CN102479550A - 补偿操作电压的方法、快闪存储器件、以及数据存储设备 - Google Patents

补偿操作电压的方法、快闪存储器件、以及数据存储设备 Download PDF

Info

Publication number
CN102479550A
CN102479550A CN2011103823100A CN201110382310A CN102479550A CN 102479550 A CN102479550 A CN 102479550A CN 2011103823100 A CN2011103823100 A CN 2011103823100A CN 201110382310 A CN201110382310 A CN 201110382310A CN 102479550 A CN102479550 A CN 102479550A
Authority
CN
China
Prior art keywords
memory cell
storage unit
operating voltage
voltage
nonvolatile semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011103823100A
Other languages
English (en)
Other versions
CN102479550B (zh
Inventor
崔允熙
朴起台
金甫根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN102479550A publication Critical patent/CN102479550A/zh
Application granted granted Critical
Publication of CN102479550B publication Critical patent/CN102479550B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/04Arrangements for writing information into, or reading information out from, a digital store with means for avoiding disturbances due to temperature effects
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/30Power supply circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention

Landscapes

  • Read Only Memory (AREA)

Abstract

公开一种在非易失性存储器件中生成经补偿的操作电压的方法,以及相关的非易失性存储器件,所述操作电压如读取电压。响应于一个或多个存储单元条件来补偿操作电压,所述存储单元条件如温度变化、所选择的存储单元的编程数据状态或物理位置、所选择的存储单元的页信息、或所选择的字线的位置。

