CN102506519A - 热电联产机组与风力发电联合供热系统及调度方法 - Google Patents

热电联产机组与风力发电联合供热系统及调度方法 Download PDF

Info

Publication number
CN102506519A
CN102506519A CN2011103240484A CN201110324048A CN102506519A CN 102506519 A CN102506519 A CN 102506519A CN 2011103240484 A CN2011103240484 A CN 2011103240484A CN 201110324048 A CN201110324048 A CN 201110324048A CN 102506519 A CN102506519 A CN 102506519A
Authority
CN
China
Prior art keywords
user
power
chp
heating
wind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011103240484A
Other languages
English (en)
Other versions
CN102506519B (zh
Inventor
龙虹毓
徐焜耀
何建军
侯兴哲
徐瑞林
吴锴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHONGQING CITY ELECTRICAL POWER Co
Electric Power Research Institute of State Grid Chongqing Electric Power Co Ltd
State Grid Corp of China SGCC
Xian Jiaotong University
Original Assignee
CHONGQING CITY ELECTRICAL POWER Co
Electric Power Research Institute of State Grid Chongqing Electric Power Co Ltd
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHONGQING CITY ELECTRICAL POWER Co, Electric Power Research Institute of State Grid Chongqing Electric Power Co Ltd, Xian Jiaotong University filed Critical CHONGQING CITY ELECTRICAL POWER Co
Priority to CN2011103240484A priority Critical patent/CN102506519B/zh
Publication of CN102506519A publication Critical patent/CN102506519A/zh
Priority to US13/976,934 priority patent/US9285789B2/en
Priority to PCT/CN2012/083288 priority patent/WO2013060252A1/zh
Application granted granted Critical
Publication of CN102506519B publication Critical patent/CN102506519B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/07Remote controls
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Eletrric Generators (AREA)
  • Air Conditioning Control Device (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

本发明公开了一种热电联产机组与风力发电联合供热系统及其调度方法,用户采用热水散热器和热泵耗电两种方式供热,其中的热水来源于热电联产机组,电力由热电联产机组与风力发电机组联合提供,通过综合调度控制装置在检测一段时间的供能和用户的耗能情况后,对未来一段时间做出预测;然后在此基础上进行调度,在保证满足电力供给和热能供给的条件下,减少供暖出力热水流量,由消耗电力供热来补偿,耗电供热既可以补偿热水供暖的不足,也可以增加电力低谷时段的负荷;这样根据风力发电、热电联产综合起来,将风力发电的波动性调整热电联产的出力和用户耗电负荷情况的变化,以相等的检测周期和调节周期,从而实现风电等效的在用户侧的平滑出力。

