CN102484978A - 一种具有光控水位控制器的无土栽培系统 - Google Patents

一种具有光控水位控制器的无土栽培系统 Download PDF

Info

Publication number
CN102484978A
CN102484978A CN2010105710634A CN201010571063A CN102484978A CN 102484978 A CN102484978 A CN 102484978A CN 2010105710634 A CN2010105710634 A CN 2010105710634A CN 201010571063 A CN201010571063 A CN 201010571063A CN 102484978 A CN102484978 A CN 102484978A
Authority
CN
China
Prior art keywords
water level
circuit
water
culture system
soilless culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010105710634A
Other languages
English (en)
Inventor
沈建彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAICANG XIANGHE VEGETABLE PROFESSIONAL COOPERATIVES
Original Assignee
TAICANG XIANGHE VEGETABLE PROFESSIONAL COOPERATIVES
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAICANG XIANGHE VEGETABLE PROFESSIONAL COOPERATIVES filed Critical TAICANG XIANGHE VEGETABLE PROFESSIONAL COOPERATIVES
Priority to CN2010105710634A priority Critical patent/CN102484978A/zh
Publication of CN102484978A publication Critical patent/CN102484978A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Landscapes

  • Hydroponics (AREA)

Abstract

本发明公开了一种具有光控水位控制器的无土栽培系统,包括营养液池、水泵和承液槽,控制水泵的电源的光控水位控制器,其中,光控水位控制器包括:电源电路、与电源电路相连的水位控制电路,与水位控制电路相连的光控电路,与水位控制电路相连的低水位探测线、中间水位探测线、高水位探测线、继电器;水位控制电路使用水位探测线测得承液槽中的营养液的液面高度,并且根据光控电路的信号以及测得的水位控制继电器的状态,从而控制水泵的电源;水泵将营养液池中的营养液抽到承液槽,承液槽设置有出液口,用于将承液槽中的营养液流回营养液池。本发明的具有光控水位控制器的无土栽培系统结构简单,性能可靠,能够保证无土栽培系统的正常灌溉。