Description

补偿操作电压的方法、快闪存储器件、以及数据存储设备
相关申请的交叉引用
本申请要求于2010年11月25日提交的韩国专利申请No.10-2010-0117950的优先权和权益,其主题通过引用结合于此。
技术领域
本发明构思的实施例涉及半导体存储器件、更具体地,涉及快闪存储器件和包含该快闪存储器件的数据存储设备。
背景技术
半导体存储器是数字逻辑系统中重要的微电子元件,数字逻辑系统比如范围从卫星到消费类电子的基于计算机和微处理器的应用。半导体存储器制造方面的进步包括工艺的增强和技术的发展,这种进步实现了微缩(scaling),其提供更高的集成密度和更快的操作速度。半导体存储器的改进还实现了合并数字逻辑系统的性能。
半导体存储器件可以根据它们的操作性质来分类,比如易失性的或非易失性的。易失性存储器件享有相对较快的操作特性,但是在没有施加电力消失的情况下会丢失存储的数据。易失性存储器件包括随机存取存储器(RAM),随机存取存储器要么通过建立双稳触发器(bi-stable flip-flop)的逻辑状态来存储数据,如在静态随机存取存储器(SRAM)中,要么通过给电容器充电来存储数据,如在动态随机存取存储器(DRAM)中。
非易失性的存储器在施加的电力消失的情况下不会丢失存储的数据,并且包括:例如,掩模只读存储器(MROM)、可编程只读存储器(PROM),可擦除可编程只读存储器(EPROM)、以及电可擦除可编程只读存储器(EEPROM)。根据制造存储器件的技术,非易失性存储器的数据存储可以是一次性的使用或者可重编程的使用。非易失性存储器被用来在各种各样的应用中存储微代码,所述应用包括计算机工业、航空电子工业、电信业、以及消费类电子工业。单芯片易失性以及非易失性存储器存储模式的组合也可用在诸如非易失性SRAM(nvSRAM)的器件中,所述器件在要求快速、可编程的非易失性存储器的系统中使用。另外,已经演变出很多包含附加的逻辑电路的特殊存储器架构,其优化了用于特定应用任务的性能。
在更宽泛的非易失性存储器类别中,MROM、PROM和EPROM不能使用正常可用的系统资源来自由地擦出和写入。因此,它们实际上在许多应用中并不适用。相反,EEPROM能够被电擦除或写入。因此,EEPROM已经在许多不同的应用中被广泛地采用,包括辅助存储器,频繁更新的存储元件,等等。快闪存储器是EEPROM的一种常见形式,并且包括NAND型和NOR型快闪存储器。
发明内容
在一个实施例中,本发明构思提供一种在非易失性存储器件中生成操作电压的方法,该非易失性存储器件包括非易失性存储单元的存储单元阵列,该方法包括:检测至少一个存储单元条件,包括非易失性存储器件的当前温度;生成将应用到存储单元阵列中的所选择的存储单元的操作电压;以及响应于至少一个存储单元条件补偿该操作电压。
在另一个实施例,本发明构思提供一种在包括非易失性存储器件的存储系统中生成操作电压的方法,该非易失性存储器件包括操作电压生成器、以及非易失性存储单元的存储单元阵列,该方法包括:在存储单元阵列的修整信息区域中存储修整信息,其中,修整信息包括电压修整信息;当非易失性存储器件上电并且使用修整电压信息时,配置存储多个补偿偏移值的至少一个查找表;检测非易失性存储器件的当前温度;在接收到启动由非易失性存储器件进行的访问操作的执行的访问命令之后,通过响应于当前温度从存储在至少一个查找表中的多个补偿偏移值中选择偏移值来生成经补偿的操作电压;并且使用经补偿的操作电压执行访问操作。
在另一个实施例,本发明构思提供一种非易失性存储器件,包括:控制逻辑,控制非易失性存储器件的操作;非易失存储器单元的存储单元阵列;以及操作电压生成器,其生成将应用到存储单元阵列中的所选择的存储单元的经补偿的操作电压,其中,操作电压生成器包括:温度代码生成器,其检测当前温度并生成对应的温度代码;第一查找表,存储分别对应于多个温度范围的多个第一偏移值;和第二查找表,存储分别对应于存储单元条件的变化的多个第二偏移值。控制逻辑响应于温度代码选择第一偏移值之一以及响应于存储单元条件的确定的变化选择第二偏移值之一,并且操作电压生成器响应于第一偏移值和第二偏移值生成经补偿的操作电压。
在另一个实施例,本发明构思提供一种存储卡,其包括:至少一个非易失性存储器件;控制器,其包括缓冲存储器,并且被配置来控制非易失性存储器件;以及接口,其提供控制器和外部设备之间的接口。至少一个非易失性存储器件包括:控制逻辑,其控制非易失性存储器件的操作;非易失存储器单元的存储单元阵列;以及操作电压生成器,其生成将应用到存储单元阵列中的所选择的存储单元的经补偿的操作电压,其中,操作电压生成器包括:温度代码生成器,其检测当前温度并生成对应的温度代码;第一查找表,存储分别对应于多个温度范围的多个第一偏移值;和第二查找表,存储分别对应于存储单元条件的变化的多个第二偏移值,其中,控制逻辑响应于温度代码选择第一偏移值之一以及响应于存储单元条件的确定的变化选择第二偏移值之一,并且操作电压生成器响应于第一偏移值和第二偏移值生成经补偿的操作电压。
在另一个实施例,本发明构思提供一种固态驱动(SSD)包括:存储介质,包括多个非易失性存储器件;以及控制器,经由多个通道与存储介质相连接,并被配置来控制存储介质。多个非易失性存储器件中的至少一个包括:控制逻辑,控制非易失性存储器件的操作;非易失存储器单元的存储单元阵列;以及操作电压生成器,其生成将应用到存储单元阵列中的所选择的存储单元的经补偿的操作电压,其中,操作电压生成器包括:温度代码生成器,检测当前温度并生成对应的温度代码;第一查找表,存储分别对应于多个温度范围的多个第一偏移值;和第二查找表,存储分别对应于存储单元条件的变化的多个第二偏移值,其中,控制逻辑响应于温度代码选择第一偏移值之一以及响应于存储单元条件的确定的变化选择第二偏移值之一,以及操作电压生成器响应于第一偏移值和第二偏移值生成经补偿的操作电压。
附图说明
从以下参考附图的描述中,上述及其它对象和特征将变得更加清楚。遍及所写描述和附图,相同的参考标号和标记被用来指代相同或相似的元素和特征。
图1是总体上示出根据本发明构思的实施例的电压补偿的框图。
图2A到图2D是描述导致非易失性存储单元的阈电压分布的变化的各种条件的概念图。
图3是概述根据本发明构思的实施例的非易失性存储器件的操作的流程图。
图4是进一步示出是应用了图1中描述的电压补偿的快闪存储器件的某些方面的框图。
图5A是进一步示出根据本发明构思的实施例的图4的字线电压生成器电路的框图。
图5B是进一步示出根据本发明构思的另一个实施例的图4的字线电压生成器电路的框图。
图6是进一步示出图5的温度代码生成部分的框图。
图7A和图7B是示出包括在图5A和图5B的第二查找表中的示范性偏移值的图形。
图8是描述根据本发明构思的实施例的应用到快闪存储器件的一种可能的电压补偿方法的概念图。
图9是示出根据本发明构思的实施例的包括非易失性存储器件的数据存储设备的总体框图。
图10是进一步示出根据本发明构思的实施例的图9的控制器的框图。
图11是示出根据本发明构思的实施例的包含非易失性存储器件的固态驱动(SSD)的框图。
图12是进一步示出图11的SSD的框图。
图13是示出包含图11的SSD的存储服务器的框图。
图14到图16是示出根据本发明构思的实施例的可以包含数据存储设备的各种系统的示图。
图17到图21是示出根据本发明构思的实施例的可以包含数据存储设备的另外的系统的示图。
具体实施方式
现在将参考附图以一些附加的细节来描述本发明构思的实施例。然而,本发明构思可以在许多不同的形式来具体实现,并且不应当被解释为仅限于所示出的实施例。而是,提供所述实施例以便本公开将是彻底的和完整的,并且将完全地把本发明构思的范围传达给本领域技术人员。
应当理解,虽然术语第一、第二、第三等可以在这里用来描述各种元素、组件、区域、层、和/或部分,但是这些元素、组件、区域、层、和/或部分不应被这些术语所限制。这些术语仅用来将一个元素、组件、区域、层/或部分与另一个元素、组件、区域、层、或部分进行区分。因此,以下讨论的第一元素、组件、区域、层、或部分可以被称为第二元素、组件、区域、层、或部分,而不脱离本发明构思的教导。
空间相对术语,诸如“在...之下”、“以下”、“下面”,“在...下面”、“在...以上”、“上面”等等,在这里可以用来方便描述,以描述如附图中所示出的一个元素或特征与另一个元素或特征的关系。应当理解,除了在附图中描绘的方向之外,空间相对术语意图包含使用或操作中的设备的各种不同的方向。例如,如果附图中的设备被翻转,则描述为在其它元素或特征“以下”或“之下”或“下面”元素将被定位在所述其它元素或特征“以上”。因此,示范性术语“以下”和“在...下面”可以包含上面和下面两个方向。因此,所述设备还可以定位在其它方向(旋转90度或其它方向),以及在这里所使用的空间相对描述符被相应地解释。另外,还应当理解,当一个层被称为在两层“之间”时,其可以是这两层之间的唯一的层,或者还可能存在一个或多个位于其间的层。
在这里使用的术语仅仅是为了描述特定的实施例,而不是意图限制本发明构思。如这里所使用的,单数形式“一”、“一个”和“该”意图也包括复数形式,除非上下文中清楚地另外指出。还应当理解,术语“包括”和/或“包含”当在本说明书中使用时,指明存在所陈述的特征、整体、步骤、操作、元素、和/或组件,但是也不排除一个或多个其它特征、整体、步骤、操作、元素、组件、和/或它们的组的存在或添加。如这里所使用的,术语“和/或”包括相关联的列出项中的一个或多个的任意以及全部组合。
另外,还应当理解,当一个元素或层被称为“在...上”、“连接到”、“耦接到”、或“邻近”另一个元素或层时,其可以直接在另一个元素或层上、连接到、耦接到、或邻近另一个元素或层,或者可以存在介于其间的元素或层。相反,当一个元素被称为“直接在...上”、“直接连接到”、“直接耦接到”、或“紧邻”另一个元素或层时,则不存在介于其间的元素或层。
除非另外定义,这里所使用的所有的术语(包括技术和科学术语)都具有与本发明构思所属领域的普通技术人员通常理解的相同的含义。还应当理解,诸如在常用词典中定义的那些术语应当被解释为具有与它们在相关技术和/或本说明书中的上下文中的含义一致的含义,并且不会被理想化或过分形式化地解释,除非在这里这样明确地进行了定义。
图1是概念性地描述根据本发明构思的实施例的电压补偿法的框图。
参考图1,在本发明构思的实施例的上下文内,电压补偿法可以应用到半导体存储器件,特别是应用到非易失性存储器件。这样的非易失性存储器件可以包括单电平(single-level)非易失性存储单元(SLC)和/或多电平(multi-level)非易失性存储单元(MLC),所述单电平非易失性存储单元能够存储单一比特的数据,所述多电平非易失性存储单元能够存储两个或更多比特的数据。每个存储单元(memory cell)可以由单元晶体管形成,单元晶体管的阈电压或电阻范围随着数据状态(或编程的数据状态)而改变。非易失性存储器件的存储单元一般以行(即,沿字线)和列(即,沿位线)排列,并且这样的排列可以被配置在二维结构或三维结构中。
如图1中所示,根据本发明构思的实施例的非易失性存储器件包括电压生成器电路VG和补偿电路CPS。电压生成器电路VG可以配置来生成将被提供给存储单元的电压,如字线电压、井电压(well voltage),等等。补偿电路CPS可以补偿来自电压生成器电路VG的电压,使其根据各种温度变化条件而改变。例如,存储单元的阈电压/电阻可以根据构成的非易失性存储器件的操作温度的变化而改变。如果施加到存储单元(例如字线电压)的操作电压是固定的,而不管是否温度变化,则难以精确地确定存储单元的阈电压。
根据本发明构思的某些实施例的补偿电路CPS将补偿由电压生成器电路VG提供到存储单元的一个或多个电压(以下,单独地或共同地被称为“操作电压”),以便按照温度变化的函数自动地调整操作电压的性质(nature)(例如,电平)。替换地或另外地,根据本发明构思的某些实施例的补偿电路CPS将补偿操作电压,从而按照“存储单元条件(memory cell condition)”(例如,所选择的存储单元的编程状态、所选择的字线的物理位置、对于当前温度的温度范围、所选择的存储单元的页信息等等)的函数来调整其性质。这些存储单元条件中的一个或多个可以用来控制由电压生成器电路VG提供的操作电压的电压补偿。在前述上下文中,术语“存储单元条件”不仅包括那些与所选择的存储单元直接相关的存储系统因素(例如,在存储单元阵列中的位置),还包括与所选择的存储单元间接相关的存储系统因素(例如,电源电压或字线位置)。
相对于给定的存储系统配置和/或预设的存储系统操作定义,某些存储单元条件可以是固定的(例如,存储单元阵列内的所选择的存储单元位置、所选择的存储单元的编程状态、所选择的存储单元的页信息等等)。其它存储单元条件可以是可变的(例如,存储系统温度、电源电压、及其它环境因素)。
因此,由于温度变化导致的非易失性存储单元的阈电压/电阻的迁移或移动可能使得在施加到所选择的存储单元的操作电压中需要补偿位移(compensating shift),以便精确地确定存储单元的阈电压。因此,操作电压的“补偿位移”可以只考虑到温度变化来进行,并且/或者考虑到温度和某些固定的和/或可变的存储单元条件来进行,等等。在这个上下文中,术语“位移”(shift)是指在温度或操作电压中的任何改变,而不管改变时段或在改变时段中改变的模式。以这种方式,通过响应于至少温度中的改变,将补偿位移适当地应用到操作电压,能够更精确地确定存储单元的阈电压。
在这里应当注意,温度变化或实际温度可以使用直接或间接方法以各种各样的方式来检测。也就是说,一个或多个内部和/或外部温度传感器可以与存储单元阵列、构成基底、外围电路等一起使用。计算或确定性(deterministic)方法可以用来基于相关的经验或实时信息(例如,执行的操作的数量和/或类型、电压条件、操作频率等)估计或近似出实际温度。
图2A、图2B、图2C、以及图2D是示出可能在存储单元的阈电压分布中造成位移的各种条件的概念图。
参考图2A,假设连接到字线WLa的存储单元被编程到定义的逻辑状态Pi。在额定温度条件下,被编程到状态Pi的存储单元应当具有由线L1指示的阈电压分布。在这些假设的情况下,在使用读取电压V1的正常读取操作期间和在使用验证读取电压V2的验证(读取)操作期间,阈电压分布L1可以被容易地辨别出来。电压V1和V2由图1的电压生成器电路VG提供。
然而,在非额定温度条件下,额定的(即,存储系统设计所意图的)阈电压分布L1移动到虚线L2所示的阈电压分布L2。在这些条件下,根据本发明构思的实施例的补偿电路CPS将通过电压生成器电路VG施加补偿位移,这样作为操作电压的相应示例的读取电压V1和V2将根据温度的改变而改变。也就是说,读取电压V1增加了ΔV,变成V1’,而验证电压V2也增加了ΔV,变成V2’。因此,在本发明构思的某些实施例中,可以与温度变化成比例地对一个或多个操作电压施加补偿位移。
如图2B中所示,被编程到状态Pj的某些存储单元与被编程到状态Pi的其它存储单元相比,相对于额定条件的温度变化可能导致相对于额定条件的不同的阈电压变化。因此,图1的补偿电路CPS将对于不同组的存储单元、基于它们各自的编程状态提供不同的补偿位移。也就是说,第一补偿位移ΔV1被应用到与第一数据状态Pi相关联的第一阈电压分布,而不同于第一补偿位移ΔV1的第二补偿位移ΔV1′被应用到与第二数据状态Pj相关联的第二阈电压分布。
由于示出在图2C,与第一字线WLa相关联的(即,耦接或连接到第一字线WLa)的一组存储单元和与第二字线WLb相关联的另一组存储单元相比,相对于额定条件的温度变化可能导致相对于额定条件的不同的阈电压变化。当代的半导体存储器通常包括在大型存储单元阵列上延伸的大量字线。对于各条字线的电压和温度条件将作为存储单元阵列内的物理位置的函数而改变,因此,相关联的存储单元的阈电压分布将随着不同的字线条件而改变。因此,图1的补偿电路CPS将对于不同组的存储单元、基于相关联的字线的位置来提供不同的补偿位移。也就是说,例如,对于具有相同的编程状态程Pi的存储单元,第一补偿位移ΔV2被应用到与第一字线WLa相关联的第一组存储单元的阈电压分布,而不同于第一补偿位移ΔV2的第二补偿电压ΔV2′被施加到与第二字线WLb相关联的第二组存储单元。
如图2D中所示,具有第一温度范围中的温度的一组存储单元与具有第二温度范围中的温度的另一组存储单元相比,相对于额定条件的温度变化可以导致相对于额定条件的不同的阈电压变化。如先前注意到的,当代的半导体存储器包括大型存储单元阵列。电压和温度条件在大型存储单元阵列之间并不是均匀的(homogeneous)。因此,可能存在多种实际温度,这影响了组成存储单元的阈电压分布。为了简化温度补偿,可以使用(例如)经验数据来定义某些“温度范围”(TR),并且当在(例如)存储器件的某个区域中检测的温度落在所定义的温度范围TR内时,对应的补偿位移可以被应用到操作电压。
因此,图1的补偿电路CPS将对于不同组的存储单元、基于所检测的温度范围TR提供不同的补偿位移。也就是说,对于检测出的(或计算出的)温度在超过额定温度范围TR0的第一温度范围TR1中的第一组存储单元,应用第一补偿位移ΔV3,而对于检测出的(或计算出的)温度在超过第一温度范围TR1的第二温度范围TR2中的第二组存储单元,应用不同于第一补偿位移ΔV3的第二补偿位移ΔV3′。
前述仅仅是存储单元条件的选择的示例,它们可以用来作为温度的函数控制根据本发明构思的实施例的补偿电路CPS的操作。本领域技术人员将认识到另外的存储单元条件(固定的和可变的两者),所述另外的存储单元条件可以以考虑到由非易失性存储器件内的一个或多个电压生成器VG提供的一个或多个操作电压中的适当的补偿位移的定义的方式,来识别、检测、和/或计算。
图3是概述根据本发明构思的实施例的非易失性存储器件的操作的流程图。参考图1和图3,非易失性存储器件以这样的方式操作,编程状态(如对应的阈电压分布所指示的)使用补偿的操作电压(即,已经作为诸如温度的一个或多个存储单元条件的函数进行了补偿的操作电压)来更精确地辨别。所选择的存储单元(即,由地址指示的一个或多个存储单元)的编程状态可以在不同的存储系统操作(例如,读取操作或验证操作)期间被辨别出来。这样的存储系统操作可以被统称为“访问”(access)操作,并且不同于非访问操作,非访问操作不要求辨别阈电压分布。
图3的方法从接收到指示应当执行访问操作的存储系统命令或指令开始(S100)。典型地,访问操作命令将包括标识要被访问的一个或多个存储单元(“所选择的存储单元”)的地址(或者和该地址一起被提供)。响应于该访问操作命令,非易失性存储器件或与非易失性存储器件相关联的控制器将检测(或计算)当前温度和/或存储单元条件(S110)。例如,图1的补偿电路CPS可以用来控制当前温度的检测。
或者,当前温度可以被周期性地检测而不考虑当前的存储系统操作(例如,访问或非访问)或存储系统状态(例如,空闲或激活),并被存储在定义的寄存器或存储器位置。然后,当接收到访问操作命令时(S110),可以从寄存器或存储器位置读取先前存储的当前温度值。
使用指示当前温度和/或其它存储单元条件的补偿数据,电压生成器电路VG可以用来根据需要生成将施加到所选择的存储单元的、具有补偿位移的操作电压(例如,字线电压)(S120)。
随着补偿的操作电压的生成和提供(S120),非易失性存储器件能够使用已经考虑到当前温度和/或相关的存储单元条件适当地调整过的操作电压,执行所请求的访问操作(S130)。
在前述方法中,由电压生成器VG生成的一些或全部操作电压可以具有存储在寄存器或存储器中的额定定义的(或默认的)值。这样的值可以在实时的基础上动态地更新,以使用图3中概述的方法反映当前的存储系统操作条件。
图4是示出能够执行以上关于图1和图3描述的电压补偿法的快闪存储器件的框图。快闪存储器件被用在以下的描述中,作为可以被配置来包含本发明构思的方法、系统和器件实施例的非易失性存储器件的一个示例。本领域技术人员将理解,如所示实施例所教导的,本发明构思的原理可以应用到其他存储器件,如MRAM、PRAM、FRAM等等。
参考图4,根据本发明构思的实施例的快闪存储器件包括存储单元阵列100,该存储单元阵列100包括存储M比特数据的存储单元,其中M是正整数。存储单元以沿着字线的行和沿着位线的列来排列。存储单元可以被配置为具有随着编程数据状态而改变的电阻或阈电压。
存储单元阵列100可以用来在指定的修整(trim)信息区域101中存储所谓的“修整信息”。修整信息可以用于各种目的,诸如地址修复、输入/输出(I/O)结构定义、电压修整等。这里,根据存储单元条件,诸如当前温度、当前温度范围、编程数据状态、页信息、字线位置等,某些电压修整信息可以用来补偿操作电压(此后,为了说明清楚,假设为字线电压)。电压修整信息可以存储在布置在快闪存储器件中、或布置在外部设备(例如,存储控制器或主机)中的寄存器或存储器中。当非易失性存储器件加电时,电压修整信息可以用来配置一个或多个控制非易失性存储器件的操作的查找表。
图4的快闪存储器件还包括行选择器电路(XDEC)200、感测放大器和写入驱动器(SA&WD)电路300、列选择器电路(YDEC)400、字线电压生成器电路500、控制逻辑600、以及输入/输出(I/O)接口700。
行选择器电路200可以被配置来选择和驱动存储单元阵列100的行。行选择器电路200的行选择和驱动可以在控制逻辑600的控制下进行。感测放大器和写入驱动器电路300可以被配置来在读取操作时从存储单元阵列100读取数据,以及在编程操作时在存储单元阵列100中写入数据。感测放大器和写入驱动器电路300被称为页缓冲器电路。列选择器电路400可以被配置来按照预定单位(例如,字节单位、字单位等)选择由感测放大器和写入驱动器电路300读取的数据。由列选择器电路400选择的数据可以经由输入/输出接口700传送到外部设备。电路300、400、以及700可以在控制逻辑600的控制下进行操作。
继续参考图4,字线电压生成器电路500可以被配置来生成提供给存储单元阵列100的所选择的存储单元(或所选择的行/字线)的一个或多个操作电压。图4的所示示例示出了所生成的字线电压VWL,它是许多不同的操作电压(例如,井电压、擦除电压等)的一个示例,所述许多不同的操作电压可以在对于存储单元条件进行补偿的同时被类似地生成。
在图4的所示示例中,字线电压生成器电路500包括可以存储在一个或多个控制信息寄存器中的一个或多个查找表501。查找表501可以被用来根据一个或多个存储单元条件来补偿字线电压。存储在查找表501中的控制信息值可以在存储器件加电时在控制逻辑600的控制下通过例如存储单元阵列100的电压修整信息来设定。
与本发明构思的某些实施例一致,可以在电压修整信息被加载到存储查找表501的寄存器中时,考虑快闪存储器件的当前操作条件(例如,温度)、使用控制逻辑600来改变该电压修整信息。以这种方式,字线电压生成器电路500可以基于实际存储单元条件生成字线电压VWL,以便由快闪存储器件执行的访问操作精确地辨别出所选择的存储单元的阈电压分布。
图5A是进一步示出根据本发明构思的实施例的图4的字线电压生成器电路500的框图。
参考图5A,字线电压生成器电路500包括电压生成器520和补偿电路540。电压生成器520可以被配置来在控制逻辑600的控制下,根据从补偿电路540获得的补偿偏移(offset)值(例如,字线偏移值WL_offset)生成操作电压(例如,字线电压VWL)。
以这种方式,补偿电路540可以控制电压生成器520针对偏离已建立的额定值或范围的相关存储单元条件的变化来补偿字线电压VWL。由电压生成器520生成的字线电压VWL可以是读取电压、编程电压、验证读取电压、等等。图5A的补偿电路540包括温度代码生成器541以及第一查找表542、第二查找表543和第三查找表544,温度代码生成器541生成指示所检测的当前温度的温度代码(Tcode),而第一查找表542、第二查找表543和第三查找表544存储所定义的、与一定的存储单元条件对应的偏移值。补偿电路540还包括偏移加法器545,其将分别由第一查找表542、第二查找表543和第三查找表544提供的偏移值相加。字线电压VWL通过由偏移加法器545提供的累积的(cumulative)字线偏移值WL_offset来补偿。
第一查找表542存储第一偏移值,第一偏移值指示快闪存储器件的容许温度范围上的多个温度范围(TR)。各个温度范围偏移值可以在额定或默认温度范围以上或以下改变(例如,从最高温度范围向下改变、从最低温度范围向上改变、或者从中间温度范围向上和向下改变)。存储在第一查找表542中的多个温度范围偏移值之一将通过对应于所检测的当前温度的、从Tcode生成器541施加的Tcode来选择。
第二查找表543存储与编程数据状态和/或页信息对应关联的偏移值。这些特定的存储单元条件还可以由当前的Tcode来索引。以这种布置,编程状态偏移值、页信息偏移值、或编程状态可以被提供给偏移加法器545,作为温度范围的函数,或者仅仅作为编程状态和/或页信息的函数。
因此,除了温度范围偏移以外还可以提供(或者替代温度范围偏移而提供)编程状态偏移值和/或页信息偏移值。以这种方式,当确定操作电压补偿值时,可以考虑字线的特定页内的所选择的存储单元的位置。对应于各个编程数据状态的偏移值可以被类似的考虑。图5A中示出的示例假设编程状态偏移值和/或页信息偏移可以按照对应于所检测的当前温度的温度范围被进一步调整,但并非必须这样,并且各个偏移可以独立地确定。
第三查找表544存储对应于存储单元阵列中的各个字线位置或定义的字线组位置的偏移值。例如,第三查找表544可以存储对应于存储块中的各个字线(或字线组)的字线位置偏移值。
在本发明构思的某些实施例中,图5A的第一查找表542、第二查找表543、以及第三查找表544将使用关于图4描述的寄存器501来实现,并且在存储器件加电期间,第一查找表542、第二查找表543、以及第三查找表544中的各种偏移值可以从修整信息区域101加载到寄存器501中。第一查找表542、第二查找表543、以及第三查找表544中的偏移值可以被表示为具有任何合理格式和定义的数字数据值。
偏移加法器545将特定的存储单元条件偏移值(例如,温度范围偏移值、编程状态或页信息偏移值、和/或字线位置偏移值)相加,以生成考虑到所有相关的(或者所有选择的)存储单元条件的最终“补偿偏移值”。关于这一点,本领域技术人员将认识到在工作示例中提供第一查找表542、第二查找表543、以及第三查找表544仅仅是本发明构思的许多不同的实施例中的一个选择的示例。但是,许多存储单元条件通过非易失性存储器件(以及相应数量的偏移值)来选择以供考虑,由补偿电路540提供的补偿偏移值将是这些存储单元条件的累积的表示。有可能是这样的情况:一个存储单元条件的变化将提高正被补偿的操作电压的电平,而另一个存储单元条件的变化将降低该电平。补偿电路540在控制逻辑600的控制下考虑的存储单元条件的数量和类型是设计选择的问题,并且可能随着应用、功率条件、以及存储系统操作速度而改变。
在图5A的示例中,考虑到在给定的存储单元条件的集合下(例如,温度范围、编程数据状态、页位置和字线位置)操作的所选择的存储单元的预期阈电压分布位移,补偿字线偏移值WL_offset被提供给电压生成器520并且用来补偿正在生成的字线电压。请进一步注意,控制逻辑600可以用来选择性地控制对最终补偿偏移值做出贡献的查找表条目(entry)的数量和性质。可替换地,省略偏移量加法器545,并且来自第一查找表542、第二查找表543、以及第三查找表544的各个偏移值可以直接应用到电压生成器520。
因此,电压生成器520在其操作中可以响应于从第一查找表542、第二查找表543、以及第三查找表544接收的一个或多个偏移值,顺序地或同时地补偿字线电压VWL。字线电压VWL的补偿,例如,可以通过使用受第一查找表542、第二查找表543、以及第三查找表544中的偏移值控制的电压分割(voltage division)来改变电压生成器520内的电阻器串的电阻值来进行,或者通过补偿偏移值WL_offset来进行。虽然在附图中未示出,但是电压生成器520可以包括用来生成相对较高的操作电压的一个或多个电荷泵,以及相对于参考电压来调节该较高的操作电压的调节器等等。
