CN102483828B - 基于参与分类的自动信息选择 - Google Patents

基于参与分类的自动信息选择 Download PDF

Info

Publication number
CN102483828B
CN102483828B CN201080032165.7A CN201080032165A CN102483828B CN 102483828 B CN102483828 B CN 102483828B CN 201080032165 A CN201080032165 A CN 201080032165A CN 102483828 B CN102483828 B CN 102483828B
Authority
CN
China
Prior art keywords
user
classification
auxiliary information
information
advertisement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201080032165.7A
Other languages
English (en)
Other versions
CN102483828A (zh
Inventor
S.P.P.普隆克
M.巴比里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fink Tv Guidance Co Ltd
Original Assignee
Axel Springer Digital TV Guide GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Axel Springer Digital TV Guide GmbH filed Critical Axel Springer Digital TV Guide GmbH
Publication of CN102483828A publication Critical patent/CN102483828A/zh
Application granted granted Critical
Publication of CN102483828B publication Critical patent/CN102483828B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0241Advertisements
    • G06Q30/0251Targeted advertisements
    • G06Q30/0255Targeted advertisements based on user history

Landscapes

  • Business, Economics & Management (AREA)
  • Strategic Management (AREA)
  • Engineering & Computer Science (AREA)
  • Accounting & Taxation (AREA)
  • Development Economics (AREA)
  • Finance (AREA)
  • Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

本发明涉及一种自动选择或者放置的引擎,所述引擎如果考虑属于特定类别的辅助信息,则根据在产品类别中的用户参与的程度,将所述信息放置在一致的或者对比的上下文中。用户简档被自动地分类为在特定类别中低的或者高的用户参与。