Description

热电联产机组与风力发电联合供热系统及调度方法
技术领域
本发明属于清洁能源综合利用技术领域,涉及一种热电联产机组与风力发电联合供热系统及调度方法。
背景技术
可再生能源具有绿色清洁的特点,近些年发展迅速。但以风电为例,风电在提供清洁低碳能源的同时,风电场的大规模并网也给电网安全经济运行带来了不利影响。大规模风电场并网后,由于其出力波动较大,且功率波动常常与用电负荷波动趋势相反,即在负荷高峰时段无风可用,而在负荷低谷时段又出现风能充沛的情况。风电的这种反调峰特性将导致系统峰谷差的进一步扩大,加大了电网调度的难度,对电网调度运行、电压控制、电网调峰等都将产生一系列影响。由于相关研究并不完善,弃风现象严重。例如,内蒙古电网白天风电都能够满负荷运行,但到后夜用电负荷低谷期,为保证城市居民供热,风电不得已采取“弃风”的措施,非常可惜。
发明内容
本发明解决的问题在于提供一种热电联产机组与风力发电联合供热系统及调度方法,通过对热能、电能的综合调控,实现风力发电的平滑出力,提高风力发电的有效利用。
本发明是通过以下技术方案来实现:
一种热电联产机组与风力发电联合供热系统,包括:
用于产出电力和采暖热水的燃煤抽汽凝汽式热电联产机组;
用于产出电力的风力发电机组;
通过电力电缆网与燃煤抽汽凝汽式热电联产机组和风力发电机组并联的用户的空调器热泵;控制空调器热泵的空调器热泵遥控开关;
采集用户非采暖耗电量的电表;
通过供热管道网与燃煤抽汽凝汽式热电联产机组相连接的用户的热水式采暖散热器;热水式采暖散热器热水消耗计量表,检测热水式采暖散热器的热水消耗量;控制热水式采暖散热器的热水式采暖散热器遥控开关;
第一远程集中控制器,采集燃煤抽汽凝汽式热电联产机组的包括供暖出力热水流量和发电出力电量的产能信息,将采集的产能信息传送给综合调度控制装置;第一远程集中控制器还接收综合调度控制装置所发出的调度控制信号,并根据调度控制信号控制燃煤热电联产机组控制执行装置动作;
第二远程集中控制器,采集风力发电机组的发电出力电量的产能信息,将采集的产能信息传送给综合调度控制装置;
第三远程集中控制器,记载有用户的热水式采暖散热器与燃煤抽汽凝汽式热电联产机组之间的管道距离信息,并采集包括用户的非采暖用电量和热水式采暖散热器热水消耗计量表检测到的热水流入量和非采暖耗电量的耗能信息,还采集用户输入的热惯性时间;将用户的管道距离信息、采集的耗能信息和热惯性时间传送给综合调度控制装置;
第三远程集中控制器还接收综合调度控制装置所发出的调度控制信号,并根据调度控制信号驱动空调器热泵遥控开关和/或采暖散热器遥控开关执行动作;
综合调度控制装置,根据的接收产能信息、用户的管道距离信息和耗能信息,产生调控控制信号,向第一远程集中控制器和/或第三远程集中控制器发出调控控制信号。
所述的综合调度控制装置根据接收的燃煤抽汽凝汽式热电联产机组、风力发电机组的产能信息和用户的耗能信息,在保证满足电力供给和热能供给的条件下,减少燃煤抽汽凝汽式热电联产机组的供暖出力热水流量,减少热水流量导致用户所需要的供热不足由空调器热泵消耗电力供热来补偿;
综合调度控制装置发出包括燃煤抽汽凝汽式热电联产机组在调度时间的供暖出力热水流量和发电出力电量,流入用户的热水式采暖散热器热水量和空调器热泵的采暖电力消耗量的调控控制信号。
所述的空调器热泵在消耗电力供热补偿时,还考虑热水流到用户的时间和热惯性时间。
所述综合调度控制装置包括:
接收燃煤抽汽凝汽式热电联产机组和风力发电机组的产能信息,用户的耗能信息以及用户管道距离信息的第一数据接收单元;
将接收到的所有数据进行解码的数据解码器单元;
对解码后的所有数据进行存储的数据存储器单元;
生成调度控制信号的调度控制信号计算单元;
将所述调度控制信号进行编码的信号编码器;及
将编码后的调度控制信号传递给第一远程集中控制器、第三远程集中控制器的发送单元。
所述的综合调度控制装置通过电力光纤与云计算服务系统连接,并驱动云计算服务系统计算,以获得调度控制信号;综合调度控制装置通过电力光纤接收云计算服务系统获得的调度控制信号,然后经由电力电缆或无线传输方式将调度控制信号传送给第一远程集中控制器和/或第三远程集中控制器。
所述热水式采暖散热器遥控开关,通过第三远程集中控制器以遥控方式与综合调度控制装置耦合;空调器热泵遥控开关,通过第三远程集中控制器以遥控方式与综合调度控制装置耦合;空调器热泵上还设有空调器热泵专用电能表,检测其采暖的耗电量,该耗电量并被第三远程集中控制器所采集;
燃煤抽汽凝汽式热电联产机组控制执行装置,通过第一远程集中控制器以遥控方式与综合调度控制装置耦合;燃煤抽汽凝汽式热电联产机组控制执行装置根据调度控制信号,控制与其连接的燃煤进料阀门、锅炉蒸汽进汽阀门、采暖蒸汽抽汽阀门及发电蒸汽流量阀门动作。
所述第三远程集中控制器包括非采暖电表脉冲计数器、采暖热水流量脉冲计数器、脉冲信号编码转换器、计量信号放大发射器,及相互连接的控制信号接收解码器和遥控信号发生器;
非采暖电表脉冲计数器连接用户非采暖电表,用于检测用户非采暖耗电数据,用户非采暖耗电数据经过脉冲信号编码转换器及计量信号放大发射器处理后传送至综合调度控制装置;
采暖热水流量脉冲计数器连接热水式采暖散热器热水消耗计量表,用于检测热水流入量,热水流入量再经过脉冲信号编码转换器及计量信号放大发射器处理生成信号,与用户管道信息一起传送至综合调度控制装置;
控制信号接收解码器,接收综合调度控制装置发出的调度控制信息并进行解码,然后通过控制信号遥控发射器将控制信号发送给空调器热泵遥控开关、热水式采暖散热器流水阀门遥控开关执行动作。
所述燃煤热电联产机组控制执行装置包括调度控制信号收发编码存储器、驱动电路及机械齿轮控制装置,所述调度控制信号经调度控制信号收发编码存储器解码以后生成燃煤热电联产机组调度控制指令,经过驱动电路输出的电力拖动信号触发机械齿轮控制装置,机械齿轮控制装置再控制燃煤热电联产机组的燃煤进料阀门动作、采暖蒸汽抽汽阀门动作及发电蒸汽流量阀门动作。
所述的热电联产机组与风力发电联合供热系统的调度方法,包括以下步骤:
在0~T×ΔT时间段内,ΔT为采样周期,T为采集的次数,综合调度控制装置根据接收的燃煤抽汽凝汽式热电联产机组、风力发电机组的产能信息,预测出未来一段时间T~2T×ΔT的产能信息,再结合0~T×ΔT时间段内用户的耗能信息,在保证满足电力供给和热能供给的条件下,减少燃煤抽汽凝汽式热电联产机组的供暖出力热水流量,减少热水流量导致用户所需要的供热不足由空调器热泵消耗电力供热来补偿,并考虑热水流到用户的时间和热惯性时间,计算出补充量;
然后在T~2T×ΔT时间段,综合调度控制装置以ΔT为调控周期,根据电力供给和热能供给的预测和调度计算生成调度控制信号并发送,第一远程集中控制器接收调度控制信号后控制燃煤抽汽凝汽式热电联产机组的供暖出力热水流量和发电出力电量,第三远程集中控制器接收调度控制信号后,控制空调器热泵消耗电力供热来补偿热水式采暖散热器热水减少导致的供热不足。
所述的综合调度控制装置的调度控制信号的生成包括以下步骤:
1)采集变量:
1.1)采集燃煤抽汽凝汽式热电联产机组在0~T×ΔT时间段的发电出力PCHP(t)和热出力HCHP(t),并发送到综合调度控制装置;ΔT为采样周期,T为采集的次数,T为自然数;