可替换地,电压生成器520可以包括调节器。在这种情况下,电压生成器520可以使用从电荷泵接收的高电压来输出固定的字线电压VWL,并且此后根据补偿字线偏移值WL_offset和非易失性存储器件的当前操作模式来调整字线电压。
图5B是进一步示出根据本发明构思的另一个实施例的图4的字线电压发生器电路的框图。
图5B的实施例类似图5A的实施例,只是由温度代码生成器541提供的Tcode不仅被用来修改编程数据状态偏移值和/或页位置偏移值,还被用来修改字线位置偏移值。因此,图5B的特定实施例还强调了由特定非易失性存储器件考虑的每个存储单元条件可以独立地应用到操作电压的补偿,或者与存储单元条件相关联的偏移值可以通过另一个存储单元条件来索引或修改。在图5B的实施例中,假设当前温度范围影响与其他存储单元条件相关联的所有其它偏移值的确定。因此,实际字线位置偏移潜在地通过由温度代码生成器541提供的、关于当前温度的Tcode来修改。
在前述上下文中,温度范围可以被称为主要的存储单元条件,而字线位置、页信息、和/或编程状态数据可以被称为次要的存储单元条件,这是因为字线位置、页信息、和/或编程状态数据对操作电压的最终补偿的影响受到由一个或多个主要的存储单元条件的影响(被进一步调整)。
图6是进一步示出图5A和图5B的温度代码生成器541的一个可能示例的框图。
参考图6,温度代码生成器541包括:参考电压生成器541a,其生成稳定的(即,固定的)参考电压VTREF,而不管存储单元条件;温度检测器541b,其响应于参考电压VTREF生成对应于所检测的当前温度的模拟温度电压VTEMP;电平转换器541c,其将模拟温度电压VTEMP转换为相应的数字代码ADC;以及温度代码转换器541d,其将数字代码ADC转换为对应的温度代码Tcode。这里,温度代码转换器541d可以用来将表示数字代码ADC的比特数量减少到表示温度代码Tcode的更少的比特数量。
温度代码生成器541还可以包括校准部分541e,该校准部分541e确定温度代码Tcode是否被设定到对应于默认温度的值,并由此根据确定结果控制温度检测器541b。由温度检测器541b提供的模拟温度电压VTEMP将在校准部分541e的控制下改变。例如,校准部分541e可以用来将模拟温度电压VTEMP重置到关于默认温度定义的其默认设置。校准部分541e可以只在测试操作和/或加电初始化操作期间被激活,而在正常操作期间被去激活。
图7A和图7B是示出进一步描述可以包括在图5A和图5B中描述的一个或多个查找表中的偏移值的图解。为了说明目的,假设快闪存储器件在容许温度范围+90℃到-40℃内操作。进一步假设存储器件的默认温度为其最高温度(90℃)。基于这些假设,存储单元的阈电压分布将随着存储器件的实际温度从默认温度下降而增加(变宽)。因此,施加到存储单元的操作电压(例如字线电压)应当被补偿,以解决默认温度以下的任何容许温度变化。可替代地,如果默认温度被定义为容许温度范围的最低温度(-40℃),则存储单元的阈电压将随着存储器件的实际温度从默认温度上升而减小(变窄)。结果,施加到存储单元的操作电压应当被补偿,以将默认温度以上的任何容许温度考虑进来。
参考图7A,其图进一步将补偿偏移值的变化描述为被划分为七个(7)均匀温度范围TR0到TR6的容许操作温度范围上的、编程数据状态的函数(例如,假设3比特MLC的七个编程的状态P1到P7)。对于特定温度范围的各个偏移值(例如,图7A中的温度范围TR4中示出的虚线)可以关于所选择的存储单元的特定编程状态来确定,因为所选择的存储单元的阈电压分布将不仅仅随着温度范围而改变,还如图2B中所描述的随着编程数据状态而改变。因此,如从图7A中所理解的,针对每个编程数据状态P1-P7(次要的存储单元条件)的定义的偏移值可以根据确定的温度范围(主要的存储单元条件)来调整。以这种方式,针对编程数据状态的偏移值的可变的增加/减少斜率可以考虑到存储器件的当前温度而被适当地确定。这里,增加/减少斜率指示偏移值的差,每一个对应于对于任何编程数据状态的不同温度范围。这样的对于各个温度范围的、与一个存储单元条件(例如,编程数据状态P1到P7)相关联的偏移值的增加/减少斜率可以被确定为是连续的或阶跃的(stepped)。
与图7A的图解相比较,图7B的图解倒转所示出的与编程数据状态P1到P7以及不同温度范围TR1-TR6相关联的偏移值之间的关系。这样做,就示出了定义偏移值的增加/减少斜率的不同的方案。通过使用连续地确定的、与次要的存储单元条件(例如,编程数据状态)相关联的偏移值,存储单元的阈电压分布可以考虑到当前温度而被准确地位移补偿(shift-compensated)。
在本发明构思的某些实施例中,当修整信息从存储单元阵列100加载到存储查找表501的寄存器时,偏移值的增加/减少斜率可以由控制逻辑600修改。可替换地,反映偏移值的各种增加/减少斜率的多个电压修整信息集合可以存储在存储单元阵列100中,其中,当存储器件加电并且然后加载到查找表寄存器501时,可以由控制逻辑600选择所述多个电压修整信息集合中的任何一个。电压修整信息集合的选择或者电压修整信息的改变可以在外部设备的指令下进行(例如,存储控制器或主机)。
图8是进一步描述根据本发明构思的实施例的应用到快闪存储器件的电压补偿法的概念图。
再次,假设快闪存储器件在90℃到-40℃的容许温度范围上操作。而且,假设默认温度是最高的容许温度(90℃)。假设温度范围被分成多个温度范围(例如,TR0到TR6)。包括默认温度的温度范围被称为默认温度范围(例如,TR0)。基于这些假设,存储单元的阈电压分布将随着存储器件的温度从默认温度下降而增加(变宽)。因此,施加到存储单元的操作电压(例如,字线电压)应当考虑到这种温度变化而被补偿。
根据本发明构思的实施例的电压补偿法可以从与温度变化成比例地补偿字线电压开始(B1010)。例如,当如补偿电路540所检测到的、当前温度落在不同于默认温度区域的特定温度范围中时,字线电压将被补偿与温度变化的幅度成比例的预定幅度ΔV。与温度变化成比例的字线电压的补偿可以使用响应于温度代码Tcode从第一查找表542提供的偏移值来进行。
图8的电压补偿法还考虑到当前温度范围基于存储单元的编程数据状态来补偿字线电压(B1020)。这种进一步的补偿可以使用如温度代码Tcode索引的从第二查找表543提供的偏移值来进行。
图8的电压补偿法还基于所选择的字线的物理位置进一步补偿字线电压(B1030)。这种进一步的补偿可以使用从第三查找表544提供的偏移值来进行。
如可以从图8中所理解的,字线电压不仅被与温度变化成比例地补偿,而且还考虑到如当前温度范围索引的所选择的存储单元的编程数据状态以及所选择的字线的位置来进行补偿,所述字线电压是可以使用本发明构思的实施例进行类似补偿的操作电压类别中的一个特定示例。结果,所选择的存储单元的阈电压分布——已经被前述存储单元条件的组合从额定范围移动——可以通过最优化的字线电压被适当地辨别出来。由此减少了读取错误,并且可以在操作条件的范围上改进存储系统的可靠性。
对于图8的示例,考虑到不同的存储单元条件(例如,控制电压生成器VG的数字偏移值的应用)的操作电压补偿可以顺序地或者同时地进行。主要的(独立地确定和应用)存储单元条件和/或次要的(从属地索引或者参考,然后应用)存储单元条件可以在补偿期间使用。这样补偿的操作电压可以施加到各种存储单元阵列结构,包括全部二维和三维阵列结构两者。
图9是示出根据本发明构思的实施例的包括非易失性存储器件的数据存储设备的框图。
参考图9,数据存储设备3000通常包括存储介质3100和控制器3200。所述存储介质3100可以用来存储具有各种数据类型的数据信息,各种数据类型比如文本、图形、软件代码等等。存储介质3100可以由在图1或图4中描述的非易失性存储器件形成,并且可以被配置来根据上述电压补偿方式来补偿字线电压。控制器3200可以被配置来响应于外部请求控制存储介质3100。
图10是进一步示出根据本发明构思的实施例的图9的控制器的框图。参考图10,控制器3200包括第一接口(HI)3210、第二接口(MLI)3220、处理单元3230、缓冲器3240、错误检测和/或校正(ECC)单元3250、以及只读存储器(ROM)3260。
第一接口3210可以被配置来与外部设备(例如,主机)接口。第二界面3220可以被配置来与图9的存储介质3100接口。处理单元3230可以是中央处理单元(CPU),其被配置来操作用来部分地控制存储介质3100的操作的诸如快闪转换层(Flash Translation Layer,FTL)的固件。缓冲器3240可以用来暂时存储经由第一接口3210从外部设备接收或向外部设备发送的数据。缓冲器3240还可以用来暂时存储经由第二接口3220从存储介质3100接收或向存储介质3100发送的数据。ECC单元3250可以被配置来编码将存储在存储介质3100中的数据和解码从存储介质3100中取出的读取数据。
图11是示出根据本发明构思的实施例的包含非易失性存储器件的固态驱动(SSD)的框图。
参考图11,SSD 4000通常包括存储介质4100和控制器4200。存储介质4100经由多个通道连接到控制器4200,每个通道与形成存储介质的多个非易失性存储器公共连接。每个非易失性存储器件可以由图1或图4中描述的存储器形成。控制器4200可以根据一个或多个已知协议被传统地配置,以控制存储介质4100。
图12是进一步示出图11的SSD的存储介质4100的框图。图13是示出包含图11的SSD的存储服务器的系统框图。
根据本发明构思的实施例的SSD 4000可以用来形成非易失性存储器件,该非易失性存储器件形成图11、图12、和图13的存储介质。如图12中所示,存储介质包括如图11中所描述的类似配置的多个SSD 4000。根据本发明构思的实施例的SSD 4000被用来配置存储服务器。如图13中所示,存储服务器可以包括如图11中所描述的配置的多个SSD 4000、以及服务器4000A。而且,传统理解的RAID控制器4000B可以另外结合存储服务器来提供。
图14、图15和图16是示出可以包含根据本发明构思的实施例的使用非易失性存储器件的数据存储设备的各种系统的图示。
在包括根据本发明构思的实施例的数据存储设备的SSD被应用到存储介质的情况下,如图14中所示,系统6000可以包括存储介质6100,其被配置来经由硬连线(hard wire)或无线连接与主机进行通信。在包括根据本发明构思的实施例的数据存储设备的SSD被应用到存储服务器的情况下,如图15中所示,系统7000可以包括存储服务器7100和7200,它们被配置来经由硬连线或无线连接与主机进行通信。而且,如图16中所示,包括根据本发明构思的实施例的数据存储设备的SSD可以应用到在分布式网络系统8000内操作的邮件服务器8100。
图17到图21是示出可以包含根据本发明构思的实施例的数据存储设备的其它系统的图示。
图17是示出根据本发明构思的实施例的蜂窝电话系统的框图。
参考图17,蜂窝电话系统包括:ADPCM编解码器电路9202,用于压缩语音和解压缩所压缩的语音;扬声器9203;麦克风9204;TDMA电路9206,用于时分复用数字数据;PLL电路9210,被配置来设定射频信号的载波频率;RF电路9211,被配置来发送和接收射频信号,等等。
而且,蜂窝式电话系统可以包括各种类型的存储器,如非易失性存储器件9207、ROM 9208、以及SRAM 9209。根据本发明构思的实施例,非易失性存储器件9207可以由非易失性存储器件形成。ROM 9208可以用来存储程序,SRAM 9209可以用作系统控制微计算机9212的工作区域并且/或者临时存储数据。这里,系统控制微计算机9212是被配置来控制非易失性存储器件9207的写入和读取操作的处理器。
图18是示出根据本发明构思的实施例的存储卡的框图。存储卡可以是(例如)MMC卡、SD卡、多用途卡、微型SD卡、存储棒、致密SD卡、ID卡、PCMCIA卡、SSD卡、芯片卡、智能卡、USB卡、等等。
参考图18,该存储卡包括:与外部设备接口的接口电路9221;控制器9222,包括缓冲存储器,并控制存储卡的操作;以及至少一个根据本发明构思的实施例的非易失性存储器件9207。控制器9222可以是被配置来控制非易失性存储器件9207的写入和读取操作的处理器。具体来说,控制器9222可以经由数据总线和地址总线与非易失性存储器件9207和接口电路2221耦接。
图19是示出根据本发明构思的实施例的数字相机的框图。
参考图19,数字照相机包括主体9301、插槽9302、镜头9303、显示电路9308、快门按钮9312、闪光灯9318、等等。特别是,存储卡9331可以插入插槽9308中,并且包括至少一个根据本发明构思的实施例的非易失性存储器件9207。
如果存储卡9331具有接触类型,当存储卡9331被插入插槽9308中时,电路板上的电路可以与存储卡9331电接触。在存储卡9331具有非接触类型的情况下,电路板上的电路可以以射频方式与存储卡9331进行通信。
图20,包括图20(a)到图20(j),是示出可以包含诸如参考图19描述的类型的存储卡的各种系统的图集。
参考图20,存储卡9331可以应用到(a)摄像机、(b)电视、(c)音频设备、(d)游戏机、(e)电子音乐设备、(f)蜂窝电话、(g)计算机、(h)个人数字助理(PDA)、(i)录音机、(j)PC卡、等等。
图21是示出根据本发明构思的示范性实施例的图像传感器系统的框图。
参考图21,该图像传感器系统包括图像传感器9332、输入-输出设备9336、RAM 9348、CPU 9344、以及根据本发明构思的实施例的非易失性存储器件9354。图21的不同的系统组件可以经由总线9352进行通信。图像传感器9332可以包括光感测器件,如光栅、光敏二极管等。图21的系统组件可以与处理器一起形成在单一芯片上,或者独立于处理器而形成。
以上公开的主题将被认为是说明性的、而非限定性的,并且所附权利要求意图涵盖所有这样的修改、增强、以及在它们的范围内的其它实施例。因此,在法律所允许的最大限度内,所述范围按照所附权利要求及其等同物的最宽泛的容许解释来确定,并且不应由前述详细说明来限制或限定。

