CN102474358A - 反射光网络中的改进 - Google Patents

反射光网络中的改进 Download PDF

Info

Publication number
CN102474358A
CN102474358A CN200980160365.8A CN200980160365A CN102474358A CN 102474358 A CN102474358 A CN 102474358A CN 200980160365 A CN200980160365 A CN 200980160365A CN 102474358 A CN102474358 A CN 102474358A
Authority
CN
China
Prior art keywords
signal
data
frequency
optical
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200980160365.8A
Other languages
English (en)
Other versions
CN102474358B (zh
Inventor
M·普雷西
E·恰拉梅拉
A·丘基亚雷利
R·普罗埃蒂
G·孔特斯塔比尔
P·乔扈里
L·焦尔吉
F·卡瓦利耶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telefonaktiebolaget LM Ericsson AB
Original Assignee
Telefonaktiebolaget LM Ericsson AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget LM Ericsson AB filed Critical Telefonaktiebolaget LM Ericsson AB
Publication of CN102474358A publication Critical patent/CN102474358A/zh
Application granted granted Critical
Publication of CN102474358B publication Critical patent/CN102474358B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2587Arrangements specific to fibre transmission using a single light source for multiple stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J2014/0253Allocation of downstream wavelengths for upstream transmission

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

反射光网络(10)包括光网络单元(14)和光接收机(22)。光网络单元(14)包括布置成接收种子光信号的反射光调制器(16),以及传送机控制器(18),所述传送机控制器(18)布置成接收数据信号(20)并且布置成控制调制器(16)以将数据信号(20)应用到种子光信号,以形成光数据信号。传送机控制器(18)布置成处理数据信号(20)以基本上防止光数据信号包括在低于截止频率的频率处的谱分量,所述截止频率是所述光数据信号的功率谱密度比所述光信号的峰值功率谱密度低截止功率值所在的频率。光接收机(22)包括具有高于种子光信号的线宽的截止频率的电域高通滤波器(26)。