Description

基于参与分类的自动信息选择
技术领域
本发明涉及用于选择辅助信息的设备、方法和计算机程序产品,所述辅助信息例如是广告、引导信息、帮助信息、操作参数信息等等,它们要被置入或者插入到诸如广播、电视(TV)频道、网站等等的媒体中。
背景技术
在当前的信息社会中,知识以从未有过的令人惊奇的速度从个人场所扩展到了社会层面。作为数字时代的珍贵原材料的信息,从来没有如此容易地通过因特网被获取、处理和散布。然而,随着庞大数量的信息被呈现给用户,存在着迅速增长的困难来找出用户需要什么、何时需要、以及用一种更能满足他们需求的方式。推荐系统通过对特定的目标或者项目进行评估,来推荐该目标或项目。这些推荐系统被引进为基于计算机的智能系统,用于处理信息和产品超负荷的问题。推荐系统的两个基本实体是用户和项目。用户是使用推荐系统的人,其提供其关于各种项目的评价并且从推荐系统接收关于新项目的推荐。推荐系统的典型目标是:生成关于新项目的建议或者为特定用户预测具体项目的使用。推荐系统的输出可以是例如预测或者推荐。将预测表述为数值,该数值代表了对于具体项目的预期评价。推荐可以被表述为活动的用户被预料最喜欢的项目的列表。文档和用户简档(userprofile)可以使用关键词向量或者列表来表述,用于比较和学习。
如今,人们将越来越少的时间用在看电视(TV)上,而将更多的时间用在浏览因特网上。被传统地在电视上播放和观看的视频内容现在在因特网上成为广泛可用的。同时,新的电视机和机顶盒使得可以通过电视机访问因特网内容。此外,允许因特网的电视机已经被提出,其中用户可以使用遥控器和其电视机来接入因特网服务和浏览因特网。
硬盘驱动和数字视频压缩技术已经创造了这样的可能性:时间平移直播电视以及高质量地录制大量的电视节目,而无需担心磁带或者其他可移动存储介质是否可用。同时,对视听信号的数字化倍增了对普遍用户的内容资源的数量。在使用例如简单的抛物面天线和数字接收器的情况下,数百个频道是可用的。超过十万个视频剪辑每天在因特网上关于各种服务被发布,并且所有主要的内容供应者已经在将他们全部的内容库做成在线可用。每天数千个可能感兴趣的节目被播放和可以使用,并且可以被录制和本地存储以便以后使用。
内容聚合器、网络服务、软件供应等等典型地将例如广告或者引导信息的辅助信息放置或者插入到其提供的内容中。例如,电视台在其电视内容插入预先决定的空间,以便为(商业)信息提供广告空间,例如,以图片动画条或者赞助者链接或者其他类型的消息区域的形式。
考虑到用户对服务或内容最感兴趣,而不想其体验被这样的(商业)信息所打扰,已经开发了技术,通过将这样的辅助信息针对每个个人的行为、喜好和更重要的是它们要被放置的上下文,使得这样的辅助信息至少更可以接受。
例如,可以选择关键词、域名、主目和人口统计学目标,并且辅助信息只能被放置在包含与目标相关内容的网站和网页上。这样的自动定位的放置可以建立在推荐系统的顶部之上,所述推荐系统能够被看做用于通过估计某项目对某用户的喜欢程度并且自动对内容项目进行分级来过滤出引起用户注意的用户特定的内容的工具或者机制。这可以通过将内容项目的特征或者特性与用户简档或者用户设置相比较来完成。增强的推荐系统允许根据实际的浏览习惯或者访问习惯和单个用户偏好以优化的方式来放置辅助信息。同时,通过针对特定简档所定做从而相关或者有趣的辅助信息丰富了浏览者的体验。
当辅助信息被显露给人时,很多因素影响人的专心程度。这些因素包括辅助信息自身的特征、人(例如浏览者)的特征、人的情境和/或环境、辅助信息所插入的媒体(广播、电视频道、网站等等)的性质、被定义为其中插入辅助信息的内容的特征的媒体上下文。
发明内容
本发明要解决的技术问题是,提供一种改进的机制用于对要插入到内容中的辅助信息进行合适的选择。
上述技术问题是通过如权利要求1所述的系统、如权利要求10所述的方法和如权利要求12所述的计算机程序产品来解决的。
由此,提供自动选择和放置的机制或者引擎,其在考虑属于特定产品或者内容类别的辅助信息的情况下根据用户在该类别中的参与的程度或者分类来将所述辅助信息放置在目标上下文中。用户简档被自动分类为在特定类别中低的或者高的用户参与,然后根据分类来插入辅助信息。所提出的自动放置由此可以基于产品参与分类,并且通过将其嵌入到合适的媒体上下文可以大大提高信息放置的有效性。这是有优势的,体现在辅助信息的总数量可以减少,因为基于分类的用户参与而选择地插入辅助信息。由此,可以节省处理、存储和/或传输的容量。
按照第一方面,可以这样选择辅助信息,使得依据分类器的分类输出来一致地或者对比地放置它。这样的选择能够确保辅助信息的放置与用户简档相适应(例如用户的习惯和偏好)。如果辅助信息是引导信息,其放置能够被控制为增强在迄今为止用户参与不多的内容类别中的用户引导,同时在具有高的用户参与的内容类别中引导被削弱。举另外一个例子,如果辅助信息是广告,放置可以被控制为通过在合适的媒体上下文中嵌入广告来改进广告的效果。
更具体地说,可以这样选择辅助信息,使得如果分类器的分类输出显示了低参与的用户则将辅助信息放置在一致的上下文中,而如果所述分类器的所述分类输出显示了高参与的用户则将辅助信息放置在对比的上下文中。研究显示,对于具有低的产品类别参与的人,显示在一致的媒体上下文中的广告与显示在对比的上下文中的消息相比带来更正面的对广告的态度和更多的广告内容及品牌的回忆。然而,对于具有高的产品类别参与的人,显示在一致的上下文中的广告比显示在对比的上下文中的广告带来更负面的对广告的态度和更少的广告内容及品牌的回忆。由此改进了广告的效果。
按照可以与上述第一方面相结合的第二方面,根据用户的偏好可以优先选择辅助信息。因此,所提出的选择机制能够优选与推荐系统相结合以便仅仅给用户提供与所需要的内容相关的辅助信息。
按照可以与上述第一方面和第二方面中至少一个相结合的第三方面,可以在考虑与辅助信息的来源和辅助信息放置在上下文中的位置这两者中的至少一个相关的另外的规则的情况下进行选择。使用这样的另外的规则的优点在于,辅助信息被插入到被访问内容的相匹配的或者需要的部分。
按照可以与上述第一方面至第三方面中任一个相结合的第四方面,分类可以基于用户的内容访问历史、点击历史和评级历史中的至少一个。上述历史类型中的至少一个在推荐系统中是方便可用的,使得实施所提出的选择机制或者引擎不需要很多修改和/或另外的处理。
按照可以与上述第一方面至第四方面中任一个相结合的第五方面,分类可以被调整,用来对于若干类别决定由用户对类别中的辅助信息分别进行正评级或者负评级的次数,用来决定在所有类别中相加的总的正计数和负计数,用来对每个类别估计用户喜欢一个类别的第一条件概率和用户不喜欢该类别的第二条件概率,以及用来基于第一条件概率和第二条件概率之间的所需的区别来对参与进行分类。
要指出的是,基于至少一个具有离散硬件部件的离散硬件电路、至少一个集成芯片、芯片模块的布置、或者至少一个由存储在存储器中的软件例程或程序所控制的信号处理装置或计算机装置或芯片,能够实现上述选择机制或者引擎。
附图说明
现在将通过示例基于参考附图的实施例来描述本发明,其中,
图1示出了按照第一实施例的广告放置系统的示意性方框图,并且
图2示出了依据第一实施例在所提出的选择机制或者引擎中涉及到的处理步骤的示意性流程图。
具体实施方式
下面基于典型的广告放置系统来描述第一实施例。然而要指出的是,本发明不限于广告放置并且可以实施在要将辅助的、附属的或者附加的信息插入到由用户访问(例如,看、听、读等等)的内容中的任何应用中。
图1示出了第一实施例的广告放置系统的示意性方框图。如果给定来自内容数据库和/或上下文(CXT)14(例如,发给搜索引擎的询问)的特定的一条内容(CNT)12(例如,网页、电视节目、个人频道的时间表),则广告放置机制、引擎或者过程(P)20从广告的数据库(DB)40中选择一个或者多个广告,其适合于所述内容和某个由例如人口统计学、浏览历史、购买历史所定义的用户简档(UP)16。广告放置机制20输出所选择的辅助信息(SAI),后者在第一实施例中是待插入到有关的内容部分中的广告。广告放置系统20因此包含用于基于从用户简档中找到的信息从所述辅助信息数据库(DB)中选择辅助信息的选择器。所述用户简档由在用户简档数据库中的数据组成。在用户简档数据库中的数据与在数据库(DB)中的数据不是直接有关联的。选择器可以与如下所述的参与分类器相连。用户简档可以通过记录用户的浏览历史或者用户与内容和辅助数据显示系统(例如电视机、机顶盒或者其他的媒体客户机)的交互来产生。
在数据库(DB)中的辅助信息能够按照产品类别被分类。
广告放置系统将内容的特征(例如从网页中提取的关键词,或者与电视节目有关的元数据)与广告的特征相匹配,以便检索很好适合特定内容的广告。例如,网页的文字内容可以与和广告有关的关键词相匹配,用来选择匹配网页的文字内容的广告。此外,人口统计学信息(至少是位置)可以用来进一步将广告瞄准特定用户群。
另外,广告放置机制可以例如被用于个人电视系统将电视节目的元数据与电视广告的元数据相匹配,从而选择出与特定个人频道有关的广告库。然后所述广告可能根据用户偏好(浏览行为和/或明确的偏好)被优先并且在个人频道的电视节目之间插播。
根据图1,当为特定内容选择广告时,广告放置系统也可以考虑附加的规则(R)50(例如商业规则)。这些规则可能防止特定广告显示在特定内容附近(例如,成人节目预告片在儿童电视节目之后),或者可以通过更频繁地放置最高投标广告者的广告来试图最大化提供者的利润(当广告位置是使用投标系统出售的时)。
在第一实施例中,选择机制或者引擎被实施为如上所述的广告放置系统的补充。为了实现这一点,产品类别参与分类(IC)由分类器30来执行。对于在广告数据库40中出现的每一个产品类别,当前用户在该产品类别中被分类为低参与的或者高参与的。分类可以基于例如用户的浏览历史、点击历史、评级历史和购买历史中的至少一个。例如,高参与的用户可能被定义为已经看过(和/或正评级过)大量的给定产品类别的广告(相对于例如相关用户群的一般情况)的用户,或者是已经购买了相对大量的产品或点击了相对大量地该类别广告的用户。
为了接收用户评级,广告放置系统可以包含带有用户评级输入的用户界面。
依据用户的参与等级(低或者高),广告可以然后被放置在一致的或者对比的上下文中。
分类器30从用户简档16获得关于用户的很多信息,例如关于电视节目的浏览/评级历史或者购买历史。基于这些用户特定的信息,计算该用户是否在给定产品类别中具有高的或者低的参与。
在第一实施例的上下文中,广告被放置的地方可能也有获得的关于这些广告的用户信息,例如关于对广告的评级/浏览历史。该信息可以被用于推断在产品类别中的用户的参与。
例如,就像能够从典型的表1中所收集的那样,对于n个产品类别,可以列出这些类别中的广告的由用户分别正评级或者负评级的次数,以及在所有产品类别上求和的总的正计数和负计数。
产品类别 +广告评级计数 -广告评级计数 用户的参与
C1 N(C1,+) N(C1,-) U(C1)
C2 N(C2,+) N(C2,-) U(C2)
Cn N(Cn,+) N(Cn,-) U(Cn)
总的计数 N(+) N(-)
表1:示例简档
基于该表中的数据,对于每一个产品类别Ci,可以如下计算对用户的参与的估值U(Ci)。
其中,k是大于1的正的常数。在该定义中的等式1的背景是:两个比率都为了分别估计用户喜欢和不喜欢产品类别Ci的条件概率。常数k表示这两种概率之间的需要的差别。
作为附加的选项,可以通过将左手边与在该类别中购买的产品数目N(Ci,p)相结合,例如通过如下的凸组合(convex combination),将购买历史包含进等式1中。
在此,N(p)表示所购买的产品的总数目。
作为更具体的例子,考虑广告和内容(或者一条内容),并且假设广告遵守商业规则50而且被用户喜欢(在存在广告推荐器的情况下)。现在,如果用户在产品类别中关于该广告具有低的参与并且该广告与上下文形成对比,则不选择其用于可能的放置。如果,在另一方面,广告和上下文相一致,则选择其用于放置。相反地,如果用户在产品类别中关于该广告具有高的参与并且所述广告与上下文形成对比,则选择其用于可能的放置。如果,在另一方面,所述广告与上下文一致,则不选择其用于放置。最终是否放置广告一般决定于要考虑的整个广告集合,以及其他的要求,例如每个广告已经被插入的频繁程度和最近程度。
作为另一个实用的例子,考虑将广告放置入(或者靠近)旅游节目(或者旅游频道,或具有关于旅行的信息的网页),其中广告数据库40包含关于“廉价航班”的广告。
对于很少购买飞机票并且由此在产品类别“飞机票”中具有低的参与的用户来说,广告放置系统应该将关于“廉价航班”的广告放置在旅游节目中(假定节目的元数据和广告的元数据相匹配)。当观看所述旅游节目时,低参与的用户应当会被上下文所刺激从而注意到与飞机票有关的广告。
对于经常购买飞机票并且由此与产品类别“飞机票”高参与的用户,广告放置系统应当不将关于“廉价航班”的广告放置在旅游节目中,而是应当选择具有低参与的一致的广告或者具有高参与的对比的广告。
因此,广告选择和放置能够与单个用户简档相适应,并且能够减少(每个时间单元)待处理和放置的广告总数,从而节省用于传输和/或为用户提供广告丰富的内容的处理能力和传输容量或存储容量。
图2示出了按照第二实施例的一般的选择过程的示意性流程图。
在步骤S100中,将新的辅助信息从存储所述辅助信息的各自的数据库中取出。然后,在步骤S101中,辅助信息的类别在被取出以便插入到内容中时被确定,例如,基于辅助信息的相应指示或者在数据库中的存储位置。现在,在步骤S102在已确定了的类别中确定、计算或者估计用户的参与的程度。在步骤S103中,所获得的用户参与的程度被分类到“低”参与类别和“高”参与类别。当然,也可以使用更多数目的分类(例如“低”、“中”和“高”,或者额外的“非常低”和“非常高”)或者其他类型的分类(例如“+”、“0”和“-”,或者正数和/或负数等等)。
在图2中的现有例子中,根据所获得的分类类别“低”和“高”选择两个放置选项。如果步骤S103选定“低”参与类别,则以一致的方式放置有关的辅助信息(步骤S104)。这能够以辅助信息的类别与内容的类别相一致的方式被实施,或者以辅助信息与内容的表象或者背景相一致的方式被实施。否则,如果步骤S103选定“高”参与类别,则以对比的方式放置有关的辅助信息(步骤S105)。这能够以辅助信息的类别与内容的类别对比的方式被实施,或者以辅助信息的表象与内容的表象或者背景不一致的方式被实施(例如,更少地突出)。
作为第二实施例的例子,辅助信息可以是引导或者指引信息,其帮助用户理解内容传送的或者内容本身的操作。如果在辅助信息的类别中有低的用户参与,则用户需要很多引导并且由此能够迅速接受并且注意到所述引导。与此相对,如果用户参与是高的,则用户不大注意到引导信息,所以,如果引导被确定是必需的,则其以形成对比的方式被插入以便吸引(富有经验的)用户的注意力。由此,由于用户参与的分类,可以为更多参与的用户减少引导信息的总数量,因为只选择重要的引导信息。这样的典型的实施可以被用在各种各样的基于推荐器的或者不基于推荐器的内容传送系统,例如计算机系统、电视系统、机顶盒、音频系统、服务(包括网络视频、音乐服务、网络广告)、视频系统、移动或者固定的通讯系统、车辆操作系统、维修系统等等,从而降低处理、存储和/或传送的容量。
总而言之,本发明涉及用于自动选择和放置的选择设备和方法,其在考虑属于特定类别的辅助信息的情况下,根据在该产品类别中用户的参与的程度将辅助信息放置在一致的或者对比的上下文中。将用户简档自动地分类为在特定类别中低的或者高的用户参与。
尽管在附图和上述的描述中详细地说明和描述了本发明,这样的说明和描述被视为说明性和示例性的而不是限制性的。本发明不限于所公开的实施例。通过阅读现有的公开,其他的修改对本领域技术人员是明显的。这样的修改可能涉及其他特征,这些特征在现有技术中已经公知并且可能被使用以便替代或者补充在此已经描述的特征。
通过研究附图、公开和所附的权利要求,本领域的技术人员可以理解和实现所公开实施例的变形。在权利要求中,词语“包含”不排除其他的元件或者步骤,并且不定冠词“一”或“一个”不排除多个元件或者步骤。一个单独的处理器或者其他的单元基于相应的软件例程可能满足至少图1和图2的功能。计算机程序可能存储或者分布在合适的介质上,例如光学存储介质或者和与其他硬件一起供应或作为其他硬件的一部分的固态介质,但是也可能以其他形式被分布,例如通过因特网或者其他有线或者无线的电通系统。特定措施在互不相同的附加权利要求中被列举,这个纯粹的事实不表示这些措施的组合不能有利地使用。在权利要求中的任何参考标志都不应当解释为对其范围的限制。