采集0~M号风力发电机在0~T×ΔT时间段的发电出力
Figure BDA0000101261180000051
并发送到综合调度控制装置;
1.2)采集0~T×ΔT时间段内,0~N个用户的以下信息:用户距热源燃煤抽汽凝汽式热电联产机组的管道距离Si、非采暖耗电量Pi(t)、热水式采暖散热器的耗热量Hi(t)、空调器热泵的装机容量和用户输入的热惯性时间Ti,并发送到综合调度控制装置;
2)计算以下变量:
2.1)计算风力发电机在0~T×ΔT时间段的总出力然后根据总出力利用统计分析方法,预测T~2T×ΔT时间段的风力发电机总出力Pwind(t);
由采集燃煤抽汽凝汽式热电联产机组在0~T×ΔT时间段的发电出力PCHP(t)和热出力HCHP(t),预测出T~2T×ΔT时间段的发电出力PCHP(t)和热出力HCHP(t);
2.2)计算每个用户到燃煤抽汽凝汽式热电联产机组的等效距离
Figure BDA0000101261180000063
v为热水在管道中的流速;并对将计算结果做取整运算
将相同si的用户分为同一组,计为第l组,si=l;总计L组,L为自然数;
对每个用户分组,分别计算各组所有用户的总采暖负荷Hload(l)和热泵容量PEHP(l);
Hload(l)=∑Hi(t,l),Hi(t,l)为第l组用户i在t时刻的采暖负荷;
Figure BDA0000101261180000065
Figure BDA0000101261180000066
为第l组用户i的热泵容量;
3)将上述PCHP(t)、HCHP(t)、Pload(t)、Hload(l)、PEHP(l)代入,由目标函数(1)和约束条件(2~14)组成优化问题进行迭代求解,以获取目标函数最小值为结果,获取各个变量作为调控信号:
3.1)目标函数为:
Min : Δp = Σ t = T 2 T ( p wind ( t ) - p ‾ wind ) 2 / ( T + 1 ) ; - - - ( 1 )
其中pwind(t)为调节后的等效风电总出力,
Figure BDA0000101261180000068
为等效风电出力平均值,其表达式分别如下:
pwind(t)=Pwind(t)+(pCHP(t)-PCHP(t))-pEHPs(t);            (2)
其中,pCHP(t)为调节后的燃煤抽汽凝汽式热电联产机组的发电出力,PCHP(t)为预测的燃煤抽汽凝汽式热电联产机组的发电出力,pEHPs(t)为t时所有用户空调器热泵耗电功率;
p ‾ wind = Σ p wind ( t ) / ( T + 1 ) ; - - - ( 3 )
3.2)约束条件
3.2.1)热负荷平衡方程
减少热水出力,在供给侧供暖不足的功率为Δh(t),其表达式如下:
Δh(t)=HCHP(t)-hCHP(t);                               (4)
其中HCHP(t)为预测出的燃煤抽汽凝汽式热电联产机组的热出力,hCHP(t)为调节后的燃煤抽汽凝汽式热电联产机组的热出力;
考虑到热水在管道流入用户的时间和热惯性时间,用户使用空调器热泵所需要的补偿Δh(t)表示为:
Δh ( t ) = Σ l = 0 L h EHP ( t + l , l ) ; (T≤t+l≤2T)        (5)
hEHP(t+l,l)为t+l时刻第l组用户热泵的供暖功率之和;
3.2.2)燃煤抽汽凝汽式热电联产机组约束:
发电出力下限: p CHP min ( t ) = l CHP min · h CHP ( t ) + n CHP min - - - ( 6 )
发电出力上限: p CHP max ( t ) = l CHP max · h CHP ( t ) + n CHP max - - - ( 7 )
发电出力限制: p CHP min ( t ) < p CHP ( t ) &le; p CHP max ( t ) - - - ( 8 )
供暖出力约束: 5 &le; h CHP ( t ) &le; h CHP max ( t ) - - - ( 9 )
额外约束热电联产发电出力下限:pCHP(t)≥PCHP                    (10)
其中pCHP(t)为调节后的燃煤抽汽凝汽式热电联产机组的发电出力,hCHP(t)为调节后的燃煤抽汽凝汽式热电联产机组的供暖热出力;
Figure BDA0000101261180000081
为燃煤抽汽凝汽式热电联产机组的工况曲线参数,而为了避免燃煤抽汽凝汽式热电联产机组供暖出力为0时,重启耗时,在式(9)中限制供暖出力下限为5MW;
并限制调节后的燃煤抽汽凝汽式热电联产机组发电出力大于原计划发电出力:
pCHP(t)≥PCHP(t);                                             (11)
3.2.3)用户侧空调器热泵约束条件
热电比约束:hEHP(t,l)=COPEHP·pEHP(t,l)                      (12)
hEHP(t,l)为t时刻第l组用户热泵的供暖功率之和,COPEHP为空调器热泵性能系数;
出力上限:0≤pEHP(t,l)≤min(PEHP(l),Hload(l)/COPEHP);        (13)
各时段所有用户组的空调热泵耗电量之和:
p EHPs ( t ) = &Sigma; l = 0 L p EHP ( t , l ) - - - ( 14 )
4)综合调度控制装置根据运算结果当中调节后的各变量生成调度控制信号并发出:
将燃煤抽汽凝汽式热电联产机组的发电出力pCHP(t)和热出力hCHP(t)信号发送给第一远程集中控制器,控制其在未来调节时间内各时段的动作;
将用户空调器热泵耗电量pEHP(t,l)和供热量hEHP(t,l)发送给第三远程集中控制器,控制其在未来调节时间内各时段的动作。
与现有技术相比,本发明具有以下有益的技术效果:
本发明提供的一种热电联产机组与风力发电联合供热系统及调度方法,利用热电联产机组与制热负荷联合控制的风电的平滑出力,用户采用热水散热器和热泵耗电两种方式供热,其中的热水来源于热电联产机组,电力由热电联产机组与风力发电机组联合提供,通过综合调度控制装置在检测一段历史时间的供能和用户的耗能情况后,利用“多元回归”统计分析方法对未来一段时间做出预测;然后在此基础上进行调度:
在保证满足电力供给和热能供给的条件下,减少供暖出力热水流量,由消耗电力供热来补偿,耗电供热既可以补偿热水供暖的不足,也可以增加电力低谷时段的负荷;
同时,燃煤抽汽凝汽式热电联产机组减少供暖出力热水流量,其发电出力也相应的改变,可根据调节需要增大或减少发电出力,根据用电负荷的变化与风力发电配合来满足供给;
这样风力发电、热电联产综合起来调控,根据风力发电的波动性调整热电联产的出力和用户耗电负荷情况的变化,基于实时检测和预测连续性调控方式,以相等的检测周期和调节周期,从而实现风电等效的在用户侧的平滑出力,如图6所示的调节前后的变化,效果非常显著。
而且,本发明还考虑到了两种不同的供热方式的差异性:热水在管道输送的延时性,电力补偿供热的瞬时性,以及用户的热惯性时间(用户可接受的停止供暖时间);这样在电力补偿时就需要对用户到热源的不同管道距离区分对待,在用户补偿供热时就是考虑供热时间差异的补偿,充分的考虑到供给侧和用户侧的能量变化,既有利用风电的平滑输出,又兼顾到了用户的实际需求和能源的有效利用。