Description

反射光网络中的改进
技术领域
本发明涉及反射光网络、光网络单元以及用于反射光网络的光接收机,并且涉及在反射光网络中传送数据的方法,以及涉及提供用于反射光网络中的传送的光数据信号。
背景技术
用连续波(CW)光信号做种(seed)的反射光网络体系结构已经被认为是部署波分复用(WDM)无源光网络(PON)(其中光网络单元(ONU)是波长不可知的(“无色的”))的可行解决方案。反射光网络的性能受限于上游光路(其是下游路径的两倍长)上的功率预算,并且受限于由沿着光线路链路的集中或分散的反射招致的信道串扰。上行链路信道中的主要限制因素是由瑞利反向散射(RB)和由随机定位的反射地点(例如光纤连接器和接头(splice))生成的相干串扰。这个问题的一种建议解决方案已经使用在ONU处提供光增益的反射调制器(例如反射半导体光放大器(R-SOA))以将上行链路串扰信号比(C/S)保持在可接收的值。但是,ONU增益不能够任意增加:高于阈值时,它也强烈地放大串扰。由P.J.Urban等人报告的另一建议解决方案“Mitigation of reflection induced cross-talk ina WDM access network”(OFC 2008,OThT3)是CW种子信号的相位调制。但是,必须在数据带宽之外的频率处操作相位调制,并且在实际系统中,这很可能是既不实用又不便宜的解决方案。
发明内容
目的是提供改进的反射光网络。另外的目的是提供用于反射光网络的改进的光网络单元。另外的目的是提供用于反射光网络的改进的光接收机。另一目的是提供在反射光网络中传送数据的改进方法。
本发明的第一方面提供一种反射光网络。所述网络包括光网络单元和光接收机。所述光网络单元包括反射光调制器和传送机控制器。所述反射光调制器布置成接收种子光信号(seed optical signal)。所述传送机控制器布置成接收数据信号。所述传送机控制器布置成控制所述调制器以将所述数据信号应用到所述种子光信号,以形成光数据信号。所述传送机控制器还布置成处理所述接收的数据信号以基本上防止所述光数据信号包括在低于截止频率的频率处的谱分量。所述截止频率是所述光数据信号的功率谱密度是所述光信号的峰值功率谱密度的预定百分比所在的频率。所述光接收机布置成接收所述光数据信号。所述光接收机包括具有比所述种子光信号的线宽(linewidth)更高的截止频率的电域高通滤波器。
因此,反射光网络具有对反射和反向散射光信号的改进容忍(tolerance)。对所接收光信号进行高通滤波以及处理数据信号以从所产生的光数据信号中移除低频谱分量,允许反射光网络容忍非常低的上游载波对信号(carrier to signal)值。反射光网络还具有对集中和分散的反射的增强适应力(resilience)。由传送机控制器实施的对数据信号的处理基本上从所产生的光数据信号中移除会引起符号间干扰的谱分量,而在接收机处实施的高通滤波确保从功率测量中移除正确的平均功率。因此,光网络在接收机处具有对载波对信号值降级的改进容忍。
在一实施例中,所述截止频率是所述光数据信号的功率谱密度比所述峰值功率谱密度低至少10dB的因子并且可能比所述峰值功率谱密度低至少20dB所在的频率。在一实施例中,所述截止频率高于10MHz并且可能高于100MHz。因此,高通滤波器能够除去直流电频率周围的干涉测量噪声分量。
在一实施例中,所述传送机控制器布置成通过将线路码应用到所述接收的数据信号来处理所述接收的数据信号。在一实施例中,所述线路码包括直流平衡(DC平衡)线路码。直流平衡线路码可包括8B10B线路码或64B66B线路码。对数据信号进行线路编码移除所产生的光数据信号的低频谱分量,由此在光接收机处减轻符号间干扰的影响。8B10B和64B66B线路码是众所周知的,并且在吉比特以太网和光纤信道标准中实现8B10B线路码,所以光网络与现有编码标准兼容。在传送前对所接收的光数据信号进行高通滤波以及编码数据信号,允许光网络容忍非常低的上游载波对信号值。
在一实施例中,所述传送机控制器包括加扰器,并且所述传送机控制器布置成通过在所述加扰器中加扰所述接收的数据信号来处理所述接收的数据信号。数据加扰是众所周知的数据处理技术,其在电信网络中广泛使用,所以光网络与现有编码标准兼容。
在一实施例中,所述高通滤波器截止频率还低于所述数据信号的带宽。
在一实施例中,所述反射光调制器包括反射半导体光放大器和反射电吸收调制器之一。在一实施例中,所述反射光调制器可操作以将增益应用到所述种子光信号和所述光数据信号中的至少一个。在一实施例中,所述反射光调制器是偏振无关的。反射光调制器能够操作成有或没有增益,并且因此能够用于提供光增益以控制串扰信号值。
在一实施例中,该网络还包括可操作以生成所述种子光信号的种子光源,所述种子光源位于远离所述光网络单元的位置并且通过光纤链路连接到所述光网络单元。在一实施例中,所述种子光源可操作以生成连续波光信号。所述种子光源可包括种子激光器。
在一实施例中,所述反射光网络包括无源光网络。在一实施例中,所述光接收机在所述无源光网络的中心局或光线路路终端之一中被提供。
在一实施例中,所述反射光网络包括波分复用网络。在一实施例中,所述光接入网络包括可操作以生成多个种子光信号的多个种子光源、对应多个反射光调制器和对应多个光接收机。
本发明的第二方面提供一种用于反射光网络的光网络单元。所述光网络单元包括反射光调制器和传送机控制器。所述反射光调制器布置成接收种子光信号。所述传送机控制器布置成接收数据信号。所述传送机控制器布置成控制所述调制器以将所述数据信号应用到所述种子光信号,以形成光数据信号。所述传送机控制器还布置成处理所述接收的数据信号以基本上防止所述光数据信号包括在低于截止频率的频率处的谱分量。所述截止频率是所述光数据信号的功率谱密度是所述光信号的峰值功率谱密度的预定百分比所在的频率(按照截止功率值)。
该光网络单元提供光数据信号,从其中基本上移除在低于截止频率的频率处的谱分量,因此,在接收光数据信号时,减轻符号间干扰的影响。
在一实施例中,所述截止频率是所述光数据信号的功率谱密度比所述峰值功率谱密度低至少10dB的因子并且可能比所述峰值功率谱密度低至少20dB所在的频率。
在一实施例中,所述传送机控制器布置成通过将线路码应用到所述接收的数据信号来处理所述接收的数据信号。在一实施例中,所述线路码包括直流平衡(DC平衡)线路码。直流平衡线路码可包括8B10B线路码或64B66B线路码。
在一实施例中,所述传送机控制器包括加扰器,并且所述传送机控制器布置成通过在所述加扰器中加扰所述接收的数据来处理所述接收的数据信号。
在一实施例中,所述反射光调制器可操作以将增益应用到所述种子光信号和所述光数据信号中的至少一个。在一实施例中,所述反射光调制器包括反射半导体放大器和反射电吸收调制器之一。在一实施例中,所述反射光调制器是偏正无关的。