Claims (9)

1.一种自动的设备,用于自动地选择要被插入到用户访问内容的辅助信息,所述设备包括:
-分类器(IC),其与用户简档(UP)相连,并且适用于基于由用户简档所提供的用户特定的信息来计算所述用户在所述辅助信息的类别中的参与,以及适用于对计算出的参与进行分类;并且
-选择器,其与辅助信息数据库(DB)相连,并且适用于基于所述分类器(IC)的分类输出从所述辅助信息数据库(DB)中选择所述辅助信息;
其中,所述分类器适用于将分类建立在由用户简档所提供的所述用户的内容访问历史、点击历史以及评级历史中的至少一个的基础上;
其中,所述分类器适用于:对于多个类别确定所述类别的辅助信息分别被所述用户评级为正面的或负面的次数;确定在所有类别上求和得到的总的正计数和负计数;对于每个类别估计所述用户喜欢一个类别的第一条件概率,和所述用户不喜欢该类别的第二条件概率;以及基于在所述第一和第二条件概率之间的差别对所述参与的程度进行分类。
2.根据权利要求1所述的设备,其中,所述选择器适用于选择所述辅助信息,以便根据所述分类器的所述分类输出将该辅助信息放置在一致的上下文中或者放置在对比的上下文中。
3.根据权利要求2所述的设备,其中,所述选择器适用于选择所述辅助信息,以便,如果所述分类器的所述分类输出显示出低参与的用户,则将该辅助信息放置在所述一致的上下文中,如果所述分类器的所述分类输出显示出高参与的用户,则将该辅助信息放置在所述对比的上下文中。
4.根据上述权利要求的任一项所述的设备,其中,所述选择器被配置用于取决于所述用户的偏好、根据优先级来排列所述辅助信息。
5.根据权利要求1至3中任一项所述的设备,其中,所述选择器被配置用于在考虑附加的规则的条件下进行所述选择,所述附加的规则涉及所述辅助信息的来源以及在所述内容中放置该辅助信息的位置中的至少一个。
6.根据权利要求1至3中任一项所述的设备,其中,所述辅助信息是广告,并且所述类别是所述广告的产品类别。
7.根据权利要求1至3中任一项所述的设备,其中,所述辅助信息是引导信息,并且所述类别是与所述引导信息有关的内容类别。
8.一种对要被插入到用户访问内容中的辅助信息进行选择的方法,所述方法包括:
-基于所提供的用户特定的信息来计算所述用户在所述辅助信息的类别中的参与;
-对计算出的参与的程度进行分类;并且
-基于分类的结果对所述辅助信息进行选择;
其中,将分类建立在所提供的用户特定的信息的所述用户的内容访问历史、点击历史以及评级历史中的至少一个的基础上;
其中,所述分类包括:对于多个类别确定所述类别的辅助信息分别被所述用户评级为正面的或负面的次数;确定在所有类别上求和得到的总的正计数和负计数;对于每个类别估计所述用户喜欢一个类别的第一条件概率,和所述用户不喜欢该类别的第二条件概率;以及基于在所述第一和第二条件概率之间的差别对所述参与的程度进行分类。
9.根据权利要求8所述的方法,其中,选择所述辅助信息,以便根据所述分类的结果将该辅助信息放置在一致的上下文中或者放置在对比的上下文中。
CN201080032165.7A 2009-07-17 2010-07-15 基于参与分类的自动信息选择 Active CN102483828B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09165790.8 2009-07-17
EP09165790A EP2275984A1 (en) 2009-07-17 2009-07-17 Automatic information selection based on involvement classification
PCT/EP2010/060239 WO2011006971A1 (en) 2009-07-17 2010-07-15 Automatic information selection based on involvement classification

Publications (2)

Publication Number Publication Date
CN102483828A CN102483828A (zh) 2012-05-30
CN102483828B true CN102483828B (zh) 2017-04-12

Family

ID=41546140

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080032165.7A Active CN102483828B (zh) 2009-07-17 2010-07-15 基于参与分类的自动信息选择

Country Status (5)

Country Link
US (1) US20120116879A1 (zh)
EP (2) EP2275984A1 (zh)
CN (1) CN102483828B (zh)
RU (1) RU2553073C2 (zh)
WO (1) WO2011006971A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9442881B1 (en) * 2011-08-31 2016-09-13 Yahoo! Inc. Anti-spam transient entity classification
CN104035982B (zh) * 2014-05-28 2017-10-20 小米科技有限责任公司 多媒体资源推荐方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1879412A (zh) * 2003-11-10 2006-12-13 皇家飞利浦电子股份有限公司 两级商业广告节目推荐
CN101471802A (zh) * 2007-12-29 2009-07-01 上海聚力传媒技术有限公司 多媒体内容中根据用户个性化信息展示广告的方法及装置
CN101483752A (zh) * 2008-01-08 2009-07-15 阿尔卡特朗讯公司 用于提供个性化广告的方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6804659B1 (en) * 2000-01-14 2004-10-12 Ricoh Company Ltd. Content based web advertising
US7822636B1 (en) * 1999-11-08 2010-10-26 Aol Advertising, Inc. Optimal internet ad placement
US7567958B1 (en) * 2000-04-04 2009-07-28 Aol, Llc Filtering system for providing personalized information in the absence of negative data
US20030023481A1 (en) * 2001-07-24 2003-01-30 Sarah Calvert Method of selecting an internet advertisement to be served to a user
RU2192049C1 (ru) * 2001-12-26 2002-10-27 Гаврилов Сергей Анатольевич Способ распространения рекламно-информационных сообщений (варианты)
US20070150721A1 (en) * 2005-06-13 2007-06-28 Inform Technologies, Llc Disambiguation for Preprocessing Content to Determine Relationships
US20070239517A1 (en) * 2006-03-29 2007-10-11 Chung Christina Y Generating a degree of interest in user profile scores in a behavioral targeting system
US8335714B2 (en) * 2007-05-31 2012-12-18 International Business Machines Corporation Identification of users for advertising using data with missing values
US8099315B2 (en) * 2007-06-05 2012-01-17 At&T Intellectual Property I, L.P. Interest profiles for audio and/or video streams
EP2237174A4 (en) * 2007-12-13 2012-02-15 Dainippon Printing Co Ltd SYSTEM FOR PROVIDING INFORMATION
US20110060649A1 (en) * 2008-04-11 2011-03-10 Dunk Craig A Systems, methods and apparatus for providing media content
US9124631B2 (en) * 2009-05-08 2015-09-01 Google Inc. Content syndication in web-based media via ad tagging