附图说明
图1为本发明热电联产机组与风力发电联合供热系统的连接示意图;
图2为综合调度控制装置的结构示意图;
图3为综合调度控制装置与云计算连接示意图;
图4为第三远程集中控制器的结构示意图;
图5为热电联产机组执行装置的结构示意图;
图6为原风电出力与调节后的风电等效出力曲线对比图。
具体实施方式
本发明提供的一种热电联产机组与风力发电联合供热系统及调度方法,在供给侧电力由热电联产机组与风力发电机组联合提供,热水来源于热电联产机组,用户采用热水散热器和热泵耗电两种方式供热,在历史检测的基础上,预测未来一段时间的供能和耗能情况,减少热水出力用耗电供热来补偿,这样相对于风力发电的波动性,用户用电负荷也具有调整的空间(耗电供热既可以补偿热水供暖的不足,也可以增加电力低谷时段的负荷)。而在两种方式供热的补偿时,考虑管道输送的延时性,电力补偿供热的瞬时性以及用户的热惯性时间,实现整个系统的有效调节。下面结合具体的系统构成和调节方法对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。
参见图1~图5,一种热电联产机组与风力发电联合供热系统,包括:
用于产出电力和采暖热水的燃煤抽汽凝汽式热电联产机组A;
用于产出电力的风力发电机组B;
通过电力电缆网113与燃煤抽汽凝汽式热电联产机组A和风力发电机组B并联的用户的空调器热泵108;控制空调器热泵108的空调器热泵遥控开关117;
采集用户非采暖耗电量的电表;
通过供热管道网114与燃煤抽汽凝汽式热电联产机组A相连接的用户的热水式采暖散热器110;热水式采暖散热器热水消耗计量表111,检测热水式采暖散热器110的热水消耗量;控制热水式采暖散热器110的热水式采暖散热器遥控开关116;
第一远程集中控制器1121,采集燃煤抽汽凝汽式热电联产机组A的包括供暖出力热水流量和发电出力电量的产能信息,将采集的产能信息传送给综合调度控制装置115;第一远程集中控制器1121还接收综合调度控制装置115所发出的调度控制信号,并根据调度控制信号控制燃煤热电联产机组控制执行装置118动作;
第二远程集中控制器1122,采集风力发电机组B的发电出力电量的产能信息,将采集的产能信息传送给综合调度控制装置115;
第三远程集中控制器1123,记载有用户的热水式采暖散热器110与燃煤抽汽凝汽式热电联产机组A之间的管道距离信息,并采集包括用户的非采暖用电量和热水式采暖散热器热水消耗计量表111检测到的热水流入量和非采暖耗电量的耗能信息,还采集用户输入的热惯性时间(即用户接受的停止供暖时间);将用户的管道距离信息、采集的耗能信息和热惯性时间传送给综合调度控制装置115;
第三远程集中控制器1123还接收综合调度控制装置115所发出的调度控制信号,并根据调度控制信号驱动空调器热泵遥控开关117和/或采暖散热器遥控开关116执行动作;
综合调度控制装置115,根据的接收产能信息、用户的管道距离信息和耗能信息,产生调控控制信号,向第一远程集中控制器1121和/或第三远程集中控制器1123发出调控控制信号。
具体的综合调度控制装置115根据接收的燃煤抽汽凝汽式热电联产机组A、风力发电机组B的产能信息和用户的耗能信息,在保证满足电力供给和热能供给的条件下,减少燃煤抽汽凝汽式热电联产机组A的供暖出力热水流量,减少热水流量导致用户所需要的供热不足由空调器热泵108消耗电力供热来补偿;在空调器热泵108消耗电力供热补偿时,还考虑热水流到用户的时间和热惯性时间;
综合调度控制装置115发出包括燃煤抽汽凝汽式热电联产机组A在调度时间的供暖出力热水流量和发电出力电量,流入用户的热水式采暖散热器110热水量和空调器热泵108的采暖电力消耗量的调控控制信号。
参见图2,所述综合调度控制装置115包括:
接收燃煤抽汽凝汽式热电联产机组A和风力发电机组B的产能信息,用户的耗能信息以及用户管道距离信息的第一数据接收单元201;
将接收到的所有数据进行解码的数据解码器单元202;
对解码后的所有数据进行存储的数据存储器单元203;
生成调度控制信号的调度控制信号计算单元204;
将所述调度控制信号进行编码的信号编码器205;及
将编码后的调度控制信号传递给第一远程集中控制器1121、第三远程集中控制器1123的发送单元206。
参见图3,综合调度控制装置115通过电力光纤120与云计算服务系统917连接,并驱动云计算服务系统917计算,以获得调度控制信号;综合调度控制装置115通过电力光纤120接收云计算服务系统917获得的调度控制信号,然后经由电力电缆或无线传输方式将调度控制信号传送给第一远程集中控制器1121和/或第三远程集中控制器1123。
具体的遥控方式为:
所述热水式采暖散热器遥控开关116,通过第三远程集中控制器1123以遥控方式与综合调度控制装置115耦合;空调器热泵遥控开关117,通过第三远程集中控制器1123以遥控方式与综合调度控制装置115耦合;空调器热泵108上还设有空调器热泵专用电能表109,检测其采暖的耗电量,该耗电量并被第三远程集中控制器所采集;
燃煤抽汽凝汽式热电联产机组控制执行装置118,通过第一远程集中控制器1121以遥控方式与综合调度控制装置115耦合;燃煤抽汽凝汽式热电联产机组控制执行装置118根据调度控制信号,控制与其连接的燃煤进料阀门、锅炉蒸汽进汽阀门、采暖蒸汽抽汽阀门及发电蒸汽流量阀门动作。
参见图4,所述第三远程集中控制器1123包括非采暖电表脉冲计数器、采暖热水流量脉冲计数器、脉冲信号编码转换器、计量信号放大发射器,及相互连接的控制信号接收解码器和遥控信号发生器;
非采暖电表脉冲计数器连接用户非采暖电表,用于检测用户非采暖耗电数据,用户非采暖耗电数据经过脉冲信号编码转换器及计量信号放大发射器处理后传送至综合调度控制装置115;
采暖热水流量脉冲计数器连接热水式采暖散热器热水消耗计量表111,用于检测热水流入量,热水流入量再经过脉冲信号编码转换器及计量信号放大发射器处理生成信号,与用户管道信息一起传送至综合调度控制装置115;
控制信号接收解码器,接收综合调度控制装置115发出的调度控制信息并进行解码,然后通过控制信号遥控发射器将控制信号发送给空调器热泵遥控开关117、热水式采暖散热器流水阀门遥控开关116执行动作。
参见图5,所述燃煤热电联产机组控制执行装置118包括调度控制信号收发编码存储器302、驱动电路303及机械齿轮控制装置304,所述调度控制信号经调度控制信号收发编码存储器解码以后生成燃煤热电联产机组调度控制指令,经过驱动电路输出的电力拖动信号触发机械齿轮控制装置,机械齿轮控制装置再控制燃煤热电联产机组的燃煤进料阀门动作、采暖蒸汽抽汽阀门动作及发电蒸汽流量阀门动作。
基于上述热电联产机组与风力发电联合供热系统的调度方法,包括以下步骤:
在0~T×ΔT时间段内,ΔT为采样周期,T为采集的次数,综合调度控制装置根据接收的燃煤抽汽凝汽式热电联产机组、风力发电机组的产能信息,利用“多元回归”统计分析方法预测出未来一段时间T~2T×ΔT的产能信息,再结合0~T×ΔT时间段内用户的耗能信息,在保证满足电力供给和热能供给的条件下,减少燃煤抽汽凝汽式热电联产机组的供暖出力热水流量,减少热水流量导致用户所需要的供热不足由空调器热泵消耗电力供热来补偿,并考虑热水流到用户的时间和热惯性时间,计算出补充量;