在一实施例中,所述网络还包括可操作以生成所述种子光信号的种子光源。所述种子光源位于远离所述光网络单元的位置。所述种子光源通过光纤链路连接到所述光网络单元。
在一实施例中,所述反射光网络包括无源光网络。
本发明的第三方面提供一种用于反射光网络的光接收机。所述光接收机布置成接收根据种子光信号生成的光数据信号。所述光接收机包括具有高于所述种子光信号的线宽的截止频率的电域高通滤波器。
光接收机能够提供改进的光功率测量,因为提供的高通滤波作用于减去正确的平均功率,并且接收机的最佳阈值不随载波对信号值的变化而改变。因此,光接收机具有对载波对信号值的降级的改进容忍,所述载波对信号值的降级由来自反射光网络中的反向散射光的干扰所造成。
本发明的第四方面提供一种在反射光网络中传送数据的方法。所述方法包括接收要传送的数据信号并且处理所述接收的数据信号。将所述处理的数据信号应用到种子光信号,以形成光数据信号。所述处理布置成基本上防止所述光数据信号包括在低于截止频率的频率处的谱分量。所述截止频率是所述光数据信号的功率谱密度是所述光信号的峰值功率谱密度的预定百分比所在的频率。所述方法还包括接收所述光数据信号并将它转变成电信号。将高通滤波器应用到所述电信号。所述滤波器具有高于所述种子光信号的线宽的截止频率。
该方法使得数据能够在具有对网络内的反射和反向散射的改进容忍的反射光网络中被传送。对所接收的光信号进行高通滤波以及处理数据信号以从所产生的光数据信号中移除低频谱分量,允许以非常低的上游载波对信号值传送数据。该方法还提供数据传送对集中和分散的反射的增强适应力。对数据信号的处理基本上从所产生的光数据信号中移除会引起符号间干扰的谱分量,而高通滤波确保从功率测量中移除正确的平均功率。因此,在接收光数据信号时,该方法允许对载波对信号值降级的改进容忍。
在一实施例中,所述截止频率是所述光数据信号的功率谱密度比所述峰值功率谱密度低至少10dB的因子并且可能比所述峰值功率谱密度低至少20dB所在的频率。在一实施例中,所述截止频率高于10MHz并且可能高于100Mhz。
在一实施例中,所述处理包括将线路码应用到所述接收的数据信号。在一实施例中,所述线路码包括直流平衡(DC平衡)线路码。直流平衡线路码可包括8B10B线路码或64B66B线路码。
对数据信号进行线路编码移除所产生的光数据信号的低频谱分量,由此在光接收机减轻符号间干扰的影响。8B10B和64B66B线路码是众所周知的,并且在吉比特以太网和光纤信道标准中实现了8B10B线路码,所以光网络与现有编码标准兼容。在传送前对所接收的光数据信号进行高通滤波以及编码数据信号,允许以非常低的上游载波对信号值传送数据。
在一实施例中,所述处理包括加扰所述接收的数据信号。
在一实施例中,所述高通滤波器截止频率还低于所述数据信号的带宽。
在一实施例中,所述反射光网络包括无源光网络。在一实施例中,所述光接收机在所述无源光网络的中心局或光线路路终端之一中被提供。
本发明的第五方面提供一种在反射光网络中提供用于传送的光数据信号的方法。所述方法包括接收要传送的数据信号以及处理所述接收的数据信号。将所述处理的数据信号应用到种子光信号,以形成光数据信号。所述处理布置成基本上防止所述光数据信号包括在低于截止频率的频率处的谱分量。所述截止频率是所述光数据信号的功率谱密度是所述光信号的峰值功率谱密度的预定百分比所在的频率。
在一实施例中,所述截止频率是所述光数据信号的功率谱密度比所述峰值功率谱密度低至少10dB的因子并且可能比所述峰值功率谱密度低至少20dB所在的频率。在一实施例中,所述截止频率高于10MHz并且可能高于100Mhz。
在一实施例中,所述处理包括将线路码应用到所述接收的数据信号。在一实施例中,所述线路码包括直流平衡(DC平衡)线路码。直流平衡线路码包括8B10B线路码或64B66B线路码。
在一实施例中,所述处理包括加扰所述接收的数据信号。
在一实施例中,所述反射光网络包括无源光网络。
本发明的第六实施例提供一种在反射光网络中处理从种子光信号生成的光数据信号的方法。该方法包括接收所述光数据信号并将它转变成电信号。将高通滤波器应用到所述电信号。所述滤波器具有高于所述种子光信号的线宽的截止频率。
本发明的第七方面提供一种具有在其中包含的计算机可读指令的数据载体。所述计算机可读指令用于提供对处理器上可用资源的访问。计算机可读指令包括使得处理器执行在反射光网络中传送数据的方法中的任何上述步骤的指令。
现在将参考附图通过仅示例的方式来详细描述本发明的实施例。
附图说明
图1是根据本发明第一实施例的反射光接入网络的示意表示,其与光链路和种子激光器一起示出;
图2是根据本发明第二实施例的反射光接入网络的示意表示;
图3是如图2中示出的反射光网络的实验测试表示的示意表示;
图4示出对于四种不同光数据信号类型的作为串扰(dB)的函数的功率惩罚(dB);
图5示出四种不同光信号类型的眼图;
图6是根据本发明第三实施例的光网络单元的示意表示;
图7是根据本发明第四实施例的光接收机的示意表示;
图8是根据本发明第五实施例的传送数据的方法的流程图;
图9是根据本发明第六实施例的传送数据的方法的流程图;以及
图10是根据本发明第七实施例的提供光数据信号的方法的流程图。
具体实施方式
参考图1,本发明的第一实施例提供包括光网络单元(ONU)14和光接收机22的反射光网络10。
ONU 14包括反射光调制器16(在这个例子中其包括反射半导体光放大器(R-SOA))和传送机控制器18。R-SOA 16布置成接收种子光信号。传送机控制器18布置成接收数据信号20,其包括要向光接收机22传送的数据。
通常,ONU 14和光接收机22通过光链路30连接,为了清楚起见在图1中示出光链路30,但是它不形成这个实施例的部分。通常还将提供种子激光器12(其类似地不形成这个实施例的部分)以生成种子光信号,其通过光循环器28耦合到光链路30,光链路30将种子光信号传递给R-SOA 16。
在这个例子中,R-SOA 16具有基本上是1的增益,并且因此对种子光信号或所产生的光数据信号不提供任何放大。将领会的是,可备选地在增益体制(regime)中操作R-SOA 16,具有更高的增益值以便对光信号应用放大。
传送机控制器18布置成接收数据信号20并且布置成控制R-SOA
16以将数据信号应用到接收的种子光信号。因此,接收的种子光信号转化成光数据信号,携带要传送的数据20。
传送机控制器18还布置成处理所接收的数据信号以基本上防止所产生的光数据信号包括在某一截止频率之下的谱分量。截止频率是所产生的光数据信号的功率是光数据信号的峰值功率的预定百分比所在的频率。在这个例子中,截止频率是光数据信号的功率是光数据信号的峰值光功率的-25dB(即,比其低25dB的因子)所在的频率。在这个例子中,以dBm测量光功率。光接收机22包括布置成接收光数据信号以及布置成将它转变成电信号的光电检测器24,以及布置成接收所产生的电信号的电高通滤波器26。高通滤波器26具有高于种子光信号的线宽的截止频率,光数据信号源自种子光信号。在这个例子中,截止频率是在高通滤波器26的-25dB带宽处。
在使用交流(AC)耦合的接收机的现有技术光网络中,AC耦合的接收机具有显著低于网络中传播的光载波信号的线宽的截止频率,以便避免符号间干扰(ISI)的生成。在反射光网络中,例如图1中示出的反射光网络,AC耦合的接收机不能够补偿由上行链路光信号和来自种子光信号的反向散射光之间的干扰招致的快速平均功率变化。因此,功率惩罚被引入到上行链路光信号,因为光接收机的最佳阈值随着时间的过去迅速改变,而接收机看到的平均功率不受影响,这是由于它是在AC耦合的接收机的低频截止给出的时间尺度上平均,其比光载波信号的相干时间(通常是~1/MHz)长得多(通常~1/kHz)。
通过使用具有高于种子光信号的线宽的截止频率的AC耦合的接收机能够减轻这个问题。这样做引起由接收机操作的高通滤波总是作用于减去正确的平均功率,因为现在是在正确的时间尺度上执行功率的平均,并且接收机的最佳阈值不随载波对信号值改变。光接收机因此对由来自后向散射光的干扰造成的载波对信号值的降级更容忍。但是,这个方案具有引入ISI的问题。
图1中示出的反射光网络10克服了上述问题,因为由传送机控制器18实施的对数据信号的处理防止了光数据信号包括在低频处的分量(其会引起ISI),同时确保了在接收机处提供高通滤波减去正确的平均功率。因此提供接收机22对载波对信号值降级的改进容忍。
图2中示出根据本发明第二实施例的反射光网络14。为对应于图1中示出的那些特征的特征保留相同引用数字。
反射光网络40包括光网络单元(ONU)42和光接收机22。反射光网络40还包括耦合在光接收机22和ONU 42之间的光链路30。提供种子光源12,其可操作以生成种子光信号。种子光源位于远离ONU42的位置并且通过链路30连接到ONU,通过光循环器28耦合到链路30。
在这个例子中,光接收机22在光线路路终端(OLT)56内被提供。OLT 56还被提供有下行链路光传送机44,其经由带分割(bandsplit)滤波器46和循环阵列波导光栅(AWG)48耦合到光链路30。光接收机22类似地经由AWG 48和带分割滤波器46连接到光链路30。
光接收机22包括布置成接收上行链路光数据信号以及布置成生成对应输出电数据信号的光电二极管24。光接收机22还包括布置成接收来自光电二极管24的输出电信号的高通电滤波器26。
ONU 42包括R-SOA 16,其通过第二循环AWG 50和第二带分割滤波器54耦合到光链路30。ONU 42还包括传送机控制器18,其布置成接收用于到OLT 56的上行链路数据传送的数据信号20。ONU 42还包括下行链路光接收机52,布置成接收来自OLT 56的下行链路光数据信号。
带分割滤波器54作用于分割到接收机52的下行链路光信号信道和到R-SOA 16的种子光信号。如本领域技术人员将很好理解的,在这种类型的反射光网络中,在第一波长带内提供下行链路光信号并且在与第一波长带隔开的第二波长带内提供上行链路光信号信道。下行链路光信号和种子光信号因此在波长中隔开循环AWG的自由光谱区(FSR),并且能够通过AWG 50一起路由,并且被带分割滤波器54分别指引到光接收机52和R-SOA 16。
R-SOA 16布置成接收种子光信号,并且传送机控制器18布置成控制R-SOA 16以将数据信号20应用到所接收的种子光信号。在这个例子中,R-SOA 16操作在零增益体制内,使得它只反射和调制种子光信号,而不对光信号应用增益。将领会的是,R-SOA 16可备选地包括以正增益操作的光调制器,并且可包括不同类型的反射光调制器,例如反射电吸收调制器。
传送机控制器18布置成处理接收的数据信号以基本上防止所产生的光数据信号包括在低于截止频率(其由系统设计者预定)的频率处的谱分量。截止频率是光数据信号的功率谱密度是光数据信号的峰值谱密度的预定百分比所在的频率。通常,截止频率是光数据信号的功率谱密度比其峰值功率谱密度低至少10dB所在的频率,也就是说,在截止频率处的功率谱密度是峰值功率谱密度的-10dB。在这个例子中,截止频率是在比峰值功率谱密度低25dB的功率谱密度处。以dBm测量功率谱密度。
在这个实施例中,传送机控制器18布置成通过应用直流(DC)平衡的线路码(其在这个例子中包括8B10B以太网标准线路码)来处理数据信号。可备选地使用其它DC平衡线路码,例如64B66B线路码,或者其它数据处理技术可用于防止光数据信号包括在截止频率之下的频率处的分量。可使用的一种这样的处理技术是数据加扰,其对于本领域技术人员将是众所周知的。
在使用中,下行链路光传送机44生成并传送下行链路数据信号,其经由带分割滤波器46、AWG 48、光链路30以及AWG 50被路由到ONU 42。同时,种子光信号经由光循环器28从种子激光器12耦合到光线路路30中,并且经由AWG 50和带分割滤波器54路由到ONU 42的R-SOA 16。下行链路光数据信号通过ONU 42中的带分割滤波器54路由到下行链路光接收机52。种子光信号形成用于上行链路光信号的光载波,并且被R-SOA 16反射和调制(如上所述),以便应用用于到OLT 56的上行链路传送的数据信号20。在上行链路传送前处理数据信号20以应用8B10B线路码,与在光接收机22处执行的高通电滤波一起,提供上游信号对信号对载波降级的改进容忍,而不引起ISI。因此光网络40能够容忍非常低的上游载波对信号值(例如-10dB)。因此还给予光网络40对集中和分散的反射的增强适应力。
图3示出图2的反射光网络40的实验表示,其用于评估作为上行链路光数据信号的载波对信号值的函数的在光接收机22处的功率惩罚。
实验设定包括具有100kHz线宽的外腔激光器(ECL)62以模拟CW光种子信号。来自ECL 62的信号被分成两个路径:第一路径包括可变光衰减器(VOA)64、25km的单模光纤66以及偏振控制器(PC)68;以及第二路径包含由脉冲发生器(PPG)74驱动的马赫曾德尔调制器(MZM)72。这两个路径在他们的远端重新组合并且输出耦合到接收机76。接收机76包括AC耦合的接收机,该AC耦合的接收机包括电放大器(EA)80耦合到其电输出的PIN检测器78。PIN检测器78阈值被设置成1/2(<P1>+<P0>),其中,<P1>和<P0>分别是所调制的光信号的传号(mark)和空号(space)级别上的平均光功率。放大器80的输出耦合到具有7kHz截止频率的高通电滤波器。提供933MHz的贝塞尔(Bessel)低通滤波器用于最佳脉冲重定格式(reformat)。这个测试布置的接收机在本文称为“类型I”。
实验设定允许模拟比CW相干长度更长的路径上的回波所造成的反射生成的串扰。VOA 64用于设置载波对信号(C/S)值,并且PC 68用于最大化来自这两个路径的信号之间的干扰。
在第一测试中,MZM 72首先由27-1比特长的伪随机比特序列(PRBS)以1.25Gb/s数据率来驱动。以10-9的误差率测量功率惩罚,作为C/S的函数。结果在图4中示出为空三角数据点。
在第二测试中,用8B10B编码的PRBS来驱动马赫曾德尔调制器,并且重复测量。由于与8B10B码关联的25%开销,数据序列是156比特长。在这个测试中,高通滤波器82的截止频率改变成100MHz,即高于种子激光器的线宽;这个布置在本文称为“类型II”。使用100MHz高通滤波器除去DC电频率周围的干涉测量噪声分量。结果在图4中示出为空圈数据点。
在第三测试中,使用R-SOA取代马赫曾德尔调制器重复第一和第二测试。R-SOA具有在80mA偏置电流时的20dB小信号增益、3dBm输出饱和功率、1.5dB偏振无关增益以及1.5GHz电带宽。到R-SOA的输入信号具有-10dBm的光功率级。PRBS驱动的R-SOA的结果在图4中示出为实三角数据点,并且8B 10B编码的PRBS驱动的R-SOA的结果在图4中示出为实圈数据点。
当使用PRBS序列时,在-20dB的C/S值开始,功率惩罚变得显著,并且观察到误差率底(floor)在-15dB的C/S周围。当使用8B10B线路编码与类型II接收机一起,对C/S降级的容忍增强并且两个调制器都示出相同的功率惩罚比对C/S。对于马赫曾德尔调制器,测试示出使用8B10B允许在C/S=-14dB处恢复16dB功率惩罚。在R-SOA的情况下,测试示出对于C/S=-10dB功率惩罚中的6dB改进。
图5示出两个C/S值(0dB和-10dB)的眼图,其在用类型I接收机接收PRBS序列以及用类型II接收机接收8B10B编码的序列时被记录。用相同的垂直偏移记录全部眼图。时间尺度是100ps/刻度(division)。
当使用类型I接收机时,噪声主要影响“传号”符号并且当添加串扰时最佳阈值位置急剧改变。相反,如果使用8B10B编码与类型II接收机一起(如在本发明中一样),则最佳阈值位置不改变,因为噪声平均分布在传号与空号级别二者上。
将领会,上述马赫曾德尔调制器简单地用于在测试布置中提供调制的光信号并且在实践中可使用任何反射光调制器,与它是否提供信号增益无关。例如,可使用反射电吸收调制器取代上述R-SOA。还将领会的是,可使用其它DC平衡线路码(包括例如64B66B)取代上述8B10B编码。
参考图6,本发明的第三实施例提供用于反射光网络的光网络单元90。光网络单元(ONU)90基本上与图1的ONU 14相同,并且包括反射光调制器92和传送机控制器94。
在这个例子中,反射光调制器92包括R-SOA,但是它可备选地包括不同类型的反射光调制器,包括反射电吸收调制器(R-EAM)。R-SOA 92布置成接收种子光信号,其被R-SOA反射和调制。传送机控制器94布置成接收数据信号96并且布置成控制R-SOA 92以将数据信号20应用到种子光信号,以形成用于传送的光数据信号。
R-SOA 92具有基本上是1的增益,并且因此对种子光信号或所产生的光数据信号不提供任何放大。将领会,可备选地在增益体制中操作R-SOA 92,其具有更高的增益值以便对光信号应用放大。
传送机控制器94布置成处理所接收的数据信号以基本上防止所产生的光数据信号包括在低于截止频率的频率处的谱分量。截止频率是光数据信号的功率谱密度是光数据信号的峰值功率谱密度的预定百分比所在的频率。在这个例子中,截止频率是在比峰值功率谱密度低25dB的功率谱密度处。以dBm测量功率谱密度。传送机控制器94布置成通过将线路码应用到数据信号来处理数据信号,其在这个例子中包括以以太网8B10B线路码形式出现的DC平衡线路码。
参考图7,本发明的第四实施例提供光接收机100,其基本上与图1的光接收机22相同。光接收机100包括布置成接收光数据信号102的光电检测器106。光电检测器106布置成将接收的光数据信号转变成电信号。光接收机100还包括布置成接收光电检测器106生成的电信号的电高通滤波器104。高通滤波器104具有高于种子光信号的线宽的截止频率,光数据信号102源自种子光信号。在这个例子中,截止频率是在高通滤波器104的-25dB带宽处。
本发明的第五实施例提供在反射光网络中传送数据的方法110。方法110适合于在如上所述的反射光网络10、40中传送数据。
该方法包括接收要传送的数据信号112,处理所接收的数据信号114以及将所处理的数据信号应用到种子光信号以形成光数据信号116。然后传送所产生的光数据信号118。所传送的光数据信号接着被接收并转变成电信号120。将高通滤波器应用于所产生的电信号120。高通滤波器具有高于种子光信号的线宽的截止频率。
对数据信号的处理布置成基本上防止所产生的光数据信号包括在低于截止频率的频率处的谱分量114。截止频率是产生的光信号的功率是其峰值功率的预定百分比所在的频率。例如,截止频率可在峰值功率的-10dB或高达-25dB的功率处,即在比峰值功率低10dB或低高达25dB的功率处。
本发明的第六实施例提供在反射光网络中传送数据的方法130。这个实施例的方法130基本上与之前的图8方法110相同,除了以下修改。对于对应特征保留相同的引用数字。
在这个实施例中,该方法包括通过将DC平衡线路码应用到数据信号132来处理接收的数据信号。DC平衡线路码可包括例如8B10B线路码或64B66B线路码。这两个路码都作用于基本上移除所产生的光数据信号的低频谱内容。例如,在1.25Gb每秒的数据信号上使用8B10B线路码将强烈地减少在所产生的光数据信号的1-100MHz范围中的频率处的谱分量。
本领域技术人员将领会到,可备选地使用移除低频谱分量的其它数据处理技术,包括例如数据加扰。加扰是众所周知的编码技术,其在电信中广泛使用并且作用于避免长的1比特序列,使得能够在接收机处轻易恢复时钟信号。对于本领域技术人员,加扰将是众所周知的,并且因此这里将不详细进行描述。
本发明的第七实施例提供在反射光网络中提供用于传送的光数据信号的方法140。方法140适合于在上述反射光网络中的任何一个中使用。
方法140包括接收要传送的数据信号112.,处理数据信号114以及将所处理的数据信号应用到种子光信号以形成光数据信号116。该方法包括处理所接收的数据信号以基本上防止所产生的光数据信号包括在低于截止频率的频率处的谱分量。对数据信号的处理如上所述与在反射光网络中传送数据的方法110、130相关。
本发明的第八实施例提供包含计算机可读指令的数据载体,所述计算机可读指令用于提供对处理器上可用资源的访问。所述指令包括使得处理器执行在反射光网络中传送数据的上述方法中的任一中的步骤的指令。数据载体可包括硬件存储器装置或存储装置(例如光盘或数字通用光盘),或可包括数据载波信号,通过其可下载所述指令或跨网络传送所述指令。

Claims (17)

1.一种反射光网络,包括:
光网络单元,包括布置成接收种子光信号的反射光调制器和传送机控制器,所述传送机控制器布置成接收数据信号,并且布置成控制所述调制器以将所述数据信号应用到所述种子光信号,以形成光数据信号,所述传送机控制器还布置成处理所述接收的数据信号以基本上防止所述光数据信号包括在低于截止频率的频率处的谱分量,所述截止频率是所述光数据信号的功率谱密度是所述光数据信号的峰值功率谱密度的预定百分比所在的频率;以及
光接收机,布置成接收所述光数据信号,并且包括具有比所述种子光信号的线宽更高的截止频率的电域高通滤波器。
2.如权利要求1所述的反射光网络,其中,所述传送机控制器布置成通过将线路码应用到所述接收的数据信号来处理所述接收的数据信号。
3.如权利要求2所述的反射光网络,其中,所述线路码包括直流平衡线路码。
4.如权利要求1所述的反射光网络,其中,所述传送机控制器包括加扰器,并且所述传送机控制器布置成通过在所述加扰器中加扰所述接收的数据信号来处理所述接收的数据信号。
5.如任何前述权利要求所述的反射光网络,其中,所述高通滤波器截止频率还低于所述数据信号的带宽。
6.如任何前述权利要求所述的反射光网络,其中,所述网络还包括可操作以生成所述种子光信号的种子光源,所述种子光源位于远离所述光网络单元的位置,并且通过光纤链路连接到所述光网络单元。
7.一种用于反射光网络的光网络单元,所述光网络单元包括:
反射光调制器,布置成接收种子光信号;以及
传送机控制器,布置成接收数据信号并且布置成控制所述调制器以将所述数据信号应用到所述种子光信号,以形成光数据信号,
所述传送机控制器还布置成处理所述接收的数据信号以基本上防止所述光数据信号包括在比截止频率更低的频率处的谱分量,所述截止频率是所述光数据信号的功率谱密度是所述光信号的峰值功率谱密度的预定百分比所在的频率。
8.如权利要求7所述的光网络单元,其中,所述传送机控制器布置成通过将线路码应用到所述接收的数据信号来处理所述接收的数据信号。
9.如权利要求8所述的光网络单元,其中,所述线路码包括直流平衡线路码。
10.如权利要求7所述的光网络单元,其中,所述传送机控制器包括加扰器,并且所述传送机控制器布置成通过在所述加扰器中加扰所述接收的数据信号来处理所述接收的数据信号。
11.一种用于反射光网络的光接收机,所述光接收机布置成接收从种子光信号所生成的光数据信号,所述光接收机包括具有比所述种子光信号的线宽更高的截止频率的电域高通滤波器。
12.一种在反射光网络中传送数据的方法,所述方法包括:
接收要传送的数据信号;
处理所述接收的数据信号;
将所述处理的数据信号应用到种子光信号,以形成光数据信号,
所述处理布置成基本上防止所述光数据信号包括在低于截止频率的频率处的谱分量,所述截止频率是所述光数据信号的功率谱密度是所述光信号的峰值功率谱密度的预定百分比所在的频率;
传送所述光数据信号;
接收所述光数据信号并将它转变成电信号;以及
将高通滤波器应用到所述电信号,所述滤波器具有比所述种子光信号的线宽更高的截止频率。
13.如权利要求12所述的方法,其中,所述处理包括将线路码应用到所述接收的数据信号。
14.如权利要求13所述的方法,其中,所述线路码包括直流平衡线路码。
15.如权利要求12所述的方法,其中,所述处理包括加扰所述接收的数据信号。
16.如权利要求12-15中的任一项所述的方法,其中,所述高通滤波器截止频率还低于所述数据信号的带宽。
17.一种提供用于反射光网络中的传送的光数据信号的方法,所述方法包括:
接收要传送的数据信号;
处理所述接收的数据信号;以及
将所述处理的数据信号应用到种子光信号,以形成光数据信号,
所述处理布置成基本上防止所述光数据信号包括在低于截止频率的频率处的谱分量,所述截止频率是所述光数据信号的功率谱密度是所述光信号的峰值功率谱密度的预定百分比所在的频率。
CN200980160365.8A 2009-07-06 2009-07-23 反射光网络以及其中的方法和装置 Expired - Fee Related CN102474358B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP09008848.5 2009-07-06
EP09008848 2009-07-06
EP09164734.7 2009-07-07
EP09164734 2009-07-07
PCT/EP2009/059480 WO2011003481A1 (en) 2009-07-06 2009-07-23 Improvements in reflective optical networks

Publications (2)

Publication Number Publication Date
CN102474358A true CN102474358A (zh) 2012-05-23
CN102474358B CN102474358B (zh) 2014-11-26

Family

ID=42101929

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980160365.8A Expired - Fee Related CN102474358B (zh) 2009-07-06 2009-07-23 反射光网络以及其中的方法和装置

Country Status (4)

Country Link
US (1) US8909048B2 (zh)
EP (1) EP2452452A1 (zh)
CN (1) CN102474358B (zh)
WO (1) WO2011003481A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115804026A (zh) * 2020-07-15 2023-03-14 华为技术有限公司 用于减轻光纤传输系统中多径干扰的装置和方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8644708B2 (en) * 2009-10-21 2014-02-04 Futurewei Technologies Coupled seed light injection for wavelength division multiplexing passive optical networks
CN102859906A (zh) * 2010-04-30 2013-01-02 瑞典爱立信有限公司 无源光学网络
WO2011110126A2 (zh) * 2011-04-22 2011-09-15 华为技术有限公司 自注入光收发模块和波分复用无源光网络系统
CN103703710B (zh) * 2011-07-29 2017-07-04 瑞典爱立信有限公司 光接入网络
US10116389B2 (en) * 2014-06-10 2018-10-30 Telefonaktiebolaget Lm Ericsson (Publ) Optical transceiver
TWI644523B (zh) * 2016-10-06 2018-12-11 國立中山大學 利用光波塑形之訊號處理方法及其裝置
US10411807B1 (en) 2018-04-05 2019-09-10 Nokia Solutions And Networks Oy Optical transmitter having an array of surface-coupled electro-absorption modulators
US10727948B2 (en) 2018-04-05 2020-07-28 Nokia Solutions And Networks Oy Communication system employing surface-coupled optical devices

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3819920A (en) * 1973-01-29 1974-06-25 Singer Co Digital frequency tracker
GB1508995A (en) * 1974-05-17 1978-04-26 Post Office Digital data transmission systems
US4450358A (en) * 1982-09-22 1984-05-22 Honeywell Inc. Optical lithographic system
US5251054A (en) * 1991-10-24 1993-10-05 General Motors Corporation LAN electro-optical interface
US5572612A (en) * 1994-12-14 1996-11-05 Lucent Technologies Inc. Bidirectional optical transmission system
US5661585A (en) * 1995-02-27 1997-08-26 Lucent Technologies Inc. Passive optical network having amplified LED transmitters
US6422467B2 (en) * 1995-12-18 2002-07-23 Metrologic Instruments, Inc. Reading system a variable pass-band
DE19904940A1 (de) * 1999-02-06 2000-12-21 Sel Alcatel Ag Optisches Übertragungssystem sowie Sender und Empfänger
US7088921B1 (en) * 1999-06-11 2006-08-08 Lucent Technologies Inc. System for operating an Ethernet data network over a passive optical network access system
JP3440886B2 (ja) * 1999-06-16 2003-08-25 日本電気株式会社 波長多重光伝送システム
US6785543B2 (en) * 2001-09-14 2004-08-31 Mobile Satellite Ventures, Lp Filters for combined radiotelephone/GPS terminals
US7539416B2 (en) * 2003-12-09 2009-05-26 Electronics And Telecommunications Research Institute Optical network terminal and wavelength division multiplexing based optical network having the same
US7283216B1 (en) * 2004-06-22 2007-10-16 Np Photonics, Inc. Distributed fiber sensor based on spontaneous brilluoin scattering
US7555224B2 (en) * 2005-01-31 2009-06-30 Industrial Technology Research Institute Using superimposed ASK label in an all-optical label swapping system and method thereof
US7689132B2 (en) * 2005-06-07 2010-03-30 Industrial Technology Research Institute Interference-rejection coding method for an optical wireless communication system and the optical wireless communication system thereof
US7627246B2 (en) * 2005-07-22 2009-12-01 Novera Optics, Inc. Wavelength division multiplexing passive optical networks to transport access platforms
US7522842B1 (en) * 2005-09-30 2009-04-21 Nortel Networks Limited Optical transmission system using Raman amplification
KR20070108422A (ko) * 2006-01-09 2007-11-12 한국전자통신연구원 동적 전류 주입에 의한 하향 광신호를 재활용하는 반도체광 증폭기 및 그 구동장치
CN101119163B (zh) * 2006-07-31 2011-08-10 华为技术有限公司 一种实现组播业务的wdm-pon方法、系统及光线路终端
US8644711B2 (en) * 2006-10-20 2014-02-04 Electronics And Telecommunications Research Institute Apparatus and method for OLT and ONU for wavelength agnostic wavelength-division multiplexed passive optical networks
US7601940B2 (en) * 2007-03-22 2009-10-13 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Gain control system for visible light communication systems
CN201118601Y (zh) * 2007-09-14 2008-09-17 扬州西贝光电传输设备工程技术研究中心有限公司 光纤通信系统平台的上行光接收模块
KR100921797B1 (ko) * 2007-12-18 2009-10-15 한국전자통신연구원 파장분할 다중화 방식의 수동형 광가입자망 시스템
KR100975881B1 (ko) * 2007-12-21 2010-08-13 한국전자통신연구원 외부 씨드 광원을 이용한 파장 분할 다중화 수동형광가입자망(wdm-pon)
US7957412B2 (en) * 2008-03-19 2011-06-07 Cray Inc. Lonely pulse compensation
US20100322624A1 (en) * 2008-08-22 2010-12-23 National Taiwan University Of Science And Technology Bidirectional transmission network apparatus based on tunable rare-earth-doped fiber laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115804026A (zh) * 2020-07-15 2023-03-14 华为技术有限公司 用于减轻光纤传输系统中多径干扰的装置和方法

Also Published As

Publication number Publication date
EP2452452A1 (en) 2012-05-16
US20120321316A1 (en) 2012-12-20
CN102474358B (zh) 2014-11-26
WO2011003481A1 (en) 2011-01-13
US8909048B2 (en) 2014-12-09

Similar Documents

Publication Publication Date Title
CN102474358B (zh) 反射光网络以及其中的方法和装置
CN102204137B (zh) 无源光网络
CN112039600B (zh) 使用双工媒体、自零差检测的装置、光收发器和方法
EP2892167A1 (en) Space division multiplexing apparatus including multi-core fiber and selfhomodyne detection method
US8977137B2 (en) Polarization dependent loss compensation
JP2019519991A (ja) データ信号との干渉を低減するための監視信号の偏光変調
Cho et al. Effects of reflection in RSOA-based WDM PON utilizing remodulation technique
US9020356B2 (en) Polarization multiplexed short distance connection
El-Sahn et al. Dense SS-WDM over legacy PONs: smooth upgrade of existing FTTH networks
Šprem et al. Wavelength reuse WDM-PON using RSOA and modulation averaging
Cano et al. Flexible D (Q) PSK 1.25–5 Gb/s UDWDM-PON with directly modulated DFBs and centralized polarization scrambling
CN106792281B (zh) 光线路终端及光网络单元
US8909050B2 (en) Passive optical networks
Mazurek et al. Towards 1 Tbit/s SOA‐based 1310 nm transmission for local area network/data centre applications
US10256934B2 (en) Chirp managed laser generation for next generation passive optical networks
Li et al. A high-speed and long-reach PAM4 optical wireless communication system
Lebreton et al. Low complexity FDM/FDMA approach for future PON
Huszaník et al. Simulation of Downlink of 10G-PON FTTH in the city of Košice.
Ivanovs et al. Realization of HDWDM transmission system
Khan et al. Power budget analysis of colorless hybrid WDM/TDM-PON scheme using downstream DPSK and re-modulated upstream OOK data signals
Salgals et al. Research of M-PAM and duobinary modulation formats for use in high-speed WDM-PON systems
Naim et al. Design of time-wavelength division multiplexed passive optical network (TWDM-PON) with monitoring system based on fiber Bragg grating (FBG)
Kurbatska et al. Investigation on maximum available reach for different modulation formats in WDM-PON systems
Downie et al. Flexible 10.7 Gb/s DWDM transmission over up to 1200 km without optical in-line or post-compensation of dispersion using MLSE-EDC
Aleksejeva et al. Research on NRZ-OOK and duobinary modulation formats for C and L band 25 Gbit/s WDM-PON transmission systems

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141126

Termination date: 20190723