Description

一种具有光控水位控制器的无土栽培系统
技术领域
本发明涉及一种无土栽培系统,尤其涉及一种具有光控水位控制器的无土栽培系统。
背景技术
在现代设施农业飞速发展的进程中,无土栽培的种植方式越来越得到广泛的应用。而现代设施农业中,尤其是园艺作物的无土栽培中,无土栽培技术越来越多的采用自动供水灌溉技术。
为工农业生产供水的水塔或高位水箱基本上都是通过水位自动控制装置来实现自动供水。目前广为使用的水位控制器是一种浮球式水位控制器。浮球式水位控制器主要由浮球、尼龙绳、滑轮、配重块、支架、限位档、连杆及行程开关组成,是靠浮球随着水位的升降来控制水位的,其主要不足是:一方面,冬季天气寒冷,使尼龙绳及滑轮、限位档等处结冰,尼龙绳不能随着浮球和配重块在滑轮上滑动,使限位档不能按原设计意图触动限位开关,造成失灵;另一方面,夏季天气炎热,由于行程开关安装在水箱中水面上部,水蒸汽侵蚀行程开关,造成行程开关短路,致使控制装置失控;另外,浮球式控制装置有时还会因机械传动故障造成失控。水位控制器的不足导致无土栽培系统无法正常进行灌溉,影响农作物生长。
发明内容
本发明的目的是提供一种具有光控水位控制器的无土栽培系统,其结构简单,性能可靠,能够保证无土栽培系统的正常灌溉。
为了实现上述目的,本发明采用以下技术方案:
一种具有光控水位控制器的无土栽培系统,包括营养液池、水泵和承液槽,控制所述水泵的电源的光控水位控制器,其中,
所述光控水位控制器包括:电源电路、与所述电源电路相连的水位控制电路,与所述水位控制电路相连的光控电路,与所述水位控制电路相连的低水位探测线、中间水位探测线、高水位探测线、继电器;
所述水位控制电路使用所述水位探测线测得所述承液槽中的营养液的液面高度,并且根据所述光控电路的信号以及测得的水位控制继电器的状态,从而控制所述水泵的电源;
所述水泵将所述营养液池中的营养液抽到所述承液槽,所述承液槽设置有出液口,用于将所述承液槽中的营养液流回所述营养液池。
作为对上述技术方案的优化,所述电源电路包括变压器、与所述变压器二次绕线组连接的整流滤波电路。
作为对上述技术方案的优化,所述中间水位探测线通过第一电阻与所述变压器的输出连接,所述高水位探测线直接与所述变压器的输出连接。
作为对上述技术方案的优化,所述水位控制电路包括所述低水位探测线与接地点之间串联的第二电阻和第一二极管,与所述低水位探测线串联的第二二极管,与所述第二二极管及接地点之间并联的第一电容器、第六电阻,与所述第二二极管串联的第一施密特触发电路,同时与所述第一施密特触发电路连接的第一和第二CMOS集成电路;所述第一和第二COMS集成电路与继电器连接。
作为对上述技术方案的优化,所述光控电路包括:由光敏电阻和第三电阻串联的光线检测电路,与所述第三电阻并联的第二电容,与所述光线检测电路相连的第二施密特触发电路,与所述第二施密特触发电路依次串联的第五二极管和由第四电容和第十电阻组成的并联电路,所述并联电路与所述第一施密特电路相连。
作为对上述技术方案的优化,所述电源电路还包括指示电源是否正常工作的第一发光二极管。
作为对上述技术方案的优化,所述继电器并联第八电容。
作为对上述技术方案的优化,所述继电器的输入端并联有第十三电阻串连第二发光二极管组成的指示水泵工作状态的电路。
作为对上述技术方案的优化,所述无土栽培系统还包括消毒装置,所述消毒装置与所述营养液池构成营养液消毒回路。
作为对上述技术方案的优化,所述承液槽的出液口设置有可控开关。
本发明的无土栽培系统,其使用水泵向承液槽供给营养液,并采用一种光控水位控制器控制水泵的电源,以控制水泵的工作状态,当营养液液面低于低水位探测线时,控制电路输出高电平,继电器吸合,启动水泵供水,当营养液液面处于高水位探测线与中间水位探测线之间时,控制电路保持原来状态,继电器处于吸合状态,供水装置继续处于工作状态,当营养液液面高于高水位探测线时,控制电路输出低电平,继电器断开,水泵停止工作,这样使得容器内的营养液液面始终保持在低水位探测线的高度或以上,同时不高于高水位探测线的高度。本发明的具有光控水位控制器的无土栽培系统结构简单,性能可靠,能够保证无土栽培系统的正常灌溉。
附图说明
下面结合附图对本发明作详细说明。
图1是本发明的具有光控水位控制器的无土栽培系统的结构示意图;
图2是本发明的光控水位控制器的电路图。
附图标记列表:
1:营养液池;2:营养液;3:水泵;4:供液管路;5:承液槽;6:塑料薄膜;7:回液管路;8:光控水位控制器;9:消毒装置。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
如图1、图2所示,本发明的具有光控水位控制器的无土栽培系统包括营养液池1、水泵3和承液槽5,控制水泵的电源的光控水位控制器8,其中,光控水位控制器8包括:电源电路、与电源电路相连的水位控制电路,与水位控制电路相连的光控电路,与水位控制电路相连的低水位探测线A、中间水位探测线B、高水位探测线C、继电器Q1;水位控制电路使用水位探测线(A、B和C)测得承液槽5中的营养液2的液面高度,并且根据光控电路的信号以及测得的水位控制继电器Q1的状态,从而控制水泵3的电源;水泵3用于将营养液池1中的营养液2抽到承液槽5,承液槽5设置有出液口,用于将承液槽5中的营养液2流回营养液池1。
本发明的具有光控水位控制器的无土栽培系统,使用水泵向承液槽供给营养液,并采用一种光控水位控制器控制水泵的电源,以控制水泵的工作状态,当营养液液面低于低水位探测线时,控制电路输出高电平,继电器吸合,启动水泵供水,当营养液液面处于高水位探测线与中间水位探测线之间时,控制电路保持原来状态,继电器处于吸合状态,供水装置继续处于工作状态,当营养液液面高于高水位探测线时,控制电路输出低电平,继电器断开,水泵停止工作,这样使得容器内的营养液液面始终保持在低水位探测线的高度或以上,同时不高于高水位探测线的高度;承液槽还设置有出液口,用于将承液槽中的营养液流回营养液池。本发明的具有光控水位控制器的无土栽培系统结构简单,性能可靠,能够保证无土栽培系统的正常灌溉。
其中,电源电路包括变压器T1、与变压器二次绕线组连接的整流滤波电路。
中间水位探测线B通过第一电阻R1与变压器T1的输出①连接,高水位探测线C直接与变压器T1的输出①连接。
水位控制电路包括低水位探测线A与接地点之间串联的第二电阻R2和第一二极管D1,与低水位探测线A串联的第二二极管D2,与第二二极管D2及接地点之间并联的第一电容器C1、第六电阻R6,与第二二极管D2串联的第一施密特触发电路,同时与第一施密特触发电路连接的第一CMOS集成电路IC1C和第二CMOS集成电路IC1F;第一和第二COMS集成电路与继电器Q1连接。
光控电路包括:由光敏电阻RG和第三电阻串联R3的光线检测电路,与第三电阻R3并联的第二电容C2,与光线检测电路相连的第二施密特触发电路,与第二施密特触发电路依次串联的第五二极管D5和由第四电容C4和第十电阻R10组成的并联电路,并联电路与第一施密特电路相连。
为了方便观察电源电路的工作状态,电源电路还包括指示电源是否正常工作的第一发光二极管D7。
继电器Q1并联第八电容C8。
为了方便观察水泵工作状态,本发明的继电器Q1的输入端并联有第十三电阻R13串连第二发光二极管D10管组成的指示水泵工作状态的电路。
水位探测线A、B、C接触营养液的一端可以为电极。
本发明的无土栽培系统还包括消毒装置9,消毒装置9与所述营养液池1构成营养液消毒回路,用于给营养液池中的营养液消毒,以防止营养液被污染和营养液的营养成分不被破坏。
承液槽的出液口设置有可控开关,用以配合光控水位控制器的工作,即,在光控水位控制器工作时,出液口的开关可以设置为关闭,当需要将承液槽中的营养液全部排出时,使光控水位控制器停止工作,同时打开出液口的开关,排出营养液。出液口的开关优选设置在承液槽的底部。
另外,根据需要,还可以在承液槽内壁覆盖一层塑料薄膜,以避免营养液与承液槽的直接接触或者避免营养液流失。
下面以本发明的光控水位控制器的电路图为基础,对光控水位控制器的工作原理进行详细说明。
如图2所示为本发明的一种光控水位控制器的电路图,220V的市电经变压器T1,由D8、D9全波整流,C7滤波后得到约14V左右的直流电压供整机使用,D7用于电源指示。变压器①、②绕组间的交流电压还作为水位检测的供电电源。当营养液液面低于电极B以下时,各电极间无检测电流通过,C1两端的电压为0V,IC1A的(1)脚为低电平。R7、R9、IC1A和IC1B组成施密特触发器,该触发器的输出端IC1B的④脚输出低电平,IC1C的⑥脚和IC1F的⑧脚均为高电平,固态继电器Q1导通,水泵得电抽水,营养液液面逐渐升高,当液面高至电极B时,交流电正半周的电流由变压器的①端流经R1→电极B→营养液→电极A→D2→R6→地→变压器②端,同时对C1充电,由于R1和营养液的等效电阻串联后与R6分压,使C1两端得到的电压仍低于施密特触发器的阈值电压,触发器不发生翻转,IC1B的④脚仍为低电平,Q1仍然导通,水泵继续运转,交流电压负半周时,电流由变压器的②端→地→D1→R2→电极A→营养液→电极B→R1→变压器的①端,所以流过电极A和电极B的电流为交流电,调节R2的阻值大小,使流过水位检测电极的正负半周的电流大小相等,可以避免水位检测电极发生极化反应,延长电极的使用寿命。当营养液液面升高至电极C时,交流电正半周的电流由变压器的①端流经电极B和C→营养液→电极A→D2→R6→地→变压器②端,由于电极C参与导电,使C1两端的电压高于施密特触发器的阈值电压。触发器发生翻转,IC1B的④脚输出高电平,IC1C的⑥脚和IC1F的⑧脚均输出低电平,使Q1截止,水泵停止抽取营养液。植物吸收营养液时,承液槽中的营养液液面逐渐降低,当液面在电极C以下、电极B以上时,由于施密特触发器回差电压的存在,此时C1两端仍保持高电平,施密特触发器不发生翻转。输出端IC1B的④脚仍为高电平,IC1C的⑥脚和IC1F的⑧脚均输出低电平,使Q1继续截止,水泵仍然停转。当营养液液面低于电极B以下时,没有电流通过各检测电极,电容C1两端的电压为0V,施密特触发器翻转,Q1导通,水泵又得电抽营养液。
