CN102470013B - 可视化外科手术轨迹 - Google Patents

可视化外科手术轨迹 Download PDF

Info

Publication number
CN102470013B
CN102470013B CN201080029329.0A CN201080029329A CN102470013B CN 102470013 B CN102470013 B CN 102470013B CN 201080029329 A CN201080029329 A CN 201080029329A CN 102470013 B CN102470013 B CN 102470013B
Authority
CN
China
Prior art keywords
surgical trajectories
trajectories
surgical
making
visual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201080029329.0A
Other languages
English (en)
Other versions
CN102470013A (zh
Inventor
H.卡格南
H.C.F.马滕斯
K.T.多兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN102470013A publication Critical patent/CN102470013A/zh
Application granted granted Critical
Publication of CN102470013B publication Critical patent/CN102470013B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/105Modelling of the patient, e.g. for ligaments or bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/107Visualisation of planned trajectories or target regions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B2090/364Correlation of different images or relation of image positions in respect to the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/376Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
    • A61B2090/3762Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy using computed tomography systems [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis

Abstract

提供一种用于使外科手术轨迹(32、101、42、46、47)可视化的方法。该方法包括:接收(71)进行外科手术的区域的3D成像信息(31),以及使所接收的3D成像信息(31)与来自数字化解剖图谱的数据相结合(72)。因此,得到进行外科手术的区域的组合地图。该组合地图包括:在进行外科手术的区域中的解剖结构(102、103、104)的希望位置。该方法进一步地包括以下步骤:接收(73)用于外科手术的外科手术轨迹(32、101、42、46、47);确定(74)外科手术轨迹(32、101、42、46、47)与解剖结构(102、103、104)的交叉(43、44)的位置;并且在与外科手术轨迹(32、101、42、46、47)对准的坐标系统中提供(75)交叉(43、44)的位置。

Description

可视化外科手术轨迹
技术领域
本发明涉及用于使外科手术轨迹(surgicaltrajectory)可视化(visualizing)的方法。该方法将3D成像信息与数字化解剖模型相结合,以用于在3D成像信息中分割(segmenting)解剖结构。计划的外科手术轨迹投影到组合图像上,用于使外科手术轨迹可视化。
该发明还涉及用于执行所述方法的系统和计算机程序产品。
背景技术
这样的方法是例如从Guo等人的“DevelopmentandApplicationofFunctionalDatabasesforPlanningDeep-BrainNeurosurgicalProcedures”中已知。根据Guo等人,已知的是将单个病人手术前的MR图像与数字化解剖图谱(anatomicalatlas)相结合。仅仅根据MR图像,很难或者甚至不可能可视地区分小的不同神经结构,例如,底丘脑核(STN),其通常在深部脑刺激过程中被确定为目标。当使用来自解剖图谱的附加信息和/或概率性的功能图谱,可以增强用于根据该操作的外科手术计划定位外科手术目标的准确性和精确度。在Guo等人中,基于可以在外科手术之前得到的附加标准电生理学信息的概率性功能图谱被用于帮助外科手术目标确定以及向3D图像数据提供解剖标记。结合的图像和标准的电生理学信息一起用作实现探针沿着实际的或者仿真的外科手术轨迹的位置的显示。探针的位置显示在3D图像容积中以及病人的2D切片中。
然而,由于任何配准方法固有的配准误差,图谱与手术前MR图像的配准具有有限的精确度。例如分割的图像处理可以用来进一步地改进解剖标记。然而,该技术还具有固有的有限准确性。此外,在外科手术中,植入的探针可以无意地偏离计划的轨迹(例如,由于诸如探针轻微弯曲的缺点)或者解剖可以由于外科手术过程本身而轻微移位(例如,在组织中植入探针生成将组织推向一边的小力场;在外科手术时脑脊液的损失可以引起组织中的压力改变,其导致也称为“脑移位”的较大变形)。在小目标中精确地植入探针因此通常要求术中测量(intra-operativemeasurement)(例如,电生理学测量),以确切地定位目标并且校正误差,这是由于手术前计划的不准确或者由于外科手术时的解剖移位或者由于探针对于计划轨迹的(无意的)偏离。正确的解释这种术中测量(intra-operativemeasurement)对于准确的目标定位是关键的,但是由于当执行该分析时数据的复杂以及需由专家处理的信息量,可以是执行非常困难的分析。
Guo等人所描述的方法的问题是:所得到的数据不给外科医生提供足够清楚和明确的信息,该信息能够帮助医生识别期望的精神结构的类型以及沿着计划且横过的外科手术路径来定位外科手术目标。
发明目的
本发明的目的是为外科医生提供更清楚地显示足够清楚信息的方法,以便于知道希望什么类型的神经结构沿着计划且横过的(traversed)外科手术路径。
发明内容
根据本发明的第一方面,该目的是通过提供使外科手术轨迹可视化的方法来实现的,该方法包括:接收进行外科手术的区域中的3D成像信息,使所接收的3D成像信息与来自解剖模型库(例如,数字化解剖图谱)的数据相结合以得到进行外科手术的区域的组合地图(该组合地图包括:进行外科手术的区域中的解剖结构的希望位置),接收用于外科手术的外科手术轨迹,确定外科手术轨迹与解剖结构的交叉(intersection)的位置,以及提供在与外科手术轨迹对准的坐标系统中交叉的位置。
由于该方法,用户接收什么解剖结构被希望沿着外科手术轨迹在什么位置处的清楚概观。实际上,根据本发明的方法在外科手术路径上绘制3D的解剖信息。利用根据本发明的方法,用户知道什么结构被希望沿着计划的或者导航的外科手术路径在什么位置处。因此,更容易的是,躲避关键结构,在特殊的解剖结构处定位外科手术目标或者例如释放某种药物。
根据本发明的方法结合:(i)3D医学成像信息,与(ii)在3D医学成像信息中用于分割解剖结构的解剖模型库,以及(iii)指示在外科手术介入期间从外科手术探针所得到的解剖或者组织类型的局部测量。模型库与3D成像信息相结合,以提供成像信息的3D解剖标记(例如,通过将数字解剖图谱与MRI配准)。朝向至少一个外科手术目标的至少一个计划的外科手术轨迹与解剖标记的3D图像相结合,并且具有解剖标记的3D成像信息的轨迹横截面(cross-section)在外科手术轨迹上投影为解剖标记。
可选地,医学成像数据和相关联的解剖标记可以通过围术期成像(perioperativeimaging)(例如,使用平面3Dx射线系统、介入的MRI或者3D超声波)在术中更新。使用至少一个外科手术探针的局部测量可以使得沿着计划的外科手术轨迹在术中支持识别探针的测量定位处的解剖类型。从局部测量所提取的数据是与标记的外科手术轨迹共同可视,以帮助它们的解释以及支持外科手术目标的术中准确定位。从局部测量所提取的数据可以进一步地与标记的外科手术轨迹相结合,用于计算机处理(例如,使用特征聚类分析算法),以提取指示某种解剖的典型特征,其可以呈现给用户以便于支持目标定位。
在优选的实施例中,组合地图包括:进行手术的区域中的统计地图,该统计地图包括:在区域中的位置处存在解剖结构的可能性。在这个统计地图中,从一个解剖结构向另一解剖结构的转变不是突变的,而是逐渐地过渡。交叉(intersection)因而不代表在其中一个结构位于另一个结构附近的单个点。代替的,交叉是外科手术路径的部分,其中,第一结构的可能性逐步减少而至少一个其它结构的可能性逐渐增加。例如,在沿着外科手术路径的某一位置处,可能存在30%的可能性是在第一结构,并且70%的可能性是在第二结构。在某些位置处,甚至超过两个不同的解剖结构可以具有明显的可能性。要指出的是,使用突变交叉的方法仅仅使用0%和100%的可能性。
为了清楚地指出哪些结构将被希望在外科手术轨迹中的哪个位置处,交叉的位置可以提供为交叉和外科手术轨迹中目标之间的距离。这使得用户可以看出特定的解剖结构将希望离目标区多近。外科手术轨迹可以是计划的或者导航轨迹。当计划轨迹时,该方法有助于找到比较安全并且容易进入目标的路线。当使用外科手术工具来导航轨迹时,根据本发明的方法可以帮助用户来看出他当前正工作于何种类型的解剖结构,并且,可能地,当沿着路径进一步朝向目标结构时可以希望何种类型的结构。
在根据本发明的方法的实际实施例中,外科手术工具是电生理学探针,并且该方法进一步地包括:接收来自探针的电生理学信号的步骤,从所接收的电生理学信号提取特征的步骤,使所提取的特征与坐标系统中的位置相关的步骤,以及使与坐标系统中相关位置结合的所提取特征可视化的步骤。
在实施例中,使用脊柱周围的区域中的CT或者类似CT的3D图像数据。通过使用分割和解剖模型,3D图像被解剖地标记,并且外科手术轨迹被计划。具有用于光反射测量的集成光纤的外科手术探针用于在探针尖端(“光针”)处的局部解剖绘图。3D图像信息和相关联的解剖标记通过使用平面旋转x射线系统由手术期间的3Dx射线来更新。在不同的探针位置处得到光谱。光谱和一个地图(map)一起被可视化,该地图基于3D(自动标记的)图像中外科手术探针尖端的导航轨迹使得某些解剖标记相对于外科手术探针的尖端的接近度和方向性可视化。
参考以下所描述的实施例,本发明的这些和其它方面是显而易见的且将被阐述。
附图说明
在图中:
图1示出了包括来自MRI的数据、图谱和外科手术轨迹的图像,
图2示出了电生理学记录的输出的实例;
图3示出了根据本发明的系统的框图;
图4示出了解剖部分和外科手术轨迹的交叉的位置的计算;
图5、6和7示出了由根据本发明的系统所提供的外科手术轨迹的典型可视化;
图8a和8b示出了与关于外科手术路径的解剖信息相结合的神经-EP参数值的另一个可视化;
图9示出了噪声等级对应发放率(firingrate),以及
图10示出了根据本发明的方法的流程图。
具体实施方式
以下,将通过与使用电生理学探针的神经外科(neurosurgery)相关的典型实施例来描述本发明。然而,本发明不限于以神经-EP系统方式使用。根据本发明,其它外科手术介入也可以得益,在其中,关于沿着外科手术轨迹(计划的和/或导航的)的解剖信息的知识对于治疗和/或诊断的目的是有用的。本发明可以例如适于光针导向的介入。
图1示出了包括来自MRI的数据、图谱和三个外科轨迹101的图像100。已知的是:使用用于外科手术轨迹的术前计划的这种图像。在该图像中,图谱信息用于指示在MRI图像中所示出的脑区域中的特定结构102、103、104。该图像100示出了人脑横截面的MRI图像。外科手术轨迹101朝向计划的外科手术目标104贯穿(runthrough)脑组织。在该实例中,外科手术目标104是底丘脑核(STN)104的特定部分。在该实例中,选择轨迹101,以使得另一个结构102将不被用于外科手术的外科手术工具所接触或者损坏。例如,非常重要的是,避免损坏主要的血管或者脑室。
图1中的图像100帮助计划外科手术操作。当执行外科手术时,已知的是:使用电生理学(EP)记录。图2示出了EP记录的输出200的实例。这种神经-EP记录通常使用所谓的微电极针来执行;这些微电极针是在顶端处携带微小电极(近似10微米直径)的针,并且可以用来从电极顶端附近的单个脑细胞(神经元)采集电信号(“尖峰”)。在典型的过程中,神经生理学家将研究在多个位置处的记录(直到100个位置;每个记录典型地是10-20s的数据)。通常这种记录在增长的深度位置处(具有典型的0.5mm的步长,即,刚好在临床MRI系统中可得到的分辨率以下)被执行。基于不同记录的统计特征(例如,诸如突发性(burstiness)和平均发放率、噪声幅度等的尖峰时间特征)的比较,神经生理学家必须将所测量的数据转换为所研究定位的功能特性,即,向所记录的位置分配功能解剖。如图2中所清楚的,EP记录的分析是复杂的并且要求大量的专门技能,特别是当其需要在时间压力下执行时。因此,根据本发明,提供一种用于使外科手术轨迹可视化的系统。
图3示出了根据本发明的系统10的框图。系统10包括用于接收进行手术的区域的3D成像信息31的输入11。3D图像信息31可以来自例如MRI或者CT扫描器。输入11还被提供用于接收限定计划的或者导航的外科手术轨迹的轨迹信息32。可选的,例如如果系统10用于在外科手术操作过程中使实时的轨迹信息可视化,则输入11还提供用于接收来自EP记录系统的EP-数据33。处理器13被提供用于处理输入数据31、32、33。数据处理包括许多步骤,其中一些是被要求的以及一些是可选的。首先,所接收的3D图像信息31与来自数字化解剖图谱的数据相结合,以获得进行手术的区域的组合地图。解剖图谱数据可以来自在存储设备12上存储的数据库,所述存储设备12是系统10的一部分。可替代地,系统10经由封闭网络或者广域网(例如,因特网)与这个数据库耦合,从而接收来自数据库的图谱数据(atlasdata)。在该实施例中,所谓的解剖图谱用来获得相关区的解剖数据。然而,该解剖数据还可以以其它方式来提供,例如,通过合适的成像形式。一个实例是强度值分割,耦合到不同类型组织(例如,骨、血、等等)的CT图像以获得解剖数据。通常,解剖数据可以从以合适方式存储的解剖模型获得。
组合地图包括:在进行手术的区域中的解剖结构的希望位置。使用用于发现3D图像信息中结构之间转变的图像识别技术以及通过将3D图像与来自解剖图谱的信息进行比较,来创建组合地图。组合地图可以例如是描述重要解剖结构的希望位置的图像或者一系列数据点。地图可以看起来像图1中所示出的100。当组合地图是可得到的时,处理器13使用所接收的外科手术轨迹数据32来确定外科手术轨迹相对于解剖结构的交叉的位置。当这些交叉的位置是已知时,还知道什么解剖结构位于外科手术轨迹上。这使得可以设计和跟随不损害关键结构(例如,大血管)的轨迹。
这些交叉的位置被设置在与外科手术轨迹对准的坐标系统中。这个坐标系统有助于提供希望沿着轨迹的解剖结构的直观概况。例如,交叉的位置可以设置为距离轨迹的起始点或者目标点一段距离。距离优选地沿着轨迹来测量。当交叉的位置是已知时,信息可以通过例如在显示器15上显示轨迹或者轨迹的图形表示来可视化。通过使用例如文本标记、颜色编码或者加强,显示重要的结构相对于外科手术轨迹的位置。
图4图示了解剖部分41和外科手术轨迹42的交叉43、44的位置的计算。在神经外科中,通常超过一个针用于外科手术操作。典型地,使用五个微记录针,其是所谓的“中心的”、“侧面的”、“中间的”、“前面的”、以及“后面的”。关于解剖结构41,每个针具有其自己的轨迹42、46、47和其自己的交叉43、44。此外,每个外科手术轨迹通常将在轻微不同的目标点45处结束。因而将对于每个针独立计算交叉43、44的位置,以及对于每个针,所述位置43、44设置在与各自的外科手术路径42、46、47对准的坐标系统中。
图5、6和7示出了由根据本发明的系统10所提供的外科手术轨迹的典型可视化。在图5中,位于沿着五个EP-针的计划外科手术路径的解剖结构被可视化。外科手术过程将底丘脑核(STN)作为目标。在距离目标点0mm的距离处,所有五个针在底丘脑核中。对于中心51、侧面2和中间53的针,确定了:在底丘脑核之前,横过未定区(ZI)和丘脑(Th)。后面54和前面55的针也希望横过丘脑(Th)。当针插入病人的脑超出目标点时,可以进入黑质致密部(SNc)。正如可以从图5中所看出的,并非所有的针将到达距离目标相同距离处的相同结构。根据本发明的系统和方法使得可能在希望针到达什么解剖结构时亲眼看见(seefor)每个针。
图5中的阴影条形图部分代表计划外科手术路径上所希望的解剖结构。当执行外科手术时,该图片可以用于向外科医生示出什么是所希望的并且针当前位于什么位置。在当前深度处,画出线56来示出针当前所在的位置。在图5中,所有的针都在丘脑(Th)中。在该实施例中,所有的针一起移动,并且距离它们各自的目标点具有相同的距离。可替代地,针是独立可操作的,并且每个针具有其自己对应的当前深度等级。
在图6中,仅仅一个针61的轨迹可视。在该实施例中,外科手术轨迹与解剖结构的交叉(intersection)没有示出为从一个结构到另一个结构的突变过渡。将经历外科手术的区域的3D图像与来自解剖图谱的数据相结合的过程导致了用于具有某些误差范围的不同结构的希望位置。特别地,在接近于从一个组织类型过渡为另一组织类型的位置处,可能不会完全确信解剖结构的类型。因此,该实施例使用进行外科手术的区域的统计地图。统计地图包括在某一位置处存在解剖结构的可能性。当使用这个统计地图来使针61的外科手术路径可视化时,结果可以是像图6中的条形图,例如,在“当前深度”处,针可能在丘脑(Th)中。当针将横过路径远一点时,其将到达一个位置,此处不知道是否它已经在未定区(ZI)中或者仍然在丘脑(Th)中。
图7示出了在五个外科手术轨迹62、63、64、65、66处的解剖结构以及从那些相同定位处术中所得到的神经-EP数据中所提取的参数值82、83、84、85、86的可视化。这些显示有助于确定过程,因为解剖和EP数据在简单概观(overview)中可以得到。神经-EP数据可以从一个或者多个用于例如在深部脑刺激(DBS)疗法中定位功能目标的探针得到。自动的神经-EP分析方法对于从原始数据中提取某些信号特征是已知的。通过使这些所提取的特征与用于沿着(计划的或者横过的)路径使解剖可视化的坐标系统中的位置相关,所提取值的相关性可以更容易地被评估。当呈现所提取特征以及与这些所提取特征对应的希望解剖位置时,通常在从神经-EP数据中提取特征时发生的假阴性和/或假阳性更容易被识别。代替从神经-EP数据23中提取特征,可以在神经-EP数据已经被记录的对应位置处使它们本身可视化。
在实施例中,使用脊椎周围的区域中的CT或者类似CT的3D图像数据。通过使用分割和解剖模型,3D图像被自动地标记,且外科手术轨迹被计划。具有用于光反射测量的集成光纤的外科手术探针用于在探针尖端处(“光子针”)的局部解剖绘图。3D图像信息和相关联的解剖标签通过使用平面旋转x射线系统由围术期(perioperative)3Dx射线来更新。在不同的探针位置处得到光谱。光谱和地图一起可视化,所述地图基于3D(自动标记的)图像中外科手术探针尖端的导航轨迹,使某些解剖标记相对于外科手术探针的尖端的接近度和方向性可视化。
图8a和8b示出了与关于外科手术路径的解剖信息相结合的神经-EP参数值的另外可视化。图8a示出了噪声等级(y轴)相对于沿着外科手术轨迹的深度(x轴)。该轨迹的目标是被限定在0mm深度处的底丘脑核(STN)。正如图中可以看出的,接近目标区的噪声等级为高。当进入STN(由三角形91示出)时观察到突变增加。在STN内部,噪声等级始终保持为高(由圆形92示出),并且当离开STN时,噪声等级急剧下降。然而,噪声等级保持在进入STN之前所观察的基线94以上,并且在进入黑质(SN,由方块93所示出时)进一步增加。根据图8a,清楚的是,噪声等级独自不足以区分STN和SN。在解剖结构中观察到高的噪声等级。当以根据本发明的方法将解剖知识和3D图像与神经EP信号相结合时,不同的解剖结构可以更容易且可靠地区分。
图8b示出了发放率(y轴)对应沿着外科手术轨迹的深度(x轴)。STN的入口标注有非常高的发放率(由三角形91示出)。发放率在STN内部(由圆形92示出)降低,并且当进入SN(由三角形93示出)时再次增加。因此,发放率独自不足以区分STN和SN。同样,由于测量对接近神经单元的敏感性,例如发放率的测量示出了高变化性。在沿着外科手术轨迹且在STN内部的某些深度处,发放率降到基线94以下。这些位置由圆形92a来指示。单独根据发放率来判定,外科医生可能做出错误的决定。当以根据本发明的方法将解剖知识和3D图像与神经EP信号相结合时,不同的解剖结构可以被更容易且可靠地区分。
在图9中,噪声等级(y轴)被标出对应发放率(x轴):在缺少深度信息时,将噪声等级和发放率相结合清楚地将STN和SN与其它区域区分。STN(三角形91和圆形92)和SN(方形93)内部的所有测量都恰好在基线94之上。所有其它的测量在基线94之下。然而,这些测量不足以用于在STN(圆形92)和SN(三角形91)之间进行区分。利用根据本发明的方法和系统,深度信息被用于区分STN和SN,并且在图中指出这些,例如,对于不同深度处的数据点使用不同的形状或者颜色。
图10示出了根据本发明的方法的流程图。该方法以图像接收步骤71开始,用于接收进行外科手术的区域的3D成像信息。3D成像信息可以例如由MRI或者CT扫描器得到。在结合步骤72中,所接收的3D成像信息与来自数字化的解剖图谱的数据相结合,以获得进行外科手术的区域的组合地图。组合地图包括进行外科手术的区域中的解剖结构的希望位置。在轨迹输入步骤73中,接收用于外科手术的至少一个外科手术轨迹。轨迹可以接收为通过进行外科手术的区域的计划路线。所接收的轨迹信息还可以包括外科手术工具的当前位置。外科手术工具的一连串实际位置形成横过轨迹。在轨迹输入步骤73中所接收的外科手术轨迹可以是计划的或者已经横过的轨迹。可替代地,所接收的轨迹是计划的和实际横过轨迹的结合。插补和推断可以用于形成或者调整外科手术轨迹。
在交叉计算步骤74中,计算至少一个外科手术轨迹与解剖结构表面的交叉的位置。这些位置在输出步骤75中设置为输出。为了易于理解位置数据,交叉的位置提供在与外科手术轨迹对准的坐标系统中,以使得易于理解在沿着外科手术轨迹的不同位置处所希望的什么解剖结构。所提供的位置可以然后用于使外科手术轨迹可视化,例如,像图5、6和7的一个中所示出的。
将要理解的是,本发明还延伸到计算机程序,特别是在载体上或者中的计算机程序,其适于实施本发明。程序可以以源代码、目标代码、源和目标代码中间的代码(例如,部分编译的形式)的形式,或者以适于在实现根据本发明的方法中使用的任何其它形式。还要理解的是,这个程序可以具有许多不同的构造设计。例如,实现根据本发明的方法或者系统的功能的程序代码可以可以被细分为一个或者多个子程序。在这些子程序中分配功能的许多不同的方法对于本领域技术人员是显而易见的。子程序可以一起存储在一个可执行文件中,以形成自含式程序。这个可执行文件可以包括计算机可执行指令,例如,处理器指令和/或编译器指令(例如,JAVA编译器指令)。可替代地,一个或者多个或者全部的子程序可以存储在至少一个外部库文件中,并且例如在运行时静态地或者动态地与主程序相关联。主程序含有对至少一个子程序的至少一个调用。同样,子程序可以包括彼此的功能调用。与计算机程序产品相关的实施例包括计算机可执行指令,其对应于所提到的方法中至少一个的处理步骤中每一个。这些指令可以细分为子程序,和/或存储在可以静态或者动态地关联的一个或者多个文件中。与计算机程序产品相关的另一个实施例包括计算机可执行指令,其对应于所提到的系统和/或产品中至少一个的装置中的每一个。这些指令可以细分为子程序,和/或存储在可以静态或者动态地关联的一个或者多个文件中。
计算机程序的载体可以是能够携带程序的任何实体或者设备。例如,载体可以包括存储介质,例如,ROM(例如,CDROM或者半导体ROM)或者磁性记录介质(例如,软盘或者硬盘)。此外,载体可以是可传送的载体,例如,电或者光信号,其可以经由电缆或光缆或者由无线电或其它方式来传送。当程序体现在这个信号中时,载体可以由这种电缆或者其它设备或装置来构成。可替代地,载体可以是在其中嵌入程序的集成电路,集成电路适于执行相关方法或者在执行相关方法时使用。
要指出的是,上述实施例说明而不是限制本发明,并且本领域技术人员将能够设计许多可替代地实施例,而不脱离所附权利要求的范围。在权利要求中,括号之间的任何附图标记将不解释为限制权利要求。使用动词“包括”和其结合将不排除存在不同于权利要求中所陈述那些的元件或者步骤。元件之前的冠词“一”不排除存在多个这种元件。本发明通过可以借助于包括许多独立元件的硬件以及借助于合适地编程计算机来执行。在列举了许多装置的设备权利要求中,这些装置中的几个可以由一个或者相同项的硬件来体现。在不同的从属权利要求中叙述某些措施的仅有事实不表示这些措施的结合不能使用以受益。

Claims (13)

1.一种用于使外科手术轨迹(32、101、42、46、47)可视化的系统(10),该系统(10)包括:
-输入(11),其接收进行外科手术的区域的3D成像信息(31)和用于外科手术的外科手术轨迹(32、101、42、46、47),
-存储器(12),其存储所接收的3D成像信息(31)、外科手术轨迹(32、101、42、46、47)和解剖模型库,
-处理器(13),其操作用于:
-将3D成像信息(31)与来自解剖模型库的数据相结合,以得到进行手术的区域的组合地图,该组合地图包括:进行手术的区域中的解剖结构(102、103、104)的希望位置,以及
-使用组合地图和外科手术轨迹来确定至少一个外科手术轨迹(32、101、42、46、47)与解剖结构(102、103、104)的交叉(43、44)的位置,以及
-输出(15),用于在与外科手术轨迹(32、101、42、46、47)对准的坐标系统中提供交叉(43、44)的位置。
2.如权利要求1所述的用于使外科手术轨迹(32、101、42、46、47)可视化的系统(10),其中,该组合地图包括:进行外科手术的区域的统计地图,该统计地图包括:在区域中的位置处存在解剖结构(102、103、104)的可能性。
3.如权利要求1所述的用于使外科手术轨迹(32、101、42、46、47)可视化的系统(10),其进一步地包括:在与外科手术轨迹(32、101、42、46、47)对准的坐标系统中显示交叉(43、44)的位置。
4.如权利要求1所述的用于使外科手术轨迹(32、101、42、46、47)可视化的系统(10),其中,交叉(43、44)的位置提供为所述交叉(43、44)和外科手术轨迹(32、101、42、46、47)的目标(45)之间的距离。
5.如权利要求1所述的用于使外科手术轨迹(32、101、42、46、47)可视化的系统(10),其中,外科手术轨迹(32、101、42、46、47)是计划的外科手术轨迹(32、101、42、46、47)。
6.如权利要求1所述的用于使外科手术轨迹(32、101、42、46、47)可视化的系统(10),其中,外科手术工具的当前位置被绘制在与外科手术轨迹(32、101、42、46、47)对准的坐标系统上。
7.如权利要求6所述的用于使外科手术轨迹(32、101、42、46、47)可视化的系统(10),其中,外科手术工具是电生理学探针,该系统进一步地接收来自所述电生理学探针的电生理学信号(33),以及使电生理学信号在与外科手术轨迹(32、101、42、46、47)对准的坐标系统中的相关位置处可视化。
8.如权利要求6所述的用于使外科手术轨迹(32、101、42、46、47)可视化的系统(10),其中,外科手术工具是具有用于反射测量的集成光纤的探针,该系统进一步地从所述具有用于反射测量的集成光纤的探针获得来自反射测量的光谱;以及使光谱在与外科手术轨迹(32、101、42、46、47)对准的坐标系统中的相关位置处可视化。
9.如权利要求6所述的用于使外科手术轨迹(32、101、42、46、47)可视化的系统(10),其中,外科手术工具是电生理学探针,该系统进一步地接收来自所述电生理学探针的电生理学信号(33),从所接收的电生理学信号(33)提取特征,使所提取的特征与坐标系统中的位置相关,以及使与外科手术轨迹(32、101、42、46、47)对准的坐标系统中相关位置结合的所提取特征可视化。
10.如权利要求9所述的用于使外科手术轨迹(32、101、42、46、47)可视化的系统(10),其中,电生理学探针是神经-电生理学探针。
11.如权利要求6所述的用于使外科手术轨迹(32、101、42、46、47)可视化的系统(10),其中,外科手术轨迹(32、101、42、46、47)包括:由外科手术工具朝向当前位置行进的至少部分路径。
12.如权利要求6所述的用于使外科手术轨迹(32、101、42、46、47)可视化的系统(10),其中,外科手术轨迹(32、101、42、46、47)包括:由外科手术工具从当前位置开始将行进的至少部分希望路径。
13.如权利要求1所述的用于使外科手术轨迹(32、101、42、46、47)可视化的系统(10),其中,3D成像信息(31)包括:MRI或者CT扫描图像。
CN201080029329.0A 2009-06-29 2010-06-21 可视化外科手术轨迹 Active CN102470013B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09163970 2009-06-29
EP09163970.8 2009-06-29
PCT/IB2010/052785 WO2011001322A1 (en) 2009-06-29 2010-06-21 Visualizing surgical trajectories

Publications (2)

Publication Number Publication Date
CN102470013A CN102470013A (zh) 2012-05-23
CN102470013B true CN102470013B (zh) 2016-01-20

Family

ID=42727607

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080029329.0A Active CN102470013B (zh) 2009-06-29 2010-06-21 可视化外科手术轨迹

Country Status (7)

Country Link
US (1) US8831307B2 (zh)
EP (1) EP2448513B1 (zh)
JP (1) JP5650732B2 (zh)
CN (1) CN102470013B (zh)
BR (1) BRPI1010151B8 (zh)
RU (1) RU2559917C2 (zh)
WO (1) WO2011001322A1 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8992427B2 (en) 2012-09-07 2015-03-31 Gynesonics, Inc. Methods and systems for controlled deployment of needle structures in tissue
US9592095B2 (en) 2013-05-16 2017-03-14 Intuitive Surgical Operations, Inc. Systems and methods for robotic medical system integration with external imaging
WO2014194167A1 (en) * 2013-05-31 2014-12-04 University Of Washington Through Its Center For Commercialization Surgery pathway guidance and boundary system
WO2015023787A1 (en) * 2013-08-13 2015-02-19 Coffey Dane Computer visualization of anatomical items
KR102354675B1 (ko) 2013-08-15 2022-01-24 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 의료 절차 확인을 위한 시스템 및 방법
WO2015149170A1 (en) * 2014-03-31 2015-10-08 Functional Neuromodulation, Inc. Systems and methods for determining a trajectory for a brain stimulation lead
US9999772B2 (en) 2014-04-03 2018-06-19 Pacesetter, Inc. Systems and method for deep brain stimulation therapy
EP3145432B1 (en) 2014-05-23 2018-07-18 Koninklijke Philips N.V. Imaging apparatus for imaging a first object within a second object
WO2016046289A1 (en) * 2014-09-24 2016-03-31 Koninklijke Philips N.V. Surgical guide-wire placement planning
US10991069B2 (en) * 2014-10-08 2021-04-27 Samsung Electronics Co., Ltd. Method and apparatus for registration of medical images
WO2016182997A2 (en) 2015-05-10 2016-11-17 Alpha Omega Neuro Technologies, Ltd. Automatic brain probe guidance system
US11051889B2 (en) 2015-05-10 2021-07-06 Alpha Omega Engineering Ltd. Brain navigation methods and device
US11234632B2 (en) 2015-05-10 2022-02-01 Alpha Omega Engineering Ltd. Brain navigation lead
US9905044B1 (en) * 2016-08-25 2018-02-27 General Electric Company Systems and methods for functional imaging
EP3831281A1 (en) * 2016-08-30 2021-06-09 The Regents of The University of California Methods for biomedical targeting and delivery and devices and systems for practicing the same
CN106529188B (zh) * 2016-11-25 2019-04-19 苏州国科康成医疗科技有限公司 应用于手术导航的图像处理方法
US11842030B2 (en) 2017-01-31 2023-12-12 Medtronic Navigation, Inc. Method and apparatus for image-based navigation
RU187072U1 (ru) * 2018-04-04 2019-02-18 Общество с ограниченной ответственностью "Кронк" (ООО "Кронк") Сапфировый нейрохирургический зонд для удаления опухолей головного и спинного мозга под контролем комбинированной спектроскопической диагностики
US11701181B2 (en) * 2019-04-24 2023-07-18 Warsaw Orthopedic, Inc. Systems, instruments and methods for surgical navigation with verification feedback
US11730443B2 (en) * 2019-06-13 2023-08-22 Fujifilm Sonosite, Inc. On-screen markers for out-of-plane needle guidance
US11309072B2 (en) 2020-04-21 2022-04-19 GE Precision Healthcare LLC Systems and methods for functional imaging
CN114366309A (zh) * 2022-01-17 2022-04-19 上海锦立城医疗科技有限公司 一种具有神经监测功能的手术机器人

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5026A (en) * 1847-03-20 Cut-off valve
US8007A (en) * 1851-04-01 crosby
US8009A (en) * 1851-04-01 Improvement in mills for grinding paints and drugs
US5638819A (en) * 1995-08-29 1997-06-17 Manwaring; Kim H. Method and apparatus for guiding an instrument to a target
US20010034530A1 (en) * 2000-01-27 2001-10-25 Malackowski Donald W. Surgery system
CA2334495A1 (en) * 2001-02-06 2002-08-06 Surgical Navigation Specialists, Inc. Computer-aided positioning method and system
RU2290055C2 (ru) * 2004-04-06 2006-12-27 Государственное образовательное учреждение высшего профессионального образования Новосибирская государственная медицинская академия Министерства здравоохранения Российской Федерации Нейронавигационная эндоскопическая система
DE102005037000B4 (de) * 2005-08-05 2011-06-01 Siemens Ag Vorrichtung zur automatisierten Planung eines Zugangspfades für einen perkutanen, minimalinvasiven Eingriff
US8150497B2 (en) 2006-09-08 2012-04-03 Medtronic, Inc. System for navigating a planned procedure within a body
US20080071292A1 (en) * 2006-09-20 2008-03-20 Rich Collin A System and method for displaying the trajectory of an instrument and the position of a body within a volume
US20080183188A1 (en) 2007-01-25 2008-07-31 Warsaw Orthopedic, Inc. Integrated Surgical Navigational and Neuromonitoring System
JP5551957B2 (ja) * 2010-03-31 2014-07-16 富士フイルム株式会社 投影画像生成装置およびその作動方法、並びに投影画像生成プログラム

Also Published As

Publication number Publication date
RU2559917C2 (ru) 2015-08-20
US20120099770A1 (en) 2012-04-26
JP2012531936A (ja) 2012-12-13
BRPI1010151A2 (pt) 2016-03-29
CN102470013A (zh) 2012-05-23
WO2011001322A1 (en) 2011-01-06
BRPI1010151B8 (pt) 2021-06-22
EP2448513B1 (en) 2017-08-09
BRPI1010151B1 (pt) 2020-11-10
RU2012102923A (ru) 2013-08-10
JP5650732B2 (ja) 2015-01-07
US8831307B2 (en) 2014-09-09
EP2448513A1 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
CN102470013B (zh) 可视化外科手术轨迹
NL2018529B1 (en) Trajectory alignment system and methods
JP6568478B2 (ja) 低侵襲治療のための計画、誘導およびシミュレーションシステムおよび方法
CN1907233B (zh) 自动规划经由皮肤的最小侵入手术进入路径的装置和方法
Ganslandt et al. Neuronavigation: concept, techniques and applications
US10492758B2 (en) Device and method for guiding surgical tools
CN102448366B (zh) 使用针设备在介入期间重新校准预先记录的图像
US10144637B2 (en) Sensor based tracking tool for medical components
KR20190058528A (ko) 가이드되는 시술을 위한 시스템
US11172993B2 (en) Sensored surgical tool and surgical intraoperative tracking and imaging system incorporating same
US7744607B2 (en) Marking catheter for placement using frameless stereotaxy and use thereof
CN105163684A (zh) 手术数据的联运同步
CN104394764A (zh) 用于mr-引导的组织间介入的专用用户接口
US10682126B2 (en) Phantom to determine positional and angular navigation system error
US20050228251A1 (en) System and method for displaying a three-dimensional image of an organ or structure inside the body
US11622699B2 (en) Trajectory alignment system and methods
US20080130965A1 (en) Method and apparatus for parameter assisted image-guided surgery (PAIGS)
CA2927381C (en) Trajectory alignment system and methods
CN107049371B (zh) 一种前列腺穿刺术活检取出方法及装置
KR100957713B1 (ko) 수술용 항법 장치의 작동 방법
IKEDA et al. Cranionavigator Combining a High-speed Drill and a Navigation System for Skull Base Surgery—Technical Note—
US20220331014A1 (en) Endoscope with procedure guidance
CN116236280A (zh) 一种基于多模态图像融合的介入治疗引导方法及系统
KRISHNAN et al. Automated Marker Detection for Patient Registration in Image Guided Neurosurgery

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant