮度值。在本实施例中,成像系统在分别获取所述单个被测像素的红光、绿光和蓝光分量的幅度值A rA gA b后,分别计算出所述单个被测像素的红、绿、蓝三色亮度值。然后,再利用已测得的该像素距离值d,根据公式(5)对所述单个被测像素的红、绿、蓝三色亮度值进行实时平方修正,最终分别获得所述单个被测像素的红、绿、蓝三色修正后的真实亮度值I rI gI b
本实施例中,所述微控制器11可以选用可编程单片机、可编程DSP芯片或高性能FPGA/CPLD芯片等,如TI公司生产的MSP430系列、TMS320系列、Altera 公司生产的Startix系列,Xilinx公司生产的Virtex系列等,它在获得所述单个被测像素的距离值并利用实时距离平方修正方法计算得到所述单个被测像素的红、绿、蓝三色真实亮度值后,就完成了单个像素值的测量;然后微控制器11控制微镜驱动电路6,驱动双轴MEMS微镜5进行二维扫描,重复所述单个像素值的测量过程,获得全部像素的距离值和真实亮度值,并组合生成目标13的深度图像和灰度图像;所述深度图像与灰度图像在微控制器11中,通过成熟的图像处理算法,融合生成目标13的三维彩色图像,并被发送至显示器12进行显示。

Claims (6)

1.一种基于MEMS扫描微镜的小型化无镜头激光三维成像系统,其特征在于:包括激光器组、光电调制电路(2)、分束镜组、反射镜组、双轴MEMS微镜(5)、微镜驱动电路(6)、滤光片组、光电接收器组、幅度测量电路组和幅度-距离测量电路(10);所述光电调制电路(2)与激光器组相连接,所述光电接收器组经幅度测量电路组和幅度-距离测量电路(10)与微控制器(11)相连接,所述微控制器(11)与显示器(12)交互连接;所述微控制器(11)输出端与微镜驱动电路(6)输入端相连接,并由微镜驱动电路(6)驱动双轴MEMS微镜(5)。
2.根据权利要求1所述的基于MEMS扫描微镜的小型化无镜头激光三维成像系统,其特征在于:所述激光器组由蓝光激光器(1a)、绿光激光器(1b)和红光激光器(1c)构成,三者分别与光电调制电路(2)连接并由光电调制电路(2)对三者的输出光功率进行调制;所述分束镜组由第一分束镜(3a)、第二分束镜(3b)和第三分束镜(3c)构成;所述反射镜组由第一反射镜(4a)和第二反射镜(4b)构成;所述滤光片组由第一蓝光滤光片(7a)、红色滤光片(7b)、绿色滤光片(7c)和第二蓝色滤光片(7d)构成;所述光电接收器组由第一光电接收器(8a)、第二光电接收器(8b)、第三光电接收器(8c)和第四光电接收器(8d)构成;所述幅度测量电路组由第一幅度测量电路(9a)和第二幅度测量电路(9b)构成;所述蓝光激光器(1a)发射的调制光到达分束镜组中的第一分束镜(3a)后,被分成蓝光透射光和蓝光反射光,所述蓝光透射光经反射镜组中的第一反射镜(4a)反射到达滤光片组中的第一蓝光滤光片(7a),并被光电接收器组中的第一光电接收器(8a)接收;所述绿光激光器(1b)和红光激光器(1c)发射的调制光分别经第二分束镜(3b)和第三分束镜(3c)获得绿光反射光和红光反射光;所述蓝光反射光与所述的绿光反射光以及所述的红光反射光合为一束白光;所述白光经第二反射镜(4b)到达双轴MEMS微镜(5),并被投射在目标(13)的表面;所述滤光片组中的红色滤光片(7b)和光电接收器组中的第二光电接收器(8b)接收所述目标(13)表面散射光中的红光分量,所述滤光片组中的绿色滤光片(7c)和光电接收器组中的第三光电接收器(8c)接收所述目标(13)表面散射光中的绿光分量,所述滤光片组中的第二蓝色滤光片(7d)和光电接收器组中的第四光电接收器(8d)接收所述目标(13)表面散射光中的蓝光分量;所述第一幅度测量电路(9a)和第二幅度测量电路(9b)分别与第二光电接收器(8b)和第三光电接收器(8c)连接并处理二者的输出的光电信号,获得单个被测像素的所述散射光红光分量和绿光分量的幅度值;所述幅度-距离测量电路(10)分别与第一光电接收器(8a)和第四光电接收器(8d)连接并分别处理二者输出的光电信号,同时获得所述单个被测像素的距离值和所述散射光蓝光分量的幅度值;所述第一光电接收器(8a)的输出信号被作为幅度-距离测量电路(10)测量像素距离值的参考信号;微控制器(11)根据所述的红光、绿光和蓝光分量幅度值分别计算出所述单个被测像素的红、绿、蓝三色真实亮度值。
3.根据权利要求1或2所述的基于MEMS扫描微镜的小型化无镜头激光三维成像系统,其特征在于:所述微控制器(11)采用可编程单片机、可编程DSP芯片或高性能FPGA/CPLD芯片。
4.根据权利要求1或2所述的基于MEMS扫描微镜的小型化无镜头激光三维成像系统,其特征在于:所述幅度-距离测量电路(10)由依次连接的低噪声放大器组、带通滤波器组和模数转换器组构成;所述低噪声放大器组包括第一低噪声放大器(16a)和第二低噪声放大器(16b); 所述带通滤波器组包括第一带通滤波器(17a)和第二带通滤波器(17b);所述模数转换器组包括第一模数转换器(18a)和第二模数转换器(18b)。
5.根据权利要求1或2所述的基于MEMS扫描微镜的小型化无镜头激光三维成像系统的成像方法,其特征在于:
(a)、采用红、绿、蓝三色激光器作为照明光源,并分别对三色激光器的输出光功率进行调制,调制过的红、绿、蓝三色激光经反射镜组和分束镜组后合为一束白光,所述白光经双轴MEMS微镜投射到目标的表面;使用光电接收器组分别接收目标表面散射光中的红光、绿光和蓝光分量,并由幅度测量电路组和幅度-距离测量电路获得单个被测像素的距离值和红光、绿光、蓝光分量的幅度值;
(b)、微控制器(11)获得单个被测像素的距离值后,利用实时距离平方修正方法计算单个被测像素的红、绿、蓝三色真实亮度值,完成单个像素值的测量;
(c)、微控制器(11)控制微镜驱动电路(6),驱动双轴MEMS微镜(5)进行二维扫描,重复所述单个像素值的测量过程,获取全部像素的距离值和真实亮度值,并组合生成目标的深度图像和灰度图像;
(d)、深度图像与灰度图像在微控制器(11)中,通过图像处理算法,融合生成目标的三维彩色图像,并被发送至显示器(12)进行显示。
6.根据权利要求5所述的基于MEMS扫描微镜的小型化无镜头激光三维成像系统的成像方法,其特征在于:所述实时距离平方修正方法为,首先,利用第一幅度测量电路(9a)和第二幅度测量电路(9b)获得单个被测像素的散射光红光分量和绿光分量的幅度值;同时,利用所述幅度-距离测量电路(10)获得单个被测像素的距离值和散射光蓝光分量的幅度值;然后,根据无镜头成像辐射度学模型,目标成像的亮度值跟距离值的平方成反比,利用单个被测像素的距离值,对单个被测像素的红光分量、绿光分量和蓝光分量的亮度值进行实时平方修正,获得单个被测像素的红、绿、蓝三色真实亮度值。
CN2011104117824A 2011-12-12 2011-12-12 基于mems扫描微镜的小型化无镜头激光三维成像系统及其成像方法 Pending CN102508259A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011104117824A CN102508259A (zh) 2011-12-12 2011-12-12 基于mems扫描微镜的小型化无镜头激光三维成像系统及其成像方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011104117824A CN102508259A (zh) 2011-12-12 2011-12-12 基于mems扫描微镜的小型化无镜头激光三维成像系统及其成像方法

Publications (1)

Publication Number Publication Date
CN102508259A true CN102508259A (zh) 2012-06-20

Family

ID=46220365

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011104117824A Pending CN102508259A (zh) 2011-12-12 2011-12-12 基于mems扫描微镜的小型化无镜头激光三维成像系统及其成像方法

Country Status (1)

Country Link
CN (1) CN102508259A (zh)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103728624A (zh) * 2012-10-12 2014-04-16 现代摩比斯株式会社 泊车辅助装置和方法以及利用该泊车辅助装置和方法的泊车辅助系统
CN103969658A (zh) * 2014-05-22 2014-08-06 武汉大学 近景摄影测量彩色三维扫描激光雷达
CN104251995A (zh) * 2013-06-27 2014-12-31 杭州中科天维科技有限公司 彩色激光三维扫描技术
CN104871029A (zh) * 2012-12-21 2015-08-26 法雷奥开关和传感器有限责任公司 具有微型机电系统的光学对象感测装置和具有这种感测装置的机动车辆
CN105391910A (zh) * 2014-08-27 2016-03-09 莱卡地球系统公开股份有限公司 多摄像机激光扫描仪
CN105874349A (zh) * 2015-07-31 2016-08-17 深圳市大疆创新科技有限公司 探测装置、探测系统、探测方法,以及可移动设备
CN105898003A (zh) * 2014-05-15 2016-08-24 聚晶半导体股份有限公司 防撞警示方法及其系统
CN106597461A (zh) * 2016-12-16 2017-04-26 西安五湖智联半导体有限公司 一种二维扫描测距装置
CN106772407A (zh) * 2016-12-02 2017-05-31 深圳市镭神智能系统有限公司 基于mems微镜扫描的激光雷达系统
CN107121062A (zh) * 2016-12-07 2017-09-01 苏州笛卡测试技术有限公司 一种机器人三维扫描装置及方法
CN108594251A (zh) * 2018-06-08 2018-09-28 北京大汉正源科技有限公司 一种高速的三维激光雷达
CN109375231A (zh) * 2018-09-25 2019-02-22 维沃移动通信有限公司 一种深度信息获取装置、终端设备及深度信息获取方法
CN109660785A (zh) * 2018-12-05 2019-04-19 全普光电科技(上海)有限公司 三维图像生成芯片、制备方法、装置及三维图像生成方法
CN109785280A (zh) * 2018-12-28 2019-05-21 洛伦兹(北京)科技有限公司 目标场景图像融合方法和装置
CN111954842A (zh) * 2018-05-08 2020-11-17 京瓷株式会社 电磁波检测装置以及信息获取系统
WO2020237764A1 (zh) * 2019-05-29 2020-12-03 南京芯视界微电子科技有限公司 激光雷达装置
CN112268509A (zh) * 2020-10-16 2021-01-26 华中科技大学鄂州工业技术研究院 一种采用空心关节的激光三维测量仪
CN112887696A (zh) * 2021-01-11 2021-06-01 东莞理工学院 一种基于mems微镜的3d成像系统
CN112987021A (zh) * 2021-02-08 2021-06-18 革点科技(深圳)有限公司 一种飞行时间法和结构光法相融合的结构光三维成像系统及方法
WO2021248273A1 (zh) * 2020-06-08 2021-12-16 深圳市汇顶科技股份有限公司 基于飞行时间的测距方法和相关测距系统
WO2023070312A1 (zh) * 2021-10-26 2023-05-04 宁德时代新能源科技股份有限公司 图像处理方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3897150A (en) * 1972-04-03 1975-07-29 Hughes Aircraft Co Scanned laser imaging and ranging system
US6483595B1 (en) * 2000-07-22 2002-11-19 Basis Software, Inc. Three dimensional optical scanner
US20050088644A1 (en) * 2001-04-04 2005-04-28 Morcom Christopher J. Surface profile measurement
CN1902508A (zh) * 2003-12-31 2007-01-24 讯宝科技公司 使用彩色激光投影显示器获取图像的方法和设备
CN101344591A (zh) * 2008-08-22 2009-01-14 清华大学 一种微型激光二维扫描测量系统
US20090245299A1 (en) * 2008-03-25 2009-10-01 Motorola, Inc. Capacitive comb feedback for high speed scan mirror
WO2011060898A1 (en) * 2009-11-20 2011-05-26 Faro Technologies Inc. Device for optically scanning and measuring an environment
CN102232174A (zh) * 2009-03-25 2011-11-02 法罗技术股份有限公司 用于对环境进行光学扫描和测量的设备
CN202362459U (zh) * 2011-12-12 2012-08-01 中国科学院合肥物质科学研究院 基于mems扫描微镜的小型化无镜头激光三维成像系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3897150A (en) * 1972-04-03 1975-07-29 Hughes Aircraft Co Scanned laser imaging and ranging system
US6483595B1 (en) * 2000-07-22 2002-11-19 Basis Software, Inc. Three dimensional optical scanner
US20050088644A1 (en) * 2001-04-04 2005-04-28 Morcom Christopher J. Surface profile measurement
CN1902508A (zh) * 2003-12-31 2007-01-24 讯宝科技公司 使用彩色激光投影显示器获取图像的方法和设备
US20090245299A1 (en) * 2008-03-25 2009-10-01 Motorola, Inc. Capacitive comb feedback for high speed scan mirror
CN101344591A (zh) * 2008-08-22 2009-01-14 清华大学 一种微型激光二维扫描测量系统
CN102232174A (zh) * 2009-03-25 2011-11-02 法罗技术股份有限公司 用于对环境进行光学扫描和测量的设备
WO2011060898A1 (en) * 2009-11-20 2011-05-26 Faro Technologies Inc. Device for optically scanning and measuring an environment
CN202362459U (zh) * 2011-12-12 2012-08-01 中国科学院合肥物质科学研究院 基于mems扫描微镜的小型化无镜头激光三维成像系统

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103728624A (zh) * 2012-10-12 2014-04-16 现代摩比斯株式会社 泊车辅助装置和方法以及利用该泊车辅助装置和方法的泊车辅助系统
CN103728624B (zh) * 2012-10-12 2017-09-26 现代摩比斯株式会社 泊车辅助装置和方法以及利用该泊车辅助装置和方法的泊车辅助系统
CN104871029A (zh) * 2012-12-21 2015-08-26 法雷奥开关和传感器有限责任公司 具有微型机电系统的光学对象感测装置和具有这种感测装置的机动车辆
CN104251995A (zh) * 2013-06-27 2014-12-31 杭州中科天维科技有限公司 彩色激光三维扫描技术
CN105898003A (zh) * 2014-05-15 2016-08-24 聚晶半导体股份有限公司 防撞警示方法及其系统
CN103969658A (zh) * 2014-05-22 2014-08-06 武汉大学 近景摄影测量彩色三维扫描激光雷达
US9903950B2 (en) 2014-08-27 2018-02-27 Leica Geosystems Ag Multi-camera laser scanner
US10495756B2 (en) 2014-08-27 2019-12-03 Leica Geosystems Ag Multi-camera laser scanner
CN105391910B (zh) * 2014-08-27 2018-06-29 莱卡地球系统公开股份有限公司 多摄像机激光扫描仪
CN105391910A (zh) * 2014-08-27 2016-03-09 莱卡地球系统公开股份有限公司 多摄像机激光扫描仪
WO2017020196A1 (zh) * 2015-07-31 2017-02-09 深圳市大疆创新科技有限公司 探测装置、探测系统、探测方法,以及可移动设备
CN105874349A (zh) * 2015-07-31 2016-08-17 深圳市大疆创新科技有限公司 探测装置、探测系统、探测方法,以及可移动设备
US11237252B2 (en) 2015-07-31 2022-02-01 SZ DJI Technology Co., Ltd. Detection apparatus, detection system, detection method, and movable device
CN106772407A (zh) * 2016-12-02 2017-05-31 深圳市镭神智能系统有限公司 基于mems微镜扫描的激光雷达系统
CN107121062A (zh) * 2016-12-07 2017-09-01 苏州笛卡测试技术有限公司 一种机器人三维扫描装置及方法
CN106597461A (zh) * 2016-12-16 2017-04-26 西安五湖智联半导体有限公司 一种二维扫描测距装置
CN111954842B (zh) * 2018-05-08 2023-07-21 京瓷株式会社 电磁波检测装置以及信息获取系统
CN111954842A (zh) * 2018-05-08 2020-11-17 京瓷株式会社 电磁波检测装置以及信息获取系统
CN108594251A (zh) * 2018-06-08 2018-09-28 北京大汉正源科技有限公司 一种高速的三维激光雷达
CN109375231A (zh) * 2018-09-25 2019-02-22 维沃移动通信有限公司 一种深度信息获取装置、终端设备及深度信息获取方法
CN109660785A (zh) * 2018-12-05 2019-04-19 全普光电科技(上海)有限公司 三维图像生成芯片、制备方法、装置及三维图像生成方法
CN109785280A (zh) * 2018-12-28 2019-05-21 洛伦兹(北京)科技有限公司 目标场景图像融合方法和装置
WO2020237764A1 (zh) * 2019-05-29 2020-12-03 南京芯视界微电子科技有限公司 激光雷达装置
WO2021248273A1 (zh) * 2020-06-08 2021-12-16 深圳市汇顶科技股份有限公司 基于飞行时间的测距方法和相关测距系统
CN112268509A (zh) * 2020-10-16 2021-01-26 华中科技大学鄂州工业技术研究院 一种采用空心关节的激光三维测量仪
CN112887696A (zh) * 2021-01-11 2021-06-01 东莞理工学院 一种基于mems微镜的3d成像系统
CN112987021A (zh) * 2021-02-08 2021-06-18 革点科技(深圳)有限公司 一种飞行时间法和结构光法相融合的结构光三维成像系统及方法
WO2023070312A1 (zh) * 2021-10-26 2023-05-04 宁德时代新能源科技股份有限公司 图像处理方法
US11823326B2 (en) 2021-10-26 2023-11-21 Contemporary Amperex Technology Co., Limited Image processing method