然后在T~2T×ΔT时间段,综合调度控制装置以ΔT为调控周期,根据电力供给和热能供给的预测和调度计算生成调度控制信号并发送,第一远程集中控制器接收调度控制信号后控制燃煤抽汽凝汽式热电联产机组的供暖出力热水流量和发电出力电量,第三远程集中控制器接收调度控制信号后,控制空调器热泵消耗电力供热来补偿热水式采暖散热器热水减少导致的供热不足。
这样基于实时检测和预测连续性调控方式,以相等的检测周期和调节周期在系统内进行调节。
具体的综合调度控制装置的调度控制信号的生成包括以下步骤:
1)采集变量:
1.1)采集燃煤抽汽凝汽式热电联产机组在0~T×ΔT时间段的发电出力PCHP(t)和热出力HCHP(t),并发送到综合调度控制装置;ΔT为采样周期(具体可以为15~30min),T为采集的次数,T为自然数;
采集0~M号风力发电机在0~T×ΔT时间段的发电出力
Figure BDA0000101261180000141
并发送到综合调度控制装置;
1.2)采集0~T×ΔT时间段内,0~N个用户的以下信息:用户距热源燃煤抽汽凝汽式热电联产机组的管道距离Si、非采暖耗电量Pi(t)、热水式采暖散热器的耗热量Hi(t)、空调器热泵的装机容量
Figure BDA0000101261180000142
和用户输入的热惯性时间Ti,并发送到综合调度控制装置;
2)计算以下变量:
2.1)计算风力发电机在0~T×ΔT时间段的总出力然后根据总出力利用统计分析方法,预测T~2T×ΔT时间段的风力发电机总出力Pwind(t);
由采集燃煤抽汽凝汽式热电联产机组在0~T×ΔT时间段的发电出力PCHP(t)和热出力HCHP(t),预测出T~2T×ΔT时间段的发电出力PCHP(t)和热出力HCHP(t);
2.2)计算每个用户到燃煤抽汽凝汽式热电联产机组的等效距离
Figure BDA0000101261180000153
v为热水在管道中的流速;并对将计算结果做取整运算
Figure BDA0000101261180000154
将相同si的用户分为同一组,计为第l组,si=l;总计L组,L为自然数;
对每个用户分组,分别计算各组所有用户的总采暖负荷Hload(l)和热泵容量PEHP(l);
Hload(l)=∑Hi(t,l),Hi(t,l)为第l组用户i在t时刻的采暖负荷;
Figure BDA0000101261180000155
Figure BDA0000101261180000156
为第l组用户i的热泵容量;
3)将上述PCHP(t)、HCHP(t)、Pload(t)、Hload(l)、PEHP(l)代入,由目标函数(1)和约束条件(2~14)组成优化问题进行迭代求解,以获取目标函数最小值为结果,获取各个变量(即未来一段时间该变量的调控量)作为调控信号:
3.1)目标函数为:
Min : &Delta;p = &Sigma; t = T 2 T ( p wind ( t ) - p &OverBar; wind ) 2 / ( T + 1 ) ; - - - ( 1 )
其中pwind(t)为调节后的等效风电总出力,
Figure BDA0000101261180000158
为等效风电出力平均值,其表达式分别如下:
pwind(t)=Pwind(t)+(pCHP(t)-PCHP(t))-pEHPs(t);            (2)
其中,pCHP(t)为调节后的燃煤抽汽凝汽式热电联产机组的发电出力,PCHP(t)为预测的燃煤抽汽凝汽式热电联产机组的发电出力,pEHPs(t)为t时所有用户空调器热泵耗电功率;
p &OverBar; wind = &Sigma; p wind ( t ) / ( T + 1 ) ; - - - ( 3 )
3.2)约束条件
3.2.1)热负荷平衡方程
减少热水出力,在供给侧供暖不足的功率为Δh(t),其表达式如下:
Δh(t)=HCHP(t)-hCHP(t);                            (4)
其中HCHP(t)为预测出的燃煤抽汽凝汽式热电联产机组的热出力,hCHP(t)为调节后的燃煤抽汽凝汽式热电联产机组的热出力;
考虑到热水在管道流入用户的时间和热惯性时间,用户使用空调器热泵所需要的补偿Δh(t)表示为:
&Delta;h ( t ) = &Sigma; l = 0 L h EHP ( t + l , l ) ; (T≤t+l≤2T)        (5)
hEHP(t+l,l)为t+l时刻第l组用户热泵的供暖功率之和;
3.2.2)燃煤抽汽凝汽式热电联产机组约束:
发电出力下限: p CHP min ( t ) = l CHP min &CenterDot; h CHP ( t ) + n CHP min - - - ( 6 )
发电出力上限: p CHP max ( t ) = l CHP max &CenterDot; h CHP ( t ) + n CHP max - - - ( 7 )
发电出力限制: p CHP min ( t ) < p CHP ( t ) &le; p CHP max ( t ) - - - ( 8 )
供暖出力约束: 5 &le; h CHP ( t ) &le; h CHP max ( t ) - - - ( 9 )
额外约束热电联产发电出力下限:pCHP(t)≥PCHP                  (10)
其中pCHP(t)为调节后的燃煤抽汽凝汽式热电联产机组的发电出力,hCHP(t)为调节后的燃煤抽汽凝汽式热电联产机组的供暖热出力;为燃煤抽汽凝汽式热电联产机组的工况曲线参数,而为了避免燃煤抽汽凝汽式热电联产机组供暖出力为0时,重启耗时,在式(9)中限制供暖出力下限为5MW;
并限制调节后的燃煤抽汽凝汽式热电联产机组发电出力大于原计划发电出力:
pCHP(t)≥PCHP(t);                            (11)
3.2.3)用户侧空调器热泵约束条件
热电比约束:hEHP(t,l)=COPEHP·pEHP(t,l)                      (12)
hEHP(t,l)为t时刻第l组用户热泵的供暖功率之和,COPEHP为空调器热泵性能系数;
出力上限:0≤pEHP(t,l)≤min(PEHP(l),Hload(l)/COPEHP);        (13)
各时段所有用户组的空调热泵耗电量之和:
p EHPs ( t ) = &Sigma; l = 0 L p EHP ( t , l ) - - - ( 14 )
4)综合调度控制装置根据运算结果当中调节后的各变量生成调度控制信号并发出:
将燃煤抽汽凝汽式热电联产机组的发电出力pCHP(t)和热出力hCHP(t)发送给第一远程集中控制器,控制其在未来调节时间内各时段的动作;
将用户空调器热泵耗电量pEHP(t,l)和供热量hEHP(t,l)发送给第三远程集中控制器,控制其在未来调节时间内各时段的动作。
参见图6所示的原风电出力与调节后的风电等效出力曲线对比图,可以看出在调节前风电出力的波动很大,而在调节之后,风电等效出力比较平滑,前后对比,效果非常显著。