Claims (29)

1.一种在包括非易失性存储单元的存储单元阵列的非易失性存储器件中生成操作电压的方法,该方法包括:
检测包括所述非易失性存储器件的当前温度的至少一个存储单元条件;
生成将应用到所述存储单元阵列中的所选择的存储单元的操作电压;以及
响应于所述至少一个存储单元条件补偿所述操作电压。
2.如权利要求1所述的方法,其中,除了所述当前温度以外,所述至少一个存储单元条件还包括以下各项中的至少一个:所选择的存储单元的编程数据状态、所述存储单元阵列中的所选择的存储单元的位置、与所选择的存储单元相关联的页信息、以及与所述存储单元阵列中的所选择的存储单元相关联的所选择的字线的位置。
3.如权利要求2所述的方法,其中,所述至少一个存储单元条件包括在所述非易失性存储器件的容许温度操作范围上延伸的多个温度范围,并且
补偿所述操作电压包括:
分别向所述多个温度范围中的每一个分配多个补偿位移中不同的一个补偿位移;
确定所述多个温度范围中包括当前温度的当前温度范围;以及
将所述多个补偿位移中的一个补偿位移应用到对应于当前温度范围的操作电压。
4.如权利要求3所述的方法,其中,所述操作电压是读取电压和读取验证电压中的一个,所述读取电压用来在由所述非易失性存储器件执行的读取操作期间辨别所选择的存储单元的阈电压分布,所述读取验证电压用来在由所述非易失性存储器件执行的编程操作期间辨别所选择的存储单元的阈电压分布。
5.如权利要求2所述的方法,其中,所述所选择的存储单元被配置来根据第一编程状态和第二编程状态被编程,
所述至少一个存储单元条件包括:包含所述当前温度的温度范围以及所选择的存储单元的编程状态,以及
补偿所述操作电压包括:
当所选择的存储单元被编程到第一编程状态时,将第一补偿位移应用到所述操作电压;以及
当所选择的存储单元被编程到第二编程状态时,将不同于第一补偿位移的第二补偿位移应用到所述操作电压。
6.如权利要求5所述的方法,其中,所述操作电压是读取电压和读取验证电压中的一个,所述读取电压用来在由所述非易失性存储器件执行的读取操作期间辨别所选择的存储单元的阈电压分布,所述读取验证电压用来在由所述非易失性存储器件执行的编程操作期间辨别所选择的存储单元的阈电压分布。
7.如权利要求2所述的方法,其中,所选择的存储单元是与所述存储单元阵列的第一字线相关联的第一存储单元和与所述存储单元阵列的第二字线相关联的第二存储单元中的一个,
所述至少一个存储单元条件包括所述存储单元阵列中所选择的字线的位置,以及
补偿所述操作电压包括:
如果所选择的存储单元是第一存储单元,则将第一补偿位移应用到对应于所述存储单元阵列中的第一字线的位置的操作电压;以及
如果所选择的存储单元是第二存储单元,则将不同于第一补偿位移的第二补偿位移应用到对应于所述存储单元阵列中的第二字线的位置的操作电压。
8.如权利要求7所述的方法,其中,所述操作电压是读取电压和读取验证电压中的一个,所述读取电压用来在由所述非易失性存储器件执行的读取操作期间辨别所选择的存储单元的阈电压分布,所述读取验证电压用来在由所述非易失性存储器件执行的编程操作期间辨别所选择的存储单元的阈电压分布。
9.如权利要求2所述的方法,其中,所述至少一个存储单元条件包括:在所述非易失性存储器件的容许温度操作范围上延伸的多个温度范围、所选择的存储单元的编程数据状态、以及所述存储单元阵列中的所选择的字线的位置,以及
补偿所述操作电压包括:
考虑到多个温度范围中包括当前温度的当前温度范围,将第一补偿位移应用到所述操作电压;
考虑到所选择的存储单元的编程状态,将第二补偿位移应用到所述操作电压;以及
考虑到所述存储单元阵列中的所选择的字线的位置,将第三补偿位移应用到所述操作电压。
10.如权利要求9所述的方法,其中,第一补偿位移、第二补偿位移、以及第三补偿位移被顺序地应用到所述操作电压。
11.如权利要求9所述的方法,其中,第一补偿位移、第二补偿位移、以及第三补偿位移被同时地应用到所述操作电压。
12.一种在包括非易失性存储器件的存储系统中生成操作电压的方法,该非易失性存储器件包括操作电压生成器以及非易失性存储单元的存储单元阵列,该方法包括:
在所述存储单元阵列的修整信息区域中存储修整信息,其中,所述修整信息包括电压修整信息;
当对所述非易失性存储器件加电并且使用所述修整电压信息时,配置存储多个补偿偏移值的至少一个查找表;
检测所述非易失性存储器件的当前温度;
在接收到启动由所述非易失性存储器件进行的访问操作的执行的访问命令之后,通过响应于所述当前温度从存储在所述至少一个查找表中的多个补偿偏移值中选择偏移值来生成经补偿的操作电压;并且
使用所述经补偿的操作电压执行所述访问操作。
13.如权利要求12所述的方法,其中,生成所述经补偿的操作电压包括:
使用所述操作电压生成器生成额定操作电压;以及
响应于所选择的偏移值来调整所述额定操作电压。
14.如权利要求13所述的方法,其中,从所述多个补偿偏移值中选择所述偏移值包括:
响应于当前温度从所述多个偏移值中选择第一偏移值,并且响应于存储单元条件从所述多个偏移值中选择第二偏移值;以及
响应于所选择的偏移值来调整所述额定操作电压包括响应于第一偏移值和第二偏移值顺序地调整所述额定操作电压。
15.如权利要求14所述的方法,其中,所述存储单元条件是从下面的组中选择的至少一个条件,该组包括:所述存储单元阵列中所选择的存储单元的编程数据状态、与所述存储单元阵列内的所选择的存储单元相关联的所选择的字线的位置、与所选择的存储单元相关联的页信息、以及所述存储单元阵列内的所选择的存储单元的位置。
16.如权利要求12所述的方法,其中,生成所述补偿的操作电压包括:
使用所选择的偏移值生成补偿偏移值;以及
使用操作电压生成器响应于所述补偿偏移值来生成经补偿的操作电压。
17.如权利要求16所述的方法,其中,生成所述补偿偏移值包括:
响应于所述当前温度从所述多个偏移值中选择第一偏移值;
响应于存储单元条件从所述多个偏移值中选择第二偏移值;以及
组合第一偏移值和第二偏移值以生成所述补偿偏移值。
18.如权利要求17所述的方法,其中,所述存储单元条件是从下面的组中选择的至少一个条件,该组包括:所述存储单元阵列中所选择的存储单元的编程数据状态、与所述存储单元阵列内的所选择的存储单元相关联的所选择的字线的位置、与所选择的存储单元相关联的页信息、以及所述存储单元阵列内的所选择的存储单元的位置。
19.如权利要求12所述的方法,其中,所述至少一个查找表包括:
第一查找表,其存储分别对应于多个温度范围的多个第一偏移值;和
第二查找表,其存储分别对应于存储单元条件的变化的多个第二偏移值。
20.如权利要求19所述的方法,其中,所述存储单元条件是从下面的组中选择的一个条件,该组由以下各项组成:所述存储单元阵列中所选择的存储单元的编程数据状态、与所述存储单元阵列内的所选择的存储单元相关联的所选择的字线的位置、以及所述存储单元阵列内的所选择的存储单元的位置。
21.一种非易失性存储器件,包括:
控制逻辑,其控制所述非易失性存储器件的操作;
非易失存储器单元的存储单元阵列;以及
操作电压生成器,其生成将施加到所述存储单元阵列中的所选择的存储单元的经补偿的操作电压,其中,所述操作电压生成器包括:
温度代码生成器,其检测当前温度并生成对应的温度代码;
第一查找表,其存储分别对应于多个温度范围的多个第一偏移值;
第二查找表,其存储分别对应于存储单元条件的变化的多个第二偏移值,
其中,所述控制逻辑响应于所述温度代码选择第一偏移值之一以及响应于所述存储单元条件的确定的变化选择第二偏移值之一,以及
所述操作电压生成器响应于第一偏移值和第二偏移值生成经补偿的操作电压。
22.如权利要求21所述的非易失性存储器件,其中,所述存储单元条件的变化分别对应于对于所选择的存储单元的编程数据状态。
23.如权利要求21所述的非易失性存储器件,其中,所述存储单元条件的变化分别对应于与所选择的存储单元相关联的、存储单元阵列中的至少一个字线的位置。
24.如权利要求21所述的非易失性存储器件,其中,所述存储单元条件的变化分别对应于与所选择的存储单元相关联的页信息。
25.如权利要求21所述的非易失性存储器件,其中,所述存储单元条件的变化分别对应于所述存储单元阵列内的所选择的存储单元的位置。
26.如权利要求21所述的非易失性存储器件,其中,所述操作电压是读取电压和读取验证电压中的一个,所述读取电压用来在由所述非易失性存储器件执行的读取操作期间辨别所选择的存储单元的阈电压分布,所述读取验证电压用来在由所述非易失性存储器件执行的编程操作期间辨别所选择的存储单元的阈电压分布。
27.如权利要求21所述的非易失性存储器件,其中,所述控制逻辑进一步响应于所述温度代码选择第二偏移值之一。
28.一种存储卡,包括:
至少一个非易失性存储器件;
控制器,其包括缓冲存储器,并且被配置来控制所述非易失性存储器件;以及
接口,其提供所述控制器和外部设备之间的接口,
其中,所述至少一个非易失性存储器件包括:
控制逻辑,其控制所述非易失性存储器件的操作;
非易失存储单元的存储单元阵列;以及
操作电压生成器,其生成将施加到所述存储单元阵列中的所选择的存储单元的经补偿的操作电压,
其中,所述操作电压生成器包括:
温度代码生成器,其检测当前温度并生成对应的温度代码;
第一查找表,其存储分别对应于多个温度范围的多个第一偏移值;
第二查找表,其存储分别对应于存储单元条件的变化的多个第二偏移值,
其中,所述控制逻辑响应于所述温度代码来选择第一偏移值之一以及响应于所述存储单元条件的确定的变化来选择第二偏移值之一,以及
所述操作电压生成器响应于第一偏移值和第二偏移值生成所述经补偿的操作电压。
29.一种固态驱动(SSD)包括:
存储介质,其包括多个非易失性存储器件;以及
控制器,其经由多个通道与所述存储介质相连接,并被配置来控制所述存储介质,
其中,所述多个非易失性存储器件中的至少一个包括:
控制逻辑,其控制所述非易失性存储器件的操作;
非易失存储器单元的存储单元阵列;以及
操作电压生成器,其生成将施加到所述存储单元阵列中的所选择的存储单元的经补偿的操作电压,
其中,所述操作电压生成器包括:
温度代码生成器,其检测当前温度并生成对应的温度代码;
第一查找表,其存储分别对应于多个温度范围的多个第一偏移值;
第二查找表,其存储分别对应于存储单元条件的变化的多个第二偏移值,
其中,所述控制逻辑响应于所述温度代码来选择第一偏移值之一以及响应于所述存储单元条件的确定的变化来选择第二偏移值之一,以及
所述操作电压生成器响应于第一偏移值和第二偏移值来生成所述经补偿的操作电压。
CN201110382310.0A 2010-11-25 2011-11-25 补偿操作电压的方法、快闪存储器件、以及数据存储设备 Active CN102479550B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0117950 2010-11-25
KR1020100117950A KR101868332B1 (ko) 2010-11-25 2010-11-25 플래시 메모리 장치 및 그것을 포함한 데이터 저장 장치

Publications (2)

Publication Number Publication Date
CN102479550A true CN102479550A (zh) 2012-05-30
CN102479550B CN102479550B (zh) 2017-05-03

Family

ID=46083106

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110382310.0A Active CN102479550B (zh) 2010-11-25 2011-11-25 补偿操作电压的方法、快闪存储器件、以及数据存储设备

Country Status (5)

Country Link
US (2) US8659966B2 (zh)
JP (1) JP6022153B2 (zh)
KR (1) KR101868332B1 (zh)
CN (1) CN102479550B (zh)
DE (1) DE102011087105B4 (zh)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103680623A (zh) * 2012-08-30 2014-03-26 上海华虹宏力半导体制造有限公司 改善嵌入式非易失性存储器集成电路温度特性的方法
CN103971723A (zh) * 2013-02-01 2014-08-06 Lsi公司 用于读取电压适应的补偿回路
CN105518798A (zh) * 2013-09-11 2016-04-20 株式会社东芝 半导体存储装置及存储器系统
CN106098097A (zh) * 2015-04-27 2016-11-09 爱思开海力士有限公司 存储系统及其操作方法
CN106373604A (zh) * 2015-07-22 2017-02-01 爱思开海力士有限公司 半导体存储器件及其操作方法
CN106528323A (zh) * 2016-11-04 2017-03-22 郑州云海信息技术有限公司 一种Nand flash数据校准方法及系统
CN107017026A (zh) * 2015-10-28 2017-08-04 威盛电子股份有限公司 非易失性存储器装置及其读取方法
CN107121851A (zh) * 2017-06-19 2017-09-01 深圳市华星光电技术有限公司 像素电极及阵列基板
CN107170484A (zh) * 2017-03-17 2017-09-15 北京兆易创新科技股份有限公司 一种NAND Flash电压自动补偿方法和装置
CN107785045A (zh) * 2016-08-25 2018-03-09 爱思开海力士有限公司 半导体存储装置及其操作方法
CN108109645A (zh) * 2016-11-24 2018-06-01 北京兆易创新科技股份有限公司 一种存储单元的读取方法及装置
CN108109659A (zh) * 2016-11-24 2018-06-01 北京兆易创新科技股份有限公司 一种存储单元的擦除方法及装置
CN108109646A (zh) * 2016-11-24 2018-06-01 北京兆易创新科技股份有限公司 一种存储单元的编程方法及装置
CN108206041A (zh) * 2016-12-19 2018-06-26 三星电子株式会社 存储器读取操作方法、存储器控制器及存储系统操作方法
CN108288481A (zh) * 2018-01-19 2018-07-17 上海磁宇信息科技有限公司 一种可调电压的mram读出电路
CN109032514A (zh) * 2018-07-17 2018-12-18 广东工业大学 一种数据读取方法、装置、设备及可读存储介质
CN109062509A (zh) * 2018-07-20 2018-12-21 浪潮电子信息产业股份有限公司 固态硬盘的数据处理方法以及相关装置
CN109783297A (zh) * 2019-01-10 2019-05-21 湖南国科微电子股份有限公司 一种固态硬盘使用温宽提升方法与固态硬盘
CN110377538A (zh) * 2018-04-13 2019-10-25 深圳大心电子科技有限公司 存储器管理方法以及存储控制器
CN111312317A (zh) * 2018-12-12 2020-06-19 北京兆易创新科技股份有限公司 一种非易失存储器控制方法以及装置
CN111465986A (zh) * 2017-11-01 2020-07-28 美光科技公司 Nand快闪热警报
CN111538687A (zh) * 2020-04-22 2020-08-14 群联电子股份有限公司 存储器控制方法、存储器存储装置及存储器控制电路单元
CN113312940A (zh) * 2020-02-26 2021-08-27 北京小米移动软件有限公司 光传感器模组、光感数据获取方法、电子设备、存储介质