作为一个优选实施例,本发明还具有光控工作功能。其工作原理是为:本控制器是利用光敏电阻来检测清晨(8点以前)天色从暗变亮的变化作为触发信号使施密特发器发生翻转、水泵得电启动,从而保证每天在谷电供电时间内实现自动抽液一次的功能。图2中,R3和光敏电阻RG构成光线检测电路,R4、R5、IC1D、IC1E也构成一个施密特触发器。光线较暗时,光敏电阻的阻值较大,C2两端为低电平,施密特触发器的输出端IC1E的⑩脚为低电平,此时D5截止,光控电路不起作用,当天色逐渐变亮时,光敏电阻的阻值随之减小,C2两端的电位不断升高,当C2两端的电位大于施密特触发器的阈值电压时,触发器翻转,IC1E的⑩脚跳变为高电平,D5导通。由于C4两端的电压不能突变,所以IC1B的③脚跳变为高电平,IC1B的④脚为低电平,由于C5、R11的延时作用,IC1C的⑤脚和IC1F的⑨脚并不会马上跳变为低电平。另外IC1B(4)脚的低电平经R9反馈送至IC1A的①脚,①脚电平的高低取决于承液槽中营养液的液面情况,若营养液液面在电极C处时,IC1A的①脚为高电平,IC1B的④脚变为高电平,IC1C的⑥脚和IC1F的⑧脚为低电平,水泵仍停止工作;若营养液液面在电极C以下时,由于R9的反馈作用,使IC1A的①脚跳变为低电平,触发器输出端IC1B④脚也为低电平,VCC经R11、IC1B④脚对C5充电,使IC1C的(5)脚和IC1F的⑨脚的电位不断降低,经过一段时间后(约3秒),使IC1C的(5)脚和IC1F的⑨脚变为低电平,IC1C的⑥脚和IC1F的⑧脚跳变为高电平,Q1导通,水泵得电启动,直至营养液液面升到电极C处,IC1A①脚又变为高电平,IC1A②脚变为低电平,接着IC1E的⑩输出的高电平经R8和导通的D5,对C4充电,使IC1B的③脚电位不断下降,当IC1B的③脚变为低电平时,C5两端充得的电荷经Vcc、R11和IC1B的④脚放电,使IC1C的⑤脚和IC1F的⑨脚的电位不断上升,当IC1C的⑤脚和IC1F的⑨脚变为高电平时,IC1C的⑥脚和lC1F的⑩脚变为低电平,Q1截止,水泵停止工作。电路中K1是手动控制开关、C8用于保护固态继电器Q1。
进一步地,本发明还可以设置延时电路,以保护电路中的电器设备。延时电路的工作原理为:停电后重新恢复供电时,若营养液液面在电极C处,由于此时C1两端的电压为0V,而流过检测电极的正半周交流电对C1的充电,要经过大约1~2秒钟才能建立正常电压,所以在这1~2秒内,IC1A的输入端为低电平,若无C5、R11组成的延时电路,此时IC1C的⑥脚和IC1F的⑧脚输出高电平,水泵会转动,但1-2秒后,C1两端的电压趋于正常的高电平,施密特触发器发生翻转,水泵又停止转动,为了克服水泵的短时转动现象,特地设置了由C5、R11构成的延时电路,延时大约3秒左右,在这3秒钟内,不管液面情况如何,水泵都不转动,3秒钟之后,C1两端已建立了正常的电压,所以水泵也不会转动了。如果液面在电极B以下,要经过3秒钟后,水泵才能得电启动工作,直到营养液的液面满至电极C处,同时这个电路对减小停电后恢复供电瞬间的冲击电流也有积极作用。
电路中各元器件参数如附图2标识,T1可选用双12V、3W的变压器,Q1为10A/480V、直流控制电压为3~32V的固态继电器(可选用拆机件,若无也可采用触点电流10A吸合电压为12V的继电器),RG采用
Figure BDA0000035803340000071
Figure BDA0000035803340000072
的光敏电阻均可,水位检测电极可用不锈钢材料制作(用电炉丝制作的水位检测电极,使用效果也很好)。
需要说明是,IC1选用CD4069六非门CMOS集成电路,焊接时电烙铁应注意接地,整个电路焊接完成后,把印刷电路板装入一个大小合适的塑料盒内,并在塑料盒前面板的适当位置上固定好电源指示发光管D7和水泵工作状态指示发光管D10,先不要接上固态继电器Q1,光敏电阻的引脚与导线连接好后(引脚套上绝缘套管),装到一个长度为5cm左右的塑料管中(可截取长度合适的圆珠笔杆代替),并在塑料管口上贴上透明胶带纸,以防雨水流入,安装塑料管时把光敏电阻的感光面对向天空,再用一根双芯电缆线把水位检测电极与控制器连接起来,注意电缆线与电阻R1及各水位检测电极之间的接头处应用硅胶或热熔胶做防水处理,最后把电极A插入营养液中,电极B和电极C悬空,此时D10不发光,再用黑胶布摁住装光敏电阻的塑料管口,然后再松开黑胶布,D10应能发光,接着把电极B插入营养液中,D10应能继续发光,再把电极C插入营养液中,D10熄灭,至此整个电路调试完毕。若调试过程中出现异常。应重点检查设计的印刷电路板是否正确、选用的元器件的质量是否有问题、焊点是否可靠等,只要仔细检查,一般故障都会顺利排除。最后接上固态继电器和水泵,并在Q1两端并接一个耐压为630V容量为0.1μF的涤纶电容C8,就可投入使用了。
以上所述仅为本发明的较佳实施例,并非用来限定本发明的实施范围;如果不脱离本发明的精神和范围,对本发明进行修改或者等同替换,均应涵盖在本发明权利要求的保护范围当中。