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1879412A (zh) * 2003-11-10 2006-12-13 皇家飞利浦电子股份有限公司 两级商业广告节目推荐
CN101471802A (zh) * 2007-12-29 2009-07-01 上海聚力传媒技术有限公司 多媒体内容中根据用户个性化信息展示广告的方法及装置
CN101483752A (zh) * 2008-01-08 2009-07-15 阿尔卡特朗讯公司 用于提供个性化广告的方法

Also Published As

Publication number Publication date
US20120116879A1 (en) 2012-05-10
WO2011006971A1 (en) 2011-01-20
EP2454710A1 (en) 2012-05-23
EP2275984A1 (en) 2011-01-19
RU2553073C2 (ru) 2015-06-10
RU2012105538A (ru) 2013-08-27
CN102483828A (zh) 2012-05-30

Similar Documents

Publication Publication Date Title
US10356462B1 (en) Recommending a composite channel
CA2897911C (en) Systems and methods for optimizing data driven media placement
Searles et al. For whom the poll airs: Comparing poll results to television poll coverage
US20090144144A1 (en) Distributed Data System
US20120130848A1 (en) Apparatus, Method, And Computer Program For Selecting Items
US20030101454A1 (en) Methods and systems for planning advertising campaigns
US20030110171A1 (en) Methods and systems for selectively displaying advertisements
JP2004357311A (ja) 加入者プロファイルを生成するための方法、データ処理システム、およびインターラクティブテレビシステム
Hiller Profitably bundling information goods: Evidence from the evolving video library of Netflix
CN1720740A (zh) 根据具有相似观看习惯的用户的投票推荐节目
CN102763426A (zh) 推荐器系统中辅助媒体的自适应放置
US20120136861A1 (en) Content-providing method and system
EP1891588A1 (en) Method and apparatus for estimating total interest of a group of users directing to a content
Holloway Foreign entry, quality, and cultural distance: Product-level evidence from US movie exports
CN106537437A (zh) 识别具有被一个或多个用户多次消费的高可能性的媒体信道
RU2649304C2 (ru) Способ и система для эффективного компилирования элементов медиа-контента для платформы медиа по запросу
Oh et al. Analysis of the sports broadcasting market in the television broadcasting industry
CN103189863A (zh) 简档应用一致的推荐系统
CN102483828B (zh) 基于参与分类的自动信息选择
CN115917575A (zh) 信息处理装置、策划修订支援方法以及策划修订支援程序
CN104702981B (zh) 一种计算数字电视目标受众的方法和系统
Jung et al. Does the star power matter?
KR20190044592A (ko) 동적인 다차원 분석 기반의 광고 추천 장치 및 방법
Battaggion et al. TV watching in the new millennium: insights from Europe
US20240187672A1 (en) Affinity profile system and method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent of invention or patent application
CB02 Change of applicant information

Address after: Berlin

Applicant after: AXEL SPRINGER DIGITAL TV GUIDE GMBH

Address before: Berlin

Applicant before: Axel Springer Digital TV Guide GmbH

COR Change of bibliographic data

Free format text: CORRECT: APPLICANT; FROM: AXEL SPRINGER DIGITAL TV GUIDE TO: FENKE DIGITAL TV GUIDE CO., LTD.

GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201207

Address after: hamburg

Patentee after: Fink TV guidance Co., Ltd

Address before: Berlin

Patentee before: Fink Digital Television Director Co.,Ltd.