Claims (10)

1.一种热电联产机组与风力发电联合供热系统,其特征在于,包括:
用于产出电力和采暖热水的燃煤抽汽凝汽式热电联产机组(A);
用于产出电力的风力发电机组(B);
通过电力电缆网(113)与燃煤抽汽凝汽式热电联产机组(A)和风力发电机组(B)并联的用户的空调器热泵(108);控制空调器热泵(108)的空调器热泵遥控开关(117);
采集用户非采暖耗电量的电表;
通过供热管道网(114)与燃煤抽汽凝汽式热电联产机组(A)相连接的用户的热水式采暖散热器(110);热水式采暖散热器热水消耗计量表(111),检测热水式采暖散热器(110)的热水消耗量;控制热水式采暖散热器(110)的热水式采暖散热器遥控开关(116);
第一远程集中控制器(1121),采集燃煤抽汽凝汽式热电联产机组(A)的包括供暖出力热水流量和发电出力电量的产能信息,将采集的产能信息传送给综合调度控制装置(115);第一远程集中控制器(1121)还接收综合调度控制装置(115)所发出的调度控制信号,并根据调度控制信号控制燃煤热电联产机组控制执行装置(118)动作;
第二远程集中控制器(1122),采集风力发电机组(B)的发电出力电量的产能信息,将采集的产能信息传送给综合调度控制装置(115);
第三远程集中控制器(1123),记载有用户的热水式采暖散热器(110)与燃煤抽汽凝汽式热电联产机组(A)之间的管道距离信息,并采集包括用户的非采暖用电量和热水式采暖散热器热水消耗计量表(111)检测到的热水流入量和非采暖耗电量的耗能信息,还采集用户输入的热惯性时间;将用户的管道距离信息、采集的耗能信息和热惯性时间传送给综合调度控制装置(115);
第三远程集中控制器(1123)还接收综合调度控制装置(115)所发出的调度控制信号,并根据调度控制信号驱动空调器热泵遥控开关(117)和/或采暖散热器遥控开关(116)执行动作;
综合调度控制装置(115),根据的接收产能信息、用户的管道距离信息和耗能信息,产生调控控制信号,向第一远程集中控制器(1121)和/或第三远程集中控制器(1123)发出调控控制信号。
2.根据权利要求1所述的热电联产机组与风力发电联合供热系统,其特征在于,综合调度控制装置(115)根据接收的燃煤抽汽凝汽式热电联产机组(A)、风力发电机组(B)的产能信息和用户的耗能信息,在保证满足电力供给和热能供给的条件下,减少燃煤抽汽凝汽式热电联产机组(A)的供暖出力热水流量,减少热水流量导致用户所需要的供热不足由空调器热泵(108)消耗电力供热来补偿;
综合调度控制装置(115)发出包括燃煤抽汽凝汽式热电联产机组(A)在调度时间的供暖出力热水流量和发电出力电量,流入用户的热水式采暖散热器(110)热水量和空调器热泵(108)的采暖电力消耗量的调控控制信号。
3.根据权利要求2所述的热电联产机组与风力发电联合供热系统,其特征在于,在空调器热泵(108)消耗电力供热补偿时,还考虑热水流到用户的时间和热惯性时间。
4.根据权利要求1所述的热电联产机组与风力发电联合供热系统,其特征在于,所述综合调度控制装置(115)包括:
接收燃煤抽汽凝汽式热电联产机组(A)和风力发电机组(B)的产能信息,用户的耗能信息以及用户管道距离信息的第一数据接收单元(201);
将接收到的所有数据进行解码的数据解码器单元(202);
对解码后的所有数据进行存储的数据存储器单元(203);
生成调度控制信号的调度控制信号计算单元(204);
将所述调度控制信号进行编码的信号编码器(205);
将编码后的调度控制信号传递给第一远程集中控制器(1121)、第三远程集中控制器(1123)的发送单元(206)。
5.根据权利要求1所述的热电联产机组与风力发电联合供热系统,其特征在于,综合调度控制装置(115)通过电力光纤(120)与云计算服务系统(917)连接,并驱动云计算服务系统(917)计算,以获得调度控制信号;综合调度控制装置(115)通过电力光纤(120)接收云计算服务系统(917)获得的调度控制信号,然后经由电力电缆或无线传输方式将调度控制信号传送给第一远程集中控制器(1121)和/或第三远程集中控制器(1123)。
6.根据权利要求1所述的热电联产机组与风力发电联合供热系统,其特征在于,所述热水式采暖散热器遥控开关(116),通过第三远程集中控制器(1123)以遥控方式与综合调度控制装置(115)耦合;空调器热泵遥控开关(117),通过第三远程集中控制器(1123)以遥控方式与综合调度控制装置(115)耦合;空调器热泵(108)上还设有空调器热泵专用电能表(109),检测其采暖的耗电量,该耗电量并被第三远程集中控制器所采集;
燃煤抽汽凝汽式热电联产机组控制执行装置(118),通过第一远程集中控制器(1121)以遥控方式与综合调度控制装置(115)耦合;燃煤抽汽凝汽式热电联产机组控制执行装置(118)根据调度控制信号,控制与其连接的燃煤进料阀门、锅炉蒸汽进汽阀门、采暖蒸汽抽汽阀门及发电蒸汽流量阀门动作。
7.根据权利要求1所述的热电联产机组与风力发电联合供热系统,其特征在于,所述第三远程集中控制器(1123)包括非采暖电表脉冲计数器、采暖热水流量脉冲计数器、脉冲信号编码转换器、计量信号放大发射器,及相互连接的控制信号接收解码器和遥控信号发生器;
非采暖电表脉冲计数器连接用户非采暖电表,用于检测用户非采暖耗电数据,用户非采暖耗电数据经过脉冲信号编码转换器及计量信号放大发射器处理后传送至综合调度控制装置(115);
采暖热水流量脉冲计数器连接热水式采暖散热器热水消耗计量表(111),用于检测热水流入量,热水流入量再经过脉冲信号编码转换器及计量信号放大发射器处理生成信号,与用户管道信息一起传送至综合调度控制装置(115);
控制信号接收解码器,接收综合调度控制装置(115)发出的调度控制信息并进行解码,然后通过控制信号遥控发射器将控制信号发送给空调器热泵遥控开关(117)、热水式采暖散热器流水阀门遥控开关(116)执行动作。
8.根据权利要求1所述的热电联产机组与风力发电联合供热系统,其特征在于,所述燃煤热电联产机组控制执行装置(118)包括调度控制信号收发编码存储器(302)、驱动电路(303)及机械齿轮控制装置(304),所述调度控制信号经调度控制信号收发编码存储器解码以后生成燃煤热电联产机组调度控制指令,经过驱动电路输出的电力拖动信号触发机械齿轮控制装置,机械齿轮控制装置再控制燃煤热电联产机组的燃煤进料阀门动作、采暖蒸汽抽汽阀门动作及发电蒸汽流量阀门动作。
9.权利要求1所述的热电联产机组与风力发电联合供热系统的调度方法,其特征在于,包括以下步骤:
在0~T×ΔT时间段内,ΔT为采样周期,T为采集的次数,综合调度控制装置根据接收的燃煤抽汽凝汽式热电联产机组、风力发电机组的产能信息,预测出未来一段时间T~2T×ΔT的产能信息,再结合0~T×ΔT时间段内用户的耗能信息,在保证满足电力供给和热能供给的条件下,减少燃煤抽汽凝汽式热电联产机组的供暖出力热水流量,减少热水流量导致用户所需要的供热不足由空调器热泵消耗电力供热来补偿,并考虑热水流到用户的时间和热惯性时间,计算出补充量;
然后在T~2T×ΔT时间段,综合调度控制装置以ΔT为调控周期,根据电力供给和热能供给的预测和调度计算生成调度控制信号并发送,第一远程集中控制器接收调度控制信号后控制燃煤抽汽凝汽式热电联产机组的供暖出力热水流量和发电出力电量,第三远程集中控制器接收调度控制信号后,控制空调器热泵消耗电力供热来补偿热水式采暖散热器热水减少导致的供热不足。
10.如权利要求9所述的热电联产机组与风力发电联合供热系统的调度方法,其特征在于,综合调度控制装置的调度控制信号的生成包括以下步骤:
1)采集变量:
1.1)采集燃煤抽汽凝汽式热电联产机组在0~T×ΔT时间段的发电出力PCHP(t)和热出力HCHP(t),并发送到综合调度控制装置;ΔT为采样周期,T为采集的次数,T为自然数;
采集0~M号风力发电机在0~T×ΔT时间段的发电出力
Figure FDA0000101261170000051
并发送到综合调度控制装置;
1.2)采集0~T×ΔT时间段内,0~N个用户的以下信息:用户距热源燃煤抽汽凝汽式热电联产机组的管道距离Si、非采暖耗电量Pi(t)、热水式采暖散热器的耗热量Hi(t)、空调器热泵的装机容量
Figure FDA0000101261170000052
和用户输入的热惯性时间Ti,并发送到综合调度控制装置;
2)计算以下变量:
2.1)计算风力发电机在0~T×ΔT时间段的总出力
Figure FDA0000101261170000061
然后根据总出力
Figure FDA0000101261170000062
利用统计分析方法,预测T~2T×ΔT时间段的风力发电机总出力Pwind(t);
由采集燃煤抽汽凝汽式热电联产机组在0~T×ΔT时间段的发电出力PCHP(t)和热出力HCHP(t),预测出T~2T×ΔT时间段的发电出力PCHP(t)和热出力HCHP(t);
2.2)计算每个用户到燃煤抽汽凝汽式热电联产机组的等效距离
Figure FDA0000101261170000063
v为热水在管道中的流速;并对将计算结果做取整运算
Figure FDA0000101261170000064
将相同si的用户分为同一组,计为第l组,si=l;总计L组,L为自然数;
对每个用户分组,分别计算各组所有用户的总采暖负荷Hload(l)和热泵容量PEHP(l);
Hload(l)=∑Hi(t,l),Hi(t,l)为第l组用户i在t时刻的采暖负荷;
Figure FDA0000101261170000065
Figure FDA0000101261170000066
为第l组用户i的热泵容量;
3)将上述PCHP(t)、HCHP(t)、Pload(t)、Hload(l)、PEHP(l)代入,由目标函数(1)和约束条件(2~14)组成优化问题进行迭代求解,以获取目标函数最小值为结果,获取各个变量作为调控信号:
3.1)目标函数为:
Min : &Delta;p = &Sigma; t = T 2 T ( p wind ( t ) - p &OverBar; wind ) 2 / ( T + 1 ) ; - - - ( 1 )
其中pwind(t)为调节后的等效风电总出力,为等效风电出力平均值;
pwind(t)=Pwind(t)+(pCHP(t)-PCHP(t))-pEHPs(t);            (2)
其中,pCHP(t)为调节后的燃煤抽汽凝汽式热电联产机组的发电出力,PCHP(t)为预测的燃煤抽汽凝汽式热电联产机组的发电出力,pEHPs(t)为t时所有用户空调器热泵耗电功率;
p &OverBar; wind = &Sigma; p wind ( t ) / ( T + 1 ) ; - - - ( 3 )
3.2)约束条件
3.2.1)热负荷平衡方程
减少热水出力,在供给侧供暖不足的功率为Δh(t),其表达式如下:
Δh(t)=HCHP(t)-hCHP(t);                             (4)
其中HCHP(t)为预测出的燃煤抽汽凝汽式热电联产机组的热出力,hCHP(t)为调节后的燃煤抽汽凝汽式热电联产机组的热出力;
考虑到热水在管道流入用户的时间和热惯性时间,用户使用空调器热泵所需要的补偿Δh(t)表示为:
&Delta;h ( t ) = &Sigma; l = 0 L h EHP ( t + l , l ) ; (T≤t+l≤2T)        (5)
hEHP(t+l,l)为t+l时刻第l组用户热泵的供暖功率之和;
3.2.2)燃煤抽汽凝汽式热电联产机组约束:
发电出力下限: p CHP min ( t ) = l CHP min &CenterDot; h CHP ( t ) + n CHP min - - - ( 6 )
发电出力上限: p CHP max ( t ) = l CHP max &CenterDot; h CHP ( t ) + n CHP max - - - ( 7 )
发电出力限制: p CHP min ( t ) < p CHP ( t ) &le; p CHP max ( t ) - - - ( 8 )
供暖出力约束: 5 &le; h CHP ( t ) &le; h CHP max ( t ) - - - ( 9 )
额外约束热电联产发电出力下限:pCHP(t)≥PCHP                    (10)
其中pCHP(t)为调节后的燃煤抽汽凝汽式热电联产机组的发电出力,hCHP(t)为调节后的燃煤抽汽凝汽式热电联产机组的供暖热出力;
Figure FDA0000101261170000077
为燃煤抽汽凝汽式热电联产机组的工况曲线参数;
并限制调节后的燃煤抽汽凝汽式热电联产机组发电出力大于原计划发电出力:
pCHP(t)≥PCHP(t);                    (11)
3.2.3)用户侧空调器热泵约束条件
热电比约束:hEHP(t,l)=COPEHP·pEHP(t,l)                (12)
hEHP(t,l)为t时刻第l组用户热泵的供暖功率之和,COPEHP为空调器热泵性能系数;
出力上限:0≤pEHP(t,l)≤min(PEHP(l),Hload(l)/COPEHP);    (13)
各时段所有用户组的空调热泵耗电量之和:
p EHPs ( t ) = &Sigma; l = 0 L p EHP ( t , l ) - - - ( 14 )
4)综合调度控制装置根据运算结果当中调节后的各变量生成调度控制信号并发出:
将燃煤抽汽凝汽式热电联产机组的发电出力pCHP(t)和热出力hCHP(t)发送给第一远程集中控制器,控制其在未来调节时间内各时段的动作;
将用户空调器热泵耗电量pEHP(t,l)和供热量hEHP(t,l)发送给第三远程集中控制器,控制其在未来调节时间内各时段的动作。
CN2011103240484A 2011-10-23 2011-10-23 热电联产机组与风力发电联合供热系统及调度方法 Active CN102506519B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2011103240484A CN102506519B (zh) 2011-10-23 2011-10-23 热电联产机组与风力发电联合供热系统及调度方法
US13/976,934 US9285789B2 (en) 2011-10-23 2012-10-22 Cogeneration unit and wind power joint heating system and scheduling method therefor
PCT/CN2012/083288 WO2013060252A1 (zh) 2011-10-23 2012-10-22 热电联产机组与风力发电联合供热系统及调度方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011103240484A CN102506519B (zh) 2011-10-23 2011-10-23 热电联产机组与风力发电联合供热系统及调度方法

Publications (2)

Publication Number Publication Date
CN102506519A true CN102506519A (zh) 2012-06-20
CN102506519B CN102506519B (zh) 2013-12-11

Family

ID=46218630

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011103240484A Active CN102506519B (zh) 2011-10-23 2011-10-23 热电联产机组与风力发电联合供热系统及调度方法

Country Status (3)

Country Link
US (1) US9285789B2 (zh)
CN (1) CN102506519B (zh)
WO (1) WO2013060252A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013060252A1 (zh) * 2011-10-23 2013-05-02 重庆市电力公司电力科学研究院 热电联产机组与风力发电联合供热系统及调度方法
EP2843788A3 (de) * 2013-08-16 2015-03-11 RWE Effizienz GmbH Verfahren zum Betreiben eines Kraftwerkssystems
CN106949662A (zh) * 2017-04-28 2017-07-14 国网上海市电力公司 满足用户刚性冷电需求的区域能源系统设备切换控制方法
CN107575928A (zh) * 2017-09-27 2018-01-12 赫普科技发展(北京)有限公司 一种农村分布式风电供暖系统及方法
CN109447450A (zh) * 2018-10-22 2019-03-08 国网辽宁省电力有限公司阜新供电公司 建筑物综合供热提高风电消纳的热电联合系统调度方法
CN110247410A (zh) * 2019-06-11 2019-09-17 中国神华能源股份有限公司 一种供热机组的调峰处理方法、装置及系统

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUB20153816A1 (it) * 2015-09-23 2017-03-23 Unendo Energia Italiana S P A Sistema energetico per edifici.
CN106026081B (zh) * 2016-06-22 2021-10-29 中国电力科学研究院 一种使用弃风电供暖的实时调度方法
US10107213B2 (en) 2016-12-01 2018-10-23 Ford Global Technologies, Llc Method and system for exhaust gas recirculation and heat recovery
CN106815661B (zh) * 2017-02-22 2020-10-20 清华大学 一种热电联合系统的分解协调调度方法
CN107370156B (zh) * 2017-08-24 2020-09-01 赫普科技发展(北京)有限公司 一种基于电极锅炉的电网调频系统
CN108131722A (zh) * 2017-12-15 2018-06-08 西南大学 一种面向电网调峰的终端用户制冷行为自适应调控
CN110490386B (zh) * 2019-08-26 2022-12-06 苏州树森信息科技有限公司 一种综合能源调度方法和综合能源调度系统
CN110688608B (zh) * 2019-09-24 2023-01-06 国网辽宁省电力有限公司沈阳供电公司 一种热电联产机组供热量上限的计算方法
CN110991845B (zh) * 2019-11-25 2023-06-23 国网节能服务有限公司 一种电-热耦合系统分布式协同调度方法
CN111401771B (zh) * 2020-03-25 2023-05-16 西安热工研究院有限公司 一种热电联产机组多供热方式的经济调度方法
CN111523730A (zh) * 2020-04-23 2020-08-11 中国华能集团有限公司 一种预测热电联产机组煤耗的方法
CN111720178B (zh) * 2020-06-11 2022-04-19 浙江浙能技术研究院有限公司 一种基于供电煤耗和投资收益率关联性的燃煤发电机组冷端优化统计分析方法
CN112069443B (zh) * 2020-08-04 2023-10-20 国网山东省电力公司电力科学研究院 热电联产机组供热替代的燃煤压减量计算方法及系统
CN112186745A (zh) * 2020-09-18 2021-01-05 国网辽宁省电力有限公司电力科学研究院 一种电网临界弃风判据计算方法
CN113032715B (zh) * 2021-03-22 2024-06-11 西安热工研究院有限公司 一种燃煤热电联产机组抽汽供热耗煤的在线测定方法
CN113095600B (zh) * 2021-05-10 2021-11-09 骊阳(广东)节能科技股份有限公司 一种热电联产远程监测控制方法及系统
CN113297737B (zh) * 2021-05-25 2022-07-26 华南理工大学 一种基于网络简化的分布式鲁棒电热调度非迭代解耦方法
CN113375213B (zh) * 2021-06-15 2022-05-17 南京工业大学 一种基于双机组运行模式的新型热电联产系统及方法
CN113507138B (zh) * 2021-07-16 2024-03-19 国网江苏省电力有限公司仪征市供电分公司 一种基于移动式综合能源系统的调度方法
CN113627033A (zh) * 2021-08-27 2021-11-09 西安热工研究院有限公司 一种采暖热电联产机组保热调电能力提升方法及系统
CN116599142B (zh) * 2023-03-28 2024-06-11 淮阴工学院 一种保障安全供能的智能调控系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004156820A (ja) * 2002-11-06 2004-06-03 Noritz Corp コジェネレーションシステム
CN101158522A (zh) * 2007-11-21 2008-04-09 陈晓通 风力热泵及其供热、制冷、净水、干燥系统
WO2009024833A1 (en) * 2007-08-21 2009-02-26 Ingeteam, S.A.S. Control of active power reserve in a wind-farm
EP2099111A2 (en) * 2008-03-06 2009-09-09 Honeywell International Inc. Paralleled HVDC bus electrical power system architecture
CN101950962A (zh) * 2010-08-24 2011-01-19 西安交通大学 一种热电联产机组配合风能发电机组节能调峰的系统及方法
CN102097803A (zh) * 2010-05-11 2011-06-15 珠海兴业新能源科技有限公司 分级控制微型电网组网方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4053965B2 (ja) * 2003-11-18 2008-02-27 株式会社日立製作所 熱電併給型系統制御方法及び熱電併給型系統制御装置
US7177728B2 (en) * 2003-12-30 2007-02-13 Jay Warren Gardner System and methods for maintaining power usage within a set allocation
CA2573941A1 (en) * 2007-01-15 2008-07-15 Coolit Systems Inc. Computer cooling system
JP5309035B2 (ja) * 2007-12-18 2013-10-09 パナソニック株式会社 コージェネレーションシステム
EP2416083B1 (en) * 2009-03-30 2017-05-31 Mitsubishi Electric Corporation Fluid heating system and method, and fluid heating control system, control device and control method
US9170030B2 (en) * 2009-04-21 2015-10-27 Panasonic Intellectual Property Management Co., Ltd. Storage hot water supplying apparatus, hot water supplying and space heating apparatus, operation control apparatus, operation control method, and operation control program
US8335596B2 (en) * 2010-07-16 2012-12-18 Verizon Patent And Licensing Inc. Remote energy management using persistent smart grid network context
CN101950964B (zh) 2010-08-24 2011-09-21 西安交通大学 一种包含热电联产机组和纯凝汽式火电机组的系统及调度方法
CN101950963B (zh) 2010-08-24 2011-09-21 西安交通大学 一种热电联产机组配合纯凝汽式火电机组避免开停机调峰的系统及方法
CN102506450B (zh) 2011-10-23 2013-11-06 西安交通大学 背压式热电联产与太阳能发电联合制热系统及其调度方法
CN102520675B (zh) 2011-10-23 2014-03-12 西安交通大学 燃气联合循环与太阳能发电联合制热系统及其调度方法
CN102506519B (zh) 2011-10-23 2013-12-11 重庆市电力公司电力科学研究院 热电联产机组与风力发电联合供热系统及调度方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004156820A (ja) * 2002-11-06 2004-06-03 Noritz Corp コジェネレーションシステム
WO2009024833A1 (en) * 2007-08-21 2009-02-26 Ingeteam, S.A.S. Control of active power reserve in a wind-farm
CN101158522A (zh) * 2007-11-21 2008-04-09 陈晓通 风力热泵及其供热、制冷、净水、干燥系统
EP2099111A2 (en) * 2008-03-06 2009-09-09 Honeywell International Inc. Paralleled HVDC bus electrical power system architecture
CN102097803A (zh) * 2010-05-11 2011-06-15 珠海兴业新能源科技有限公司 分级控制微型电网组网方法
CN101950962A (zh) * 2010-08-24 2011-01-19 西安交通大学 一种热电联产机组配合风能发电机组节能调峰的系统及方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013060252A1 (zh) * 2011-10-23 2013-05-02 重庆市电力公司电力科学研究院 热电联产机组与风力发电联合供热系统及调度方法
US9285789B2 (en) 2011-10-23 2016-03-15 State Grid Corporation Of China Cogeneration unit and wind power joint heating system and scheduling method therefor
EP2843788A3 (de) * 2013-08-16 2015-03-11 RWE Effizienz GmbH Verfahren zum Betreiben eines Kraftwerkssystems
CN106949662A (zh) * 2017-04-28 2017-07-14 国网上海市电力公司 满足用户刚性冷电需求的区域能源系统设备切换控制方法
CN106949662B (zh) * 2017-04-28 2019-05-21 国网上海市电力公司 满足用户刚性冷电需求的区域能源系统设备切换控制方法
CN107575928A (zh) * 2017-09-27 2018-01-12 赫普科技发展(北京)有限公司 一种农村分布式风电供暖系统及方法
CN109447450A (zh) * 2018-10-22 2019-03-08 国网辽宁省电力有限公司阜新供电公司 建筑物综合供热提高风电消纳的热电联合系统调度方法
CN110247410A (zh) * 2019-06-11 2019-09-17 中国神华能源股份有限公司 一种供热机组的调峰处理方法、装置及系统
CN110247410B (zh) * 2019-06-11 2021-05-28 中国神华能源股份有限公司 一种供热机组的调峰处理方法、装置及系统

Also Published As

Publication number Publication date
CN102506519B (zh) 2013-12-11
US20140121848A1 (en) 2014-05-01
WO2013060252A1 (zh) 2013-05-02
US9285789B2 (en) 2016-03-15

Similar Documents

Publication Publication Date Title
CN102506519B (zh) 热电联产机组与风力发电联合供热系统及调度方法
CN102520675B (zh) 燃气联合循环与太阳能发电联合制热系统及其调度方法
CN102510098A (zh) 抽凝式热电联产与纯凝汽火电联合调度系统与方法
CN102437645B (zh) 热电联产与采暖负荷联合控制的风电出力调度系统与方法
CN102506451B (zh) 包括风电和燃气联合循环机组的热电联产系统及方法
CN102410594B (zh) 热电联产与制冷负荷联合控制的风电出力调度系统与方法
CN102510078B (zh) 抽凝机组的热电联合调度系统及调度方法
CN102506477B (zh) 热电联产机组与风力发电联合制冷系统及其调度方法
CN102510075B (zh) 一种水源热泵的热电调度系统及调度方法
CN102410574B (zh) 水源热泵与风力发电联合制热系统及其调度方法
CN102506450B (zh) 背压式热电联产与太阳能发电联合制热系统及其调度方法
CN102494430B (zh) 包括风电和燃气联合循环机组的冷电联产系统及方法
CN102410595B (zh) 背压式热电联产与太阳能发电联合制冷系统及其调度方法
CN102510106B (zh) 包括抽汽凝汽式热电联产机组的热电联合调度系统及方法
CN102510095B (zh) 一种联合循环与纯凝汽火电联合调度系统与方法
CN102506476B (zh) 水源热泵与风力发电联合制冷系统及其调度方法
CN102410592B (zh) 燃气联合循环与太阳能发电联合制冷系统及其调度方法
CN102506452B (zh) 背压式热电联产机组与风电出力供热调度系统及方法
CN102510099B (zh) 包括燃气联合循环机组的热电联合调度系统及方法
CN102520674B (zh) 背压式热电联产机组与风电出力制冷调度系统及方法
CN102522780B (zh) 燃气联合循环机组的热电联合调度系统及调度方法
CN102510076B (zh) 背压式热电联产机组的热电调度系统及调度方法
CN102510101B (zh) 包括背压式热电联产机组的热电联合调度系统及方法
CN102427276A (zh) 一种抽凝式热电联产与纯凝汽火电联合调度系统与方法
CN102510097B (zh) 一种背压式热电联产与纯凝汽火电联合调度系统与方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: CHONGQING CITY ELECTRICAL POWER CO. XI AN JIAOTONG

Free format text: FORMER OWNER: CHONGQING CITY ELECTRICAL POWER CO. XI AN JIAOTONG UNIV.

Effective date: 20130409

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20130409

Address after: 401123 No. 80, Mount Huangshan Avenue, Yubei District, Chongqing

Applicant after: Chongqing Electric Power Corp., China Electric Power Research Institute

Applicant after: Chongqing City Electrical Power Co.

Applicant after: Xi'an Jiaotong University

Applicant after: State Grid Corporation of China

Address before: 401123 No. 80, Mount Huangshan Avenue, Yubei District, Chongqing

Applicant before: Chongqing Electric Power Corp., China Electric Power Research Institute

Applicant before: Chongqing City Electrical Power Co.

Applicant before: Xi'an Jiaotong University

C14 Grant of patent or utility model
GR01 Patent grant