Similar Documents

Publication Publication Date Title
CN102508259A (zh) 基于mems扫描微镜的小型化无镜头激光三维成像系统及其成像方法
EP2097715B1 (en) Three-dimensional optical radar method and device which use three rgb beams modulated by laser diodes, in particular for metrological and fine arts applications
CN202362459U (zh) 基于mems扫描微镜的小型化无镜头激光三维成像系统
Anderson et al. Experimental characterization of commercial flash ladar devices
US9903934B2 (en) Apparatus and method of measuring six degrees of freedom
US20110279648A1 (en) Scanned-beam depth mapping to 2d image
CN101866056A (zh) 基于led阵列共透镜tof深度测量的三维成像方法和系统
US20150043009A1 (en) Laser scanner having a multi-color light source and real-time color receiver
WO2021212915A1 (zh) 一种激光测距装置及方法
JP7419394B2 (ja) モードフィールド拡大器を備えたlidarシステム
CN104160240A (zh) 扫描深度引擎
CN103852878A (zh) 一种具有实时聚焦的显微切片快速数字扫描装置及其方法
CN101915542B (zh) 基于双轴MEMS反射振镜和F-Theta透镜的线性扫描系统
CN101153914B (zh) 遥感机理测试装置及方法
US10310085B2 (en) Photonic integrated distance measuring pixel and method of distance measurement
CN109490909A (zh) 激光雷达扫描探测装置及其探测方法
CN104251995A (zh) 彩色激光三维扫描技术
CN110097601B (zh) 用于多模态采集系统视场标定的标定板及标定方法
CN108957471A (zh) 基于调频连续波激光测距的三维测量系统
CN112255639B (zh) 一种感兴趣区域深度感知传感器及深度感知传感模块
CN107238570A (zh) 基于mems微振镜的微型光谱仪、气体传感器及光谱检测方法
CN115639565A (zh) 激光雷达系统
CN209514069U (zh) 激光雷达扫描探测装置
CN1268960C (zh) 主动式激光扫描远距离坐标测量方法
TWI258000B (en) Portable optical 3-D surface profilometer and method for same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20120620