CN102468848A - Phase-locked loop with correcting function and correcting method thereof - Google Patents
Phase-locked loop with correcting function and correcting method thereof Download PDFInfo
- Publication number
- CN102468848A CN102468848A CN2010105541903A CN201010554190A CN102468848A CN 102468848 A CN102468848 A CN 102468848A CN 2010105541903 A CN2010105541903 A CN 2010105541903A CN 201010554190 A CN201010554190 A CN 201010554190A CN 102468848 A CN102468848 A CN 102468848A
- Authority
- CN
- China
- Prior art keywords
- reference voltage
- phase
- frequency division
- loop
- locked loop
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 25
- 238000012360 testing method Methods 0.000 claims abstract description 56
- 238000012937 correction Methods 0.000 claims abstract description 8
- 229920000729 poly(L-lysine) polymer Polymers 0.000 description 18
- 239000003990 capacitor Substances 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 238000013461 design Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 3
- 238000013016 damping Methods 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Landscapes
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
Abstract
本发明提供一种锁相回路,包含充电泵浦、分频器、电压检测器、控制模块及校正模块。当一预设电流量与一预设分频量被采用,电压检测器测量与锁相回路之输出频率相关之一电压,以产生第一参考电压。当一测试电流量与该预设分频量被采用,电压检测器测量该电压,以产生第二参考电压。当该预设电流量与除一测试分频量被采用,电压检测器测量该电压,以产生第三参考电压。该控制模块根据这些电流量、分频量及参考电压估计该锁相回路的回路增益。该校正模块根据该回路增益校正该锁相回路。
The invention provides a phase-locked loop, which includes a charging pump, a frequency divider, a voltage detector, a control module and a correction module. When a preset current amount and a preset frequency division amount are used, the voltage detector measures a voltage related to the output frequency of the phase-locked loop to generate a first reference voltage. When a test current amount and the preset frequency division amount are used, the voltage detector measures the voltage to generate a second reference voltage. When the preset current amount and the divide-by-one test frequency division amount are used, the voltage detector measures the voltage to generate a third reference voltage. The control module estimates the loop gain of the phase-locked loop according to the current quantity, the frequency division quantity and the reference voltage. The calibration module calibrates the PLL according to the loop gain.
Description
技术领域 technical field
本发明与锁相回路相关,并且尤其与锁相回路的校正方法相关。The present invention relates to phase-locked loops, and in particular to methods of correcting phase-locked loops.
背景技术 Background technique
在现今的电脑系统和通信系统中,能提供具有准确频率的振荡信号的锁相回路扮演了不可或缺的重要角色。以无线通信系统为例,其传送端通常利用锁相回路所产生的振荡信号为发送信号的参考基准,锁相回路的锁定速度、回路频宽和突波(spur)能量等特性都会直接影响无线信号的品质。In today's computer systems and communication systems, a phase-locked loop that can provide an oscillating signal with an accurate frequency plays an indispensable and important role. Taking the wireless communication system as an example, the transmitting end usually uses the oscillating signal generated by the phase-locked loop as the reference for sending the signal. The quality of the signal.
图1所示为第一型(type-I)锁相回路的架构图。此回路10包含相位检测器11、充电泵浦12、由电阻R和电容C组成的滤波器13、压控振荡器14以及分频器15。由于电阻R在压控振荡器14的输入端和接地端之间形成一漏电路径,无论回路10是否处于锁定状态,相位检测器11仍必须输出周期性脉冲,令充电泵浦12为压控振荡器14的输入端充电,以补偿经由电阻R流失的电荷。在锁相回路稳定时,充电与放电达到平衡,上述脉冲的周期等于参考信号的周期。该周期性脉冲的存在,会对压控振荡器14输出端的振荡信号形成干扰。参考信号与反馈信号的相位差愈大,该脉冲愈宽,其能量愈高。以振荡信号的频率为3.66GHz,而参考信号的频率为26MHz的情况为例。压控振荡器14的输出信号的频谱中,除了出现在3.66GHz的主成分之外,在3.66GHz±26MHz两处也会出现所谓的突波。许多无线通信标准都会对突波能量的上限作出规范。第一型锁相回路的缺点在于该充电脉冲通常会造成过高的突波能量。FIG. 1 shows a structure diagram of a first type (type-I) phase-locked loop. The loop 10 includes a phase detector 11 , a charge pump 12 , a filter 13 composed of a resistor R and a capacitor C, a voltage-controlled oscillator 14 and a frequency divider 15 . Since the resistor R forms a leakage path between the input terminal of the voltage-controlled oscillator 14 and the ground terminal, no matter whether the loop 10 is locked or not, the phase detector 11 must still output periodic pulses, so that the charge pump 12 is a voltage-controlled oscillator. The input terminal of the device 14 is charged to compensate the charge lost through the resistor R. When the phase-locked loop is stable, charging and discharging are balanced, and the period of the above-mentioned pulse is equal to the period of the reference signal. The existence of the periodic pulse will interfere with the oscillating signal at the output end of the voltage-controlled oscillator 14 . The larger the phase difference between the reference signal and the feedback signal, the wider and higher the energy of the pulse. Take the case where the frequency of the oscillation signal is 3.66 GHz and the frequency of the reference signal is 26 MHz as an example. In the frequency spectrum of the output signal of the voltage-controlled oscillator 14, in addition to the main component appearing at 3.66 GHz, so-called spikes also appear at two places at 3.66 GHz±26 MHz. Many wireless communication standards will regulate the upper limit of the burst energy. A disadvantage of the first type of phase-locked loop is that the charging pulse usually results in too high a surge energy.
图2所示为第二型(type-II)锁相回路的架构图。此回路20包含相位检测器21、两充电泵浦22A和22B、由电阻R、电容C1/C2/C3、运算放大器23A组成的主动式滤波器23、压控振荡器24以及分频器25。在回路20由未锁定状态进入锁定状态的过程中,第二充电泵浦22B负责根据相位检测器21所测得的相位差异对主动式滤波器23中的电容C1充电/放电,直到图中所标示的参考电压VREF被逐步提升/拉低至等于回路20锁定时压控振荡器24输入端应得的控制电压。在锁定之前,VREF和该控制电压通常还会经过一段时间的减震(damping)才趋于稳定。此架构虽无第一型锁相回路突波能量过高的问题,但第二充电泵浦22B对电容C1充电/放电的速度会直接限制回路20的锁定速度。此外,该减震现象也会导致回路20所需的锁定时间加长。FIG. 2 shows the structure diagram of the second type (type-II) phase-locked loop. The
无论是以上哪一种架构的锁相回路,其中的参数都可能随着制程、温度、电压等环境因素变动,有相当程度的漂移,导致锁相回路实际运作时的许多特性(例如频宽)不同于原本设计时希望达到的预设值。Regardless of the phase-locked loop with any of the above structures, the parameters may vary with environmental factors such as manufacturing process, temperature, and voltage, and have a considerable degree of drift, resulting in many characteristics (such as bandwidth) of the actual operation of the phase-locked loop. It is different from the preset value expected to be achieved during the original design.
发明内容 Contents of the invention
为解决上述问题,本发明提出一种锁相回路校正方法,藉由提供测试电流量和测试分频量并观察回路中的电压变化,找出回路增益的误差量。In order to solve the above problems, the present invention proposes a phase-locked loop calibration method, by providing a test current and a frequency division value and observing the voltage change in the loop to find out the error of the loop gain.
根据本发明的一具体实施例为一种配合锁相回路的校正方法。该方法首先执行的步骤为:于锁相回路的充电泵浦提供一预设电流量并于锁相回路的分频器提供一预设分频量后,测量与该锁相回路的一输出频率相关的一电压,以产生第一参考电压值。接着,该方法执行一测试步骤:于该充电泵浦提供一测试电流量后测量该电压,以产生第二参考电压值。接着,该方法执行另一测试步骤:于该分频器提供一测试分频量后测量该电压,以产生第三参考电压值,其中该测试分频量为一特定值。根据该预设电流量、该预设分频量、该测试电流量、该测试分频量、该第一参考电压值、该第二参考电压值、该第三参考电压值及一参考频率,可估计该锁相回路的回路增益(loop gain),并根据该回路增益校正该锁相回路。A specific embodiment according to the present invention is a calibration method in conjunction with a phase-locked loop. The first step of the method is: after the charging pump of the phase-locked loop provides a preset current amount and the frequency divider of the phase-locked loop provides a preset frequency division amount, measure an output frequency related to the phase-locked loop A related voltage is used to generate a first reference voltage value. Then, the method executes a test step: measuring the voltage after the charge pump provides a test current, so as to generate a second reference voltage value. Then, the method executes another test step: measuring the voltage after the frequency divider provides a test frequency division value to generate a third reference voltage value, wherein the test frequency division value is a specific value. According to the preset current amount, the preset frequency division amount, the test current amount, the test frequency division amount, the first reference voltage value, the second reference voltage value, the third reference voltage value and a reference frequency, The loop gain of the PLL can be estimated, and the PLL can be calibrated according to the loop gain.
根据本发明的校正方法可被广泛应用在各种不同架构的锁相回路。关于本发明的优点与精神可以藉由以下的发明详述及附图得到进一步的了解。The correction method according to the present invention can be widely applied to PLLs of various architectures. The advantages and spirit of the present invention can be further understood through the following detailed description of the invention and the accompanying drawings.
附图说明 Description of drawings
图1所示为传统第一型锁相回路的架构图。Fig. 1 shows the structure diagram of the traditional first-type phase-locked loop.
图2所示为传统第二型锁相回路的架构图。FIG. 2 shows the structure diagram of the traditional second-type phase-locked loop.
图3为根据本发明的第一具体实施例中的锁相回路方块图。FIG. 3 is a block diagram of a phase-locked loop according to a first embodiment of the present invention.
图4为比较本实施例与先前技术的一电压锁定状态范例。FIG. 4 is an example of a voltage lock state comparing the present embodiment with the prior art.
图5为根据本发明的第二具体实施例中的锁相回路方块图。FIG. 5 is a block diagram of a phase-locked loop according to a second embodiment of the present invention.
图6(A)为根据本发明的第三具体实施例中的锁相回路方块图。FIG. 6(A) is a block diagram of a phase-locked loop according to a third embodiment of the present invention.
图6(B)为根据本发明的第四具体实施例中的锁相回路方块图。FIG. 6(B) is a block diagram of a phase-locked loop according to a fourth embodiment of the present invention.
图7为根据本发明的第五具体实施例中的锁相回路校正方法流程图。FIG. 7 is a flowchart of a PLL calibration method according to a fifth specific embodiment of the present invention.
主要元件符号说明Description of main component symbols
10、20:锁相回路 11、21:相位检测器10, 20: Phase-locked loop 11, 21: Phase detector
12:充电泵浦 13:滤波器12: Charge pump 13: Filter
14、24:压控振荡器 15、25:分频器14, 24: voltage controlled oscillator 15, 25: frequency divider
22A:第一充电泵浦 22B:第二充电泵浦22A:
23:主动式滤波器 23A:运算放大器23:
30:锁相回路 31A:第一相位检测器30: Phase-locked
31B:第二相位检测器 32:充电泵浦31B: second phase detector 32: charge pump
33:主动式滤波器 33A:运算放大器33:
34:压控振荡器 35:分频器34: Voltage controlled oscillator 35: Frequency divider
36:数字/模拟转换器 37:开关36: Digital/Analog Converter 37: Switch
38:切换模块 39:电压检测器38: Switching module 39: Voltage detector
40:控制模块 41:校正模块40: Control module 41: Calibration module
42:积分三角调制器 43:预先加强电路42: Sigma-Delta Modulator 43: Pre-emphasis Circuit
S71~S78:流程步骤S71~S78: process steps
具体实施方式 Detailed ways
根据本发明的第一具体实施例为图3所绘示的锁相回路。此回路30包含两相位检测器31A和31B、一充电泵浦32、由电阻R、电容C、运算放大器33A组成的主动式滤波器33、一压控振荡器34、一分频器35以及一数字/模拟转换器36。The first embodiment according to the present invention is the phase locked loop shown in FIG. 3 . This loop 30 includes two-
如图3所示,主动式滤波器33包含连接至充电泵浦32的第一输入端、连接至数字/模拟转换器36的第二输入端,以及用以提供一控制信号的输出端。电容C与电阻R并联耦接于该第一输入端及该输出端间。压控振荡器34的功用在于根据该控制信号产生一振荡信号。分频器35则是负责将该振荡信号分频,以产生一反馈信号。根据输入回路30的参考信号及该反馈信号,第一相位检测器31A产生一相位差异信号。充电泵浦32会根据该相位差异信号提供一充电电流至主动式滤波器33的第一输入端。As shown in FIG. 3 , the
第二相位检测器31B是用来检测参考信号及反馈信号的相位差的正负,其输出信号为一数字参考电压。举例而言,该数字参考电压可为八位元的二进制式信号;此电压可以是将大小各有不同的多段式数字单元值送入一数字累加器(未绘示于图中)产生。上述相位差的正负将决定累加器的输入信号的正负,而累加器输出值的变化速度取决于累加器的输入信号的大小。比方说,当参考信号的相位领先反馈信号的相位,该累加器的输入信号为正。相对地,当参考信号的相位落后反馈信号的相位,该累加器的输入信号为负。接着,数字/模拟转换器36负责将该数字参考电压转换为一模拟参考电压,并将该模拟参考电压提供至主动式滤波器33的第二输入端。The
与传统第二型锁相回路不同的是,在回路30尚未锁定之前,由第二相位检测器31B和数字/模拟转换器36组成的数字式充电路径可被设计为直接根据相位差异的正负及大小提供特定的充电量。图4所示为比较本实施例与先前技术的一电压锁定状态范例;图中的横轴为时间,纵轴则是主动式滤波器33的输出端的电压值(亦即提供给压控振荡器34的控制电压)。由图4可看出,若采用如图2的传统架构,该电压在趋于稳定之前会出现一段时间的减震。相对地,若采用根据本发明的架构,数字/模拟转换器36所提供的模拟参考电压可快速的逼近某个稳定值,藉此令主动式滤波器33的输出端的电压快速的稳定。Different from the traditional second-type phase-locked loop, before the loop 30 is locked, the digital charging path composed of the
举例而言,如图4中标示的区段O-A,第二相位检测器31B可将累加器的输入固定为一预设较大单元值,令主动式滤波器33的输出端的电压被快速地拉升。接着,如图4中标示的区段A-B,当经过某设定好的时间,第二相位检测器31B可将该累加器的输入改为另一预设中等单元值,令主动式滤波器33的输出端的电压上升斜率减缓,且逐渐趋近锁定状态。如图4所示,若采用根据本实施例中的架构,锁相回路可更较先前技术快进入锁定状态。换句话说,藉由适当控制提供给主动式滤波器33的参考电压,根据本发明的做法可以避免减震并有效缩短回路30进入锁定状态所需的时间。实务上不限于图4所示,上述累加器的输出初始值可为可设定式,例如被设定为锁相回路的电源电压VDD的二分之一或任何经设计选订的预设值。若令主动式滤波器33的输出端的电压由VDD/2稳定达到目标电压,因所须变化的压差变少,锁定速度更快。For example, as indicated in section O-A of FIG. 4, the
请参阅图5,图5为根据本发明的第二具体实施例的方块图。相较于图3所示,本实施例中的回路30进一步包含用以取代上述累加器的电容CP、开关37和切换模块38。电容CP耦接于主动式滤波器33的该第二输入端,开关37则是耦接于该第二输入端及数字/模拟转换器36间。当锁相回路30将由撷取(acquisition)模式进入追踪(tracking)模式,切换模块38会控制开关37以截断数字/模拟转换器36与该第二输入端间的连结。Please refer to FIG. 5 , which is a block diagram according to a second specific embodiment of the present invention. Compared with that shown in FIG. 3 , the circuit 30 in this embodiment further includes a capacitor C P , a
在开关37处于令数字/模拟转换器36与该第二输入端相连的状况下,此锁相回路的运作方式与图3所示大致相同,亦等效于图2所示的第二型锁相回路。当开关37被控制为截断数字/模拟转换器36与该第二输入端间的连结,相当于由电容CP所储存的电荷继续供应主动式滤波器33所需的参考电压。该连结被截断后,此回路的运作模式即等效于第一型锁相回路。When the
图5所示的锁相回路的优点在于:(1)相较于传统的第一型锁相回路,此架构的撷取模式主要由数字式充电路径提供滤波器所需的参考电压,因此可避免减震并有效缩短回路30进入锁定状态所需的时间;(2)将进入追踪模式后改以第一型锁相回路的模式运作,即毋须采用最小位元十分精细的数字/模拟转换器36,亦可达成令压控振荡器34的控制电压精确锁定的效果。The advantages of the phase-locked loop shown in Figure 5 are: (1) Compared with the traditional first-type phase-locked loop, the acquisition mode of this architecture mainly uses the digital charging path to provide the reference voltage required by the filter, so it can Avoid shock absorption and effectively shorten the time required for the loop 30 to enter the locked state; (2) change the mode operation of the first-type phase-locked loop after entering the tracking mode, that is, it is not necessary to use a very fine digital/analog converter with the
根据本发明的第三具体实施例为包含校正功能的锁相回路。请参阅图6(A)。除了图3已绘示的元件之外,本实施例中的锁相回路进一步包含一电压检测器39、一控制模块40和一校正模块41。于此实施例中,充电泵浦32被设计为可选择性地提供一预设电流量Inorm或一测试电流量Itest,分频器35则被设计为可选择性地提供一预设分频量Nnorm或一特定的测试分频量Ntest。举例而言,预设电流量Inorm和预设分频量Nnorm可以是该锁相回路在正常运作状态下所采用的电流量和分频量,但不以此为限。A third embodiment according to the present invention is a phase-locked loop including a correction function. Please refer to Figure 6(A). In addition to the elements shown in FIG. 3 , the PLL in this embodiment further includes a
在提供预设电流量Inorm和预设分频量Nnorm的情况下,此锁相回路的回路增益Gloop可表示如下:In the case of providing a preset current amount I norm and a preset frequency division amount N norm , the loop gain G loop of the phase-locked loop can be expressed as follows:
其中R代表主动式滤波器33中的电阻值,KVCO代表压控振荡器34的电压-频率转换系数。R和KVCO这两个数值通常都会随着制程、温度、电压等环境因素变动,有相当程度的漂移,导致锁相回路实际运作时的许多特性(例如频宽)不同于原本设计时希望达到的预设值。本实施例所提供之校正功能的目标为找出回路增益Gloop的漂移量,并据此修正该锁相回路或是其他配合该锁相回路的周边电路。Where R represents the resistance value in the
首先,控制模块40令充电泵浦32提供预设电流量Inorm且令分频器35提供预设分频量Nnorm。在该锁相回路锁定之后,电压检测器39即测量与该振荡信号的输出频率相关的一电压,以产生第一参考电压值V1。于此实施例中,电压检测器39所测量者为第二相位检测器31B所提供的该数字参考电压。实务上,电压检测器39的测量对象亦可为数字/模拟转换器36输出的模拟参考电压,或是主动式滤波器33提供给压控振荡器34的控制电压。相较于测量模拟电压,测量数字电压具有简便快速的好处。First, the
接着,控制模块40改令充电泵浦32提供测试电流量Itest且令分频器35继续提供预设分频量Nnorm。在锁相回路趋于锁定之后,电压检测器39再次测量该数字参考电压,以产生第二参考电压值V2。由于测试电流量Itest不同于预设电流量Inorm,第二参考电压值V2也会不同于先前所测得的第一参考电压值V1,并导致压控振荡器34输出的振荡信号的频率被改变。相较于该数字参考电压为第一参考电压值V1时该振荡信号的频率,此条件造成的频率变化量Δf1可表示如下:Next, the
Δf1=ΔV1×KVCO=ΔI×R×KVCO,……(式二)Δf 1 =ΔV 1 ×K VCO =ΔI×R×K VCO , ...... (Formula 2)
其中ΔI代表预设电流量Inorm与测试电流量Itest的差异,ΔV1代表第一参考电压值V1与第二参考电压值V2的差异。ΔI represents the difference between the preset current I norm and the test current I test , and ΔV 1 represents the difference between the first reference voltage V 1 and the second reference voltage V 2 .
接下来,控制模块40改令充电泵浦32提供预设电流量Inorm且令分频器35提供测试分频量Ntest。在锁相回路趋于锁定之后,电压检测器39再次测量该数字参考电压,以产生第三参考电压值V3。由于测试分频量Ntest不同于预设分频量Nnorm,第三参考电压值V3也会不同于先前所测得的第一参考电压值V1,并导致压控振荡器34输出的振荡信号的频率被改变。相较于该数字参考电压等于第一参考电压值V1时该振荡信号的频率,此条件造成的频率变化量Δf2可表示如下:Next, the
Δf2=ΔV2×KVCO=ΔN×Fref,……(式三)Δf 2 =ΔV 2 ×K VCO =ΔN×F ref , ... (Formula 3)
其中ΔN代表测试分频量Ntest与预设分频量Nnorm的差异,ΔV2代表第一参考电压值V1与第三参考电压值V3的差异,Fref则代表一参考频率(亦即输入此锁相回路的参考信号的频率)。Wherein ΔN represents the difference between the test frequency division amount N test and the preset frequency division amount N norm , ΔV 2 represents the difference between the first reference voltage value V 1 and the third reference voltage value V 3 , F ref represents a reference frequency (also That is, the frequency of the reference signal input to this phase-locked loop).
将式二与式三相除,可得到:Divide formula 2 and formula 3 to get:
由式四可推得:It can be deduced from formula 4:
结合式五及式一,锁相回路的回路增益Gloop可被表示为:Combining Equation 5 and Equation 1, the loop gain G loop of the phase-locked loop can be expressed as:
由式六可看出,即使R和KVCO这两个数值的漂移量为未知数,根据预设电流量Inorm、预设分频量Nnorm、测试电流量Itest、测试分频量Ntrst、第一参考电压值V1、第二参考电压值V2、第三参考电压值V3及参考频率Fref,控制模块40仍可估计该锁相回路的回路增益Gloop。更进一步地,控制模块40可找出现有的回路增益Gloop与原设计希望达成(亦即在R和KVCO未发生漂移的情况下)的回路增益Gloop的差异。It can be seen from Equation 6 that even if the drift of the two values of R and K VCO is unknown, according to the preset current I norm , the preset frequency division N norm , the test current I test , and the test frequency division N trst , the first reference voltage value V 1 , the second reference voltage value V 2 , the third reference voltage value V 3 and the reference frequency F ref , the
校正模块41用以根据控制模块40所估测的回路增益Gloop校正该锁相回路。于此实施例中,校正模块41根据上述回路增益Gloop与理想值的差异校正压控振荡器34。于实际应用中,校正模块41亦可以主动式滤波器33中的滤波元件(例如电阻R或电容C)为校正标的。The
请参阅图6(B),图6(B)为根据本发明的第四具体实施例中的锁相回路方块图。此实施例与前一个实施例的主要差别在于,本实施例的控制模块40和分频器35间连接有一积分三角调制器(sigma-delta(∑Δ)modulator)42,用以调制该测试分频量,藉此可达成令分频量差异ΔN为非整数的效果。此外,当该锁相回路用于数字调制发射机,校正模块41的校正对象可为其中的预先加强电路(pre-emphasis circuit)43。预先加强电路43的作用在于提供一高通滤波效果,以补偿锁相回路的低通滤波特性对调制信号造成的衰减。Please refer to FIG. 6(B). FIG. 6(B) is a block diagram of a phase-locked loop according to a fourth embodiment of the present invention. The main difference between this embodiment and the previous embodiment is that a sigma-delta modulator (sigma-delta (∑Δ) modulator) 42 is connected between the
实务上,预先加强电路43的设计会与回路增益Gloop相关。因此,当回路增益Gloop发生漂移时,预先加强电路43中的参数也可能需要随着调整。本实施例中的校正模块41即根据控制模块40所估算的该回路增益Gloop校正预先加强电路43。以上范例用以说明控制模块40所估测的回路增益Gloop亦可用于校正配合该锁相回路的周边电路,而非限定于该锁相回路本身的主要功能区块。In practice, the design of the
须说明的是,上述校正方式可应用于各种包含充电泵浦及分频器的电路,不以图6(A)或图6(B)所示者为限。It should be noted that the above calibration method can be applied to various circuits including charge pumps and frequency dividers, not limited to those shown in FIG. 6(A) or FIG. 6(B).
本发明的第五具体实施例为一种配合一锁相回路的校正方法;该锁相回路包含一充电泵浦及一分频器。该校正方法包含如图7所示的步骤。首先,步骤S71为于该充电泵浦提供一预设电流量Inorm并于该分频器提供一预设分频量Nnorm。接着,步骤S72为待回路锁定后,测量与该锁相回路的一输出频率相关的一电压,以产生第一参考电压值V1。步骤S73为于该充电泵浦改提供一测试电流量Itest并于该分频器提供该预设分频量Nnorm。步骤S74为待回路锁定后,再次测量该电压,以产生第二参考电压值V2。The fifth embodiment of the present invention is a calibration method with a phase-locked loop; the phase-locked loop includes a charge pump and a frequency divider. The calibration method includes the steps shown in FIG. 7 . Firstly, step S71 is to provide a preset current I norm to the charge pump and a preset frequency division N norm to the frequency divider. Next, step S72 is to measure a voltage related to an output frequency of the phase-locked loop to generate a first reference voltage value V 1 after the loop is locked. Step S73 is to provide a test current I test to the charge pump and provide the preset frequency division N norm to the frequency divider. Step S74 is to measure the voltage again after the loop is locked, so as to generate a second reference voltage V 2 .
接着,在步骤S75中,该充电泵浦提供该预设电流量Inorm,且该分频器提供一特定的测试分频量Ntest。步骤S76则是待回路锁定后,再次测量该电压,以产生第三参考电压值V3。步骤S77系根据预设电流量Inorm、预设分频量Nnorm、测试电流量Itest、测试分频量Ntest、第一参考电压值V1、第二参考电压值V2、第三参考电压值V3及一参考频率Fref,估计该锁相回路的回路增益Gloop。步骤S78则是根据回路增益Gloop校正该锁相回路。Next, in step S75 , the charge pump provides the preset current I norm , and the frequency divider provides a specific test frequency division N test . Step S76 is to measure the voltage again after the loop is locked, so as to generate the third reference voltage V 3 . Step S77 is based on the preset current I norm , the preset frequency division N norm , the test current I test , the test frequency division N test , the first reference voltage V 1 , the second reference voltage V 2 , the third The loop gain G loop of the PLL is estimated with reference voltage V 3 and a reference frequency F ref . Step S78 is to calibrate the PLL according to the loop gain G loop .
本实施例中估计回路增益Gloop和校正锁相回路的详细方法与前一个实施例相同,因此不再赘述。需说明的是,步骤S73~步骤S74和步骤S75~步骤S76的顺序可互换。此校正方法可被应用在各种不同架构的锁相回路,不以图6(A)或图6(B)所示者为限。The detailed method of estimating the loop gain G loop and calibrating the phase-locked loop in this embodiment is the same as that of the previous embodiment, so details are not repeated here. It should be noted that the order of steps S73 to S74 and steps S75 to S76 may be interchanged. This correction method can be applied to PLLs with various architectures, not limited to those shown in FIG. 6(A) or FIG. 6(B).
如上所述,本发明提出的锁相回路以数字式充电路径取代先前技术中由充电泵浦和电容组成的模拟式充电路径。根据本发明的数字式充电路径可被设计为直接根据相位正负差异提供特定的充电量,藉此稳定拉高