Claims (10)

1.一种具有光控水位控制器的无土栽培系统,其特征在于,包括营养液池、水泵和承液槽,控制所述水泵的电源的光控水位控制器,其中,
所述光控水位控制器包括:电源电路、与所述电源电路相连的水位控制电路,与所述水位控制电路相连的光控电路,与所述水位控制电路相连的低水位探测线、中间水位探测线、高水位探测线、继电器;
所述水位控制电路使用所述水位探测线测得所述承液槽中的营养液的液面高度,并且根据所述光控电路的信号以及测得的水位控制继电器的状态,从而控制所述水泵的电源;
所述水泵将所述营养液池中的营养液抽到所述承液槽,所述承液槽设置有出液口,用于将所述承液槽中的营养液流回所述营养液池。
2.根据权利要求1所述的无土栽培系统,其特征在于,所述电源电路包括变压器、与所述变压器二次绕线组连接的整流滤波电路。
3.根据权利要求2所述的无土栽培系统,其特征在于,所述中间水位探测线通过第一电阻与所述变压器的输出连接,所述高水位探测线直接与所述变压器的输出连接。
4.根据权利要求3所述的无土栽培系统,其特征在于,所述水位控制电路包括所述低水位探测线与接地点之间串联的第二电阻和第一二极管,与所述低水位探测线串联的第二二极管,与所述第二二极管及接地点之间并联的第一电容器、第六电阻,与所述第二二极管串联的第一施密特触发电路,同时与所述第一施密特触发电路连接的第一和第二CMOS集成电路;所述第一和第二COMS集成电路与继电器连接。
5.根据权利要求4所述的无土栽培系统,其特征在于,所述光控电路包括:由光敏电阻和第三电阻串联的光线检测电路,与所述第三电阻并联的第二电容,与所述光线检测电路相连的第二施密特触发电路,与所述第二施密特触发电路依次串联的第五二极管和由第四电容和第十电阻组成的并联电路,所述并联电路与所述第一施密特电路相连。
6.根据权利要求1所述的无土栽培系统,其特征在于,所述电源电路还包括指示电源是否正常工作的第一发光二极管。
7.根据权利要求1所述的无土栽培系统,其特征在于,所述继电器并联第八电容。
8.根据权利要求1所述的无土栽培系统,其特征在于,所述继电器的输入端并联有第十三电阻串连第二发光二极管组成的指示水泵工作状态的电路。
9.根据权利要求1所述的无土栽培系统,其特征在于,所述无土栽培系统还包括消毒装置,所述消毒装置与所述营养液池构成营养液消毒回路。
10.根据权利要求1-9中任意一项权利要求所述的无土栽培系统,其特征在于,所述承液槽的出液口设置有可控开关。
CN2010105710634A 2010-12-02 2010-12-02 一种具有光控水位控制器的无土栽培系统 Pending CN102484978A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010105710634A CN102484978A (zh) 2010-12-02 2010-12-02 一种具有光控水位控制器的无土栽培系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010105710634A CN102484978A (zh) 2010-12-02 2010-12-02 一种具有光控水位控制器的无土栽培系统

Publications (1)

Publication Number Publication Date
CN102484978A true CN102484978A (zh) 2012-06-06

Family

ID=46150576

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010105710634A Pending CN102484978A (zh) 2010-12-02 2010-12-02 一种具有光控水位控制器的无土栽培系统

Country Status (1)

Country Link
CN (1) CN102484978A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103650991A (zh) * 2013-12-13 2014-03-26 江苏大学 一种便携式智能温室系统
CN104066318A (zh) * 2011-12-13 2014-09-24 波德波尼克斯有限责任公司 用于在受控耕作环境中优化资源的有效使用的系统、方法和设备
CN105075838A (zh) * 2015-07-22 2015-11-25 浙江丰恺农业新能源科技有限公司 一种无土栽培设备及其方法
CN107860486A (zh) * 2017-11-02 2018-03-30 上海卫星装备研究所 热敏电阻导线接线结构及方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104066318A (zh) * 2011-12-13 2014-09-24 波德波尼克斯有限责任公司 用于在受控耕作环境中优化资源的有效使用的系统、方法和设备
CN103650991A (zh) * 2013-12-13 2014-03-26 江苏大学 一种便携式智能温室系统
CN103650991B (zh) * 2013-12-13 2015-10-28 江苏大学 一种便携式智能温室系统
CN105075838A (zh) * 2015-07-22 2015-11-25 浙江丰恺农业新能源科技有限公司 一种无土栽培设备及其方法
CN107860486A (zh) * 2017-11-02 2018-03-30 上海卫星装备研究所 热敏电阻导线接线结构及方法

Similar Documents

Publication Publication Date Title
CN102484978A (zh) 一种具有光控水位控制器的无土栽培系统
CN203490548U (zh) 一种用于水处理设备的简易水位控制器
CN201035417Y (zh) 对射阻断式液位自动控制系统
CN102486653A (zh) 一种光控水位控制器
CN108575676A (zh) 一种道路绿化带光伏自动滴灌装置及其工作方法
CN102771371A (zh) 一种具有光控水位控制器的太阳能无土栽培系统
CN206093900U (zh) 一种基于光控技术的节能路灯
CN102771364A (zh) 一种具有光控水位控制器的无土栽培装置
CN104991577A (zh) 水塔逻辑水位控制器
CN102478857A (zh) 一种水位控制器
CN203206858U (zh) 全自动太阳能滴灌装置
CN105720900A (zh) 一种家用薄膜太阳能窗帘发电并储能的装置
CN102771365A (zh) 一种具有水位控制器的无土栽培装置
CN203399078U (zh) 电压比较器制作的光控开关
CN207428222U (zh) 太阳能自动调温热带鱼鱼缸
CN106031356A (zh) 一种自行走式农业灌溉设备
CN104571155A (zh) 一种用于水处理设备的简易水位控制器
CN201891148U (zh) 卫生间节水装置及其控制电路
CN201033016Y (zh) 饮水机缺水自动断电保护装置
CN205843703U (zh) 一种基于新能源的土壤环境监测装置
CN210534593U (zh) 一种具有储能结构的流量自动控制装置
CN204012906U (zh) 供水控制设备双电源供电装置
CN205233039U (zh) 一种植物自动浇灌系统
CN204807974U (zh) 一种基于单片机的取暖器负载检测装置
CN204965206U (zh) 水塔逻辑水位控制器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120606