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8189283B2 (en) * 2010-02-04 2012-05-29 Apple Inc. Disk drive with state-information data buffer
KR101868332B1 (ko) * 2010-11-25 2018-06-20 삼성전자주식회사 플래시 메모리 장치 및 그것을 포함한 데이터 저장 장치
US8797805B2 (en) 2011-12-22 2014-08-05 Micron Technology, Inc. Methods and apparatuses for determining threshold voltage shift
US8937841B2 (en) 2012-05-16 2015-01-20 SK Hynix Inc. Driver for semiconductor memory and method thereof
KR101939234B1 (ko) * 2012-07-23 2019-01-16 삼성전자 주식회사 메모리 장치, 메모리 시스템 및 상기 메모리 장치의 독출 전압의 제어 방법
US8934284B2 (en) * 2013-02-26 2015-01-13 Seagate Technology Llc Methods and apparatuses using a transfer function to predict resistance shifts and/or noise of resistance-based memory
US9202579B2 (en) * 2013-03-14 2015-12-01 Sandisk Technologies Inc. Compensation for temperature dependence of bit line resistance
US9122626B2 (en) 2013-05-13 2015-09-01 Seagate Technology Llc Linearly related threshold voltage offsets
KR20150051056A (ko) * 2013-11-01 2015-05-11 에스케이하이닉스 주식회사 반도체 장치 및 그 동작 방법
KR102048230B1 (ko) * 2014-01-28 2019-11-25 에스케이하이닉스 주식회사 온도센서
US9810585B2 (en) * 2014-03-28 2017-11-07 Darryl G. Walker Semiconductor device having a temperature circuit that provides a plurality of temperature operating ranges
JP6379733B2 (ja) * 2014-06-27 2018-08-29 富士通セミコンダクター株式会社 不揮発性半導体記憶装置及びその制御方法
KR102251810B1 (ko) 2014-09-30 2021-05-13 삼성전자주식회사 메모리 장치, 메모리 시스템 및 메모리 장치에 대한 제어 방법
US9720754B2 (en) 2014-11-20 2017-08-01 Western Digital Technologies, Inc. Read level grouping for increased flash performance
US9576671B2 (en) 2014-11-20 2017-02-21 Western Digital Technologies, Inc. Calibrating optimal read levels
US9905302B2 (en) * 2014-11-20 2018-02-27 Western Digital Technologies, Inc. Read level grouping algorithms for increased flash performance
US9653156B2 (en) 2015-02-20 2017-05-16 Kabushiki Kaisha Toshiba Memory controller, nonvolatile semiconductor memory device and memory system
KR20160105103A (ko) * 2015-02-27 2016-09-06 에스케이하이닉스 주식회사 내부 전압 생성 회로
US20170053714A1 (en) * 2015-08-19 2017-02-23 Micron Technology, Inc. Read voltage offset
KR102420588B1 (ko) 2015-12-04 2022-07-13 삼성전자주식회사 비휘발성 메모리 장치, 메모리 시스템, 비휘발성 메모리 장치의 동작 방법 및 메모리 시스템의 동작 방법
US9847133B2 (en) * 2016-01-19 2017-12-19 Ememory Technology Inc. Memory array capable of performing byte erase operation
US11574691B2 (en) 2016-02-24 2023-02-07 Samsung Electronics Co., Ltd. Memory device and memory system
KR102458918B1 (ko) 2016-02-24 2022-10-25 삼성전자주식회사 메모리 장치 및 메모리 시스템
KR102456118B1 (ko) 2016-02-24 2022-10-19 에스케이하이닉스 주식회사 데이터 저장 장치 및 그것의 동작 방법
US10564900B2 (en) 2016-03-04 2020-02-18 Western Digital Technologies, Inc. Temperature variation compensation
US10446242B2 (en) 2016-05-27 2019-10-15 Western Digital Technologies, Inc. Temperature variation compensation
US9996281B2 (en) * 2016-03-04 2018-06-12 Western Digital Technologies, Inc. Temperature variation compensation
KR102476770B1 (ko) * 2016-04-08 2022-12-13 에스케이하이닉스 주식회사 전자 장치
CN107358976A (zh) * 2016-05-10 2017-11-17 北京兆易创新科技股份有限公司 一种非易失性存储器的编程方法及非易失性存储器
KR102659596B1 (ko) * 2016-08-26 2024-04-19 삼성전자주식회사 비휘발성 메모리 장치
US10754404B2 (en) * 2016-09-30 2020-08-25 Intel Corporation Compensation control for variable power rails
JP6684744B2 (ja) 2017-03-24 2020-04-22 キオクシア株式会社 メモリシステム、メモリコントローラ、およびメモリシステムの制御方法
JP6779822B2 (ja) 2017-03-24 2020-11-04 キオクシア株式会社 メモリシステム
US10276233B1 (en) 2017-10-31 2019-04-30 Seagate Technology Llc Adaptive read threshold voltage tracking with charge leakage mitigation using threshold voltage offsets
US10388368B2 (en) 2017-10-31 2019-08-20 Seagate Technology Llc Adaptive read threshold voltage tracking with charge leakage mitigation using charge leakage settling time
KR102392056B1 (ko) * 2017-12-27 2022-04-28 삼성전자주식회사 메모리 장치의 데이터 독출 방법, 메모리 컨트롤러의 제어 방법 및 이들을 포함하는 저장 장치
US10671298B2 (en) 2018-03-06 2020-06-02 Micron Technology, Inc. Storing page write attributes
US10705758B2 (en) * 2018-05-22 2020-07-07 Western Digital Technologies, Inc. Multiple sets of trim parameters
US10446237B1 (en) 2018-06-29 2019-10-15 Micron Technology, Inc. Temperature sensitive NAND programming
US10878902B2 (en) * 2018-07-16 2020-12-29 Taiwan Semiconductor Manufacturing Company, Ltd. RRAM voltage compensation
JP2020017133A (ja) * 2018-07-26 2020-01-30 キオクシア株式会社 ストレージ装置及び制御方法
US10755783B2 (en) * 2018-08-27 2020-08-25 Silicon Storage Technology Temperature and leakage compensation for memory cells in an analog neural memory system used in a deep learning neural network
US11137808B2 (en) * 2018-08-31 2021-10-05 Micron Technology, Inc. Temperature compensation in a memory system
US10672452B2 (en) 2018-09-21 2020-06-02 Micron Technology, Inc. Temperature informed memory refresh
TWI670716B (zh) * 2018-09-26 2019-09-01 群聯電子股份有限公司 資料存取方法、記憶體儲存裝置與記憶體控制電路單元
US10490288B1 (en) 2018-09-27 2019-11-26 Seagate Technology Llc Page-level reference voltage parameterization for solid statesolid state storage devices
US10852953B2 (en) * 2018-10-25 2020-12-01 Micron Technology, Inc. Dynamic temperature compensation in a memory component
JP7214464B2 (ja) * 2018-12-20 2023-01-30 キオクシア株式会社 半導体記憶装置
US11281400B2 (en) 2019-04-16 2022-03-22 Micron Technology, Inc. Temperature-based storage system organization
US11307799B2 (en) * 2019-08-27 2022-04-19 Micron Technology, Inc. Managing threshold voltage drift based on operating characteristics of a memory sub-system
TWI707356B (zh) * 2020-02-27 2020-10-11 森富科技股份有限公司 記憶體操作條件檢查方法
US11488663B2 (en) 2020-06-17 2022-11-01 Micron Technology, Inc. Electrical distance-based wave shaping for a memory device
US11170851B1 (en) * 2020-06-17 2021-11-09 Micron Technology, Inc. Electrical distance-based wave shaping for a memory device
KR20220023609A (ko) * 2020-08-21 2022-03-02 에스케이하이닉스 주식회사 메모리 장치 및 그 동작 방법
US11532357B2 (en) * 2021-01-15 2022-12-20 Taiwan Semiconductor Manufacturing Company, Ltd. Memory cell with temperature modulated read voltage
KR20220122826A (ko) * 2021-02-26 2022-09-05 삼성전자주식회사 비휘발성 메모리 장치, 메모리 컨트롤러, 및 이를 포함하는 스토리지 장치의 리드 방법
KR20240052994A (ko) * 2021-11-12 2024-04-23 실리콘 스토리지 테크놀로지 인크 신경망에서 하나 이상의 메모리 셀에 인가할 바이어스 전압 결정
US20230197119A1 (en) * 2021-12-20 2023-06-22 Micron Technology, Inc. Temperature differential-based voltage offset control

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11297084A (ja) * 1998-04-08 1999-10-29 Hitachi Ltd 半導体装置
CN1930634A (zh) * 2005-01-13 2007-03-14 株式会社东芝 具有其温度依赖性被补偿的电流的非易失性存储器单元及其数据读取方法
US20070291566A1 (en) * 2006-06-16 2007-12-20 Nima Mokhlesi Method for operating non-volatile memory using temperature compensation of voltages of unselected word lines and select gates
US20080316830A1 (en) * 2007-06-25 2008-12-25 Spansion Llc Compensation method to achieve uniform programming speed of flash memory devices
US20090129154A1 (en) * 2007-11-15 2009-05-21 Mikihiko Itoh Semiconductor memory device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7187610B1 (en) * 2003-07-17 2007-03-06 Actel Corporation Flash/dynamic random access memory field programmable gate array
WO2005124785A1 (ja) * 2004-06-18 2005-12-29 Fujitsu Limited 半導体装置の温度検出器および半導体記憶装置
US7342831B2 (en) * 2006-06-16 2008-03-11 Sandisk Corporation System for operating non-volatile memory using temperature compensation of voltages of unselected word lines and select gates
JP2008071440A (ja) * 2006-09-14 2008-03-27 Matsushita Electric Ind Co Ltd 強誘電体メモリ装置及びその制御方法
US7675805B2 (en) 2008-01-04 2010-03-09 Spansion Llc Table lookup voltage compensation for memory cells
KR100967002B1 (ko) 2008-05-29 2010-06-30 주식회사 하이닉스반도체 불휘발성 메모리 소자 및 그 동작 방법
JP5320607B2 (ja) 2008-10-15 2013-10-23 ルネサスエレクトロニクス株式会社 内部電圧発生回路
KR101504340B1 (ko) * 2008-11-04 2015-03-20 삼성전자주식회사 온도 보상 기능을 가지는 불휘발성 메모리 장치 및 그것을 포함하는 메모리 시스템
US8213255B2 (en) * 2010-02-19 2012-07-03 Sandisk Technologies Inc. Non-volatile storage with temperature compensation based on neighbor state information
KR101868332B1 (ko) * 2010-11-25 2018-06-20 삼성전자주식회사 플래시 메모리 장치 및 그것을 포함한 데이터 저장 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11297084A (ja) * 1998-04-08 1999-10-29 Hitachi Ltd 半導体装置
CN1930634A (zh) * 2005-01-13 2007-03-14 株式会社东芝 具有其温度依赖性被补偿的电流的非易失性存储器单元及其数据读取方法
US20070291566A1 (en) * 2006-06-16 2007-12-20 Nima Mokhlesi Method for operating non-volatile memory using temperature compensation of voltages of unselected word lines and select gates
US20080316830A1 (en) * 2007-06-25 2008-12-25 Spansion Llc Compensation method to achieve uniform programming speed of flash memory devices
US20090129154A1 (en) * 2007-11-15 2009-05-21 Mikihiko Itoh Semiconductor memory device

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103680623A (zh) * 2012-08-30 2014-03-26 上海华虹宏力半导体制造有限公司 改善嵌入式非易失性存储器集成电路温度特性的方法
CN103971723A (zh) * 2013-02-01 2014-08-06 Lsi公司 用于读取电压适应的补偿回路
CN103971723B (zh) * 2013-02-01 2017-07-11 Lsi公司 用于读取电压适应的补偿回路
CN105518798A (zh) * 2013-09-11 2016-04-20 株式会社东芝 半导体存储装置及存储器系统
CN105518798B (zh) * 2013-09-11 2019-10-01 东芝存储器株式会社 半导体存储装置及存储器系统
CN106098097A (zh) * 2015-04-27 2016-11-09 爱思开海力士有限公司 存储系统及其操作方法
CN106098097B (zh) * 2015-04-27 2020-11-10 爱思开海力士有限公司 存储系统及其操作方法
CN106373604B (zh) * 2015-07-22 2020-09-25 爱思开海力士有限公司 半导体存储器件及其操作方法
CN106373604A (zh) * 2015-07-22 2017-02-01 爱思开海力士有限公司 半导体存储器件及其操作方法
CN107017026A (zh) * 2015-10-28 2017-08-04 威盛电子股份有限公司 非易失性存储器装置及其读取方法
CN107785045B (zh) * 2016-08-25 2021-04-27 爱思开海力士有限公司 半导体存储装置及其操作方法
CN107785045A (zh) * 2016-08-25 2018-03-09 爱思开海力士有限公司 半导体存储装置及其操作方法
CN106528323B (zh) * 2016-11-04 2019-07-30 郑州云海信息技术有限公司 一种Nand flash数据校准方法及系统
CN106528323A (zh) * 2016-11-04 2017-03-22 郑州云海信息技术有限公司 一种Nand flash数据校准方法及系统
CN108109659A (zh) * 2016-11-24 2018-06-01 北京兆易创新科技股份有限公司 一种存储单元的擦除方法及装置
CN108109646A (zh) * 2016-11-24 2018-06-01 北京兆易创新科技股份有限公司 一种存储单元的编程方法及装置
CN108109645A (zh) * 2016-11-24 2018-06-01 北京兆易创新科技股份有限公司 一种存储单元的读取方法及装置
CN108206041A (zh) * 2016-12-19 2018-06-26 三星电子株式会社 存储器读取操作方法、存储器控制器及存储系统操作方法
CN108206041B (zh) * 2016-12-19 2023-09-22 三星电子株式会社 存储器读取操作方法、存储器控制器及存储系统操作方法
CN107170484A (zh) * 2017-03-17 2017-09-15 北京兆易创新科技股份有限公司 一种NAND Flash电压自动补偿方法和装置
CN107121851A (zh) * 2017-06-19 2017-09-01 深圳市华星光电技术有限公司 像素电极及阵列基板
CN111465986A (zh) * 2017-11-01 2020-07-28 美光科技公司 Nand快闪热警报
CN108288481B (zh) * 2018-01-19 2021-10-01 上海磁宇信息科技有限公司 一种可调电压的mram读出电路
CN108288481A (zh) * 2018-01-19 2018-07-17 上海磁宇信息科技有限公司 一种可调电压的mram读出电路
CN110377538B (zh) * 2018-04-13 2021-03-02 深圳大心电子科技有限公司 存储器管理方法以及存储控制器
CN110377538A (zh) * 2018-04-13 2019-10-25 深圳大心电子科技有限公司 存储器管理方法以及存储控制器
CN109032514B (zh) * 2018-07-17 2021-08-13 广东工业大学 一种数据读取方法、装置、设备及可读存储介质
CN109032514A (zh) * 2018-07-17 2018-12-18 广东工业大学 一种数据读取方法、装置、设备及可读存储介质
CN109062509B (zh) * 2018-07-20 2021-07-16 浪潮电子信息产业股份有限公司 固态硬盘的数据处理方法以及相关装置
CN109062509A (zh) * 2018-07-20 2018-12-21 浪潮电子信息产业股份有限公司 固态硬盘的数据处理方法以及相关装置
CN111312317A (zh) * 2018-12-12 2020-06-19 北京兆易创新科技股份有限公司 一种非易失存储器控制方法以及装置
CN111312317B (zh) * 2018-12-12 2022-03-01 北京兆易创新科技股份有限公司 一种非易失存储器控制方法以及装置
CN109783297A (zh) * 2019-01-10 2019-05-21 湖南国科微电子股份有限公司 一种固态硬盘使用温宽提升方法与固态硬盘
CN113312940A (zh) * 2020-02-26 2021-08-27 北京小米移动软件有限公司 光传感器模组、光感数据获取方法、电子设备、存储介质
CN113312940B (zh) * 2020-02-26 2024-05-10 北京小米移动软件有限公司 光传感器模组、光感数据获取方法、电子设备、存储介质
CN111538687A (zh) * 2020-04-22 2020-08-14 群联电子股份有限公司 存储器控制方法、存储器存储装置及存储器控制电路单元

Also Published As

Publication number Publication date
US8659966B2 (en) 2014-02-25
KR101868332B1 (ko) 2018-06-20
DE102011087105A1 (de) 2012-06-06
KR20120056424A (ko) 2012-06-04
CN102479550B (zh) 2017-05-03
US20120134213A1 (en) 2012-05-31
JP6022153B2 (ja) 2016-11-09
JP2012113810A (ja) 2012-06-14
US9384840B2 (en) 2016-07-05
US20140169101A1 (en) 2014-06-19
DE102011087105B4 (de) 2022-09-29

Similar Documents

Publication Publication Date Title
CN102479550A (zh) 补偿操作电压的方法、快闪存储器件、以及数据存储设备
CN106205682B (zh) 包括漏电流感测单元的半导体集成电路设备及其操作方法
US9927986B2 (en) Data storage device with temperature sensor and temperature calibration circuitry and method of operating same
JP5349256B2 (ja) メモリシステム
KR102347179B1 (ko) 비휘발성 저장 장치의 온도 제어 방법
US20080172520A1 (en) Nonvolatile memory devices including multiple user-selectable program modes and related methods of operation
US10770147B2 (en) Memory system including a memory device that can determine optimum read voltage applied to a word line
KR20100058166A (ko) 불휘발성 메모리 장치 및 그것을 포함하는 메모리 시스템
US9940039B2 (en) Method and data storage device with enhanced data retention
US20130282962A1 (en) Storage control system with flash configuration and method of operation thereof
US11853207B2 (en) Configurable trim settings on a memory device
CN103093831A (zh) 非易失性存储器的基准电流的内置自微调
US20130205075A1 (en) Nonvolatile memory device and memory card including the same
CN110648705A (zh) 半导体系统及其操作方法
CN112582011A (zh) 存储器设备及其操作方法
CN107045484B (zh) 数据存储装置
CN111316365B (zh) 存储器装置的修整设置确定
US20200225870A1 (en) System and Method for Storage System Property Deviation
CN107785045B (zh) 半导体存储装置及其操作方法
US11307623B2 (en) System, controller, and method for operating system to determine amount of current for multiple power domain modules
US9984749B2 (en) Current driver, write driver, and semiconductor memory apparatus using the same
KR20230034524A (ko) 메모리 시스템 및 메모리 시스템의 동작 방법
CN115793831A (zh) 存储装置及其操作方法
CN117873368A (zh) 存储器系统及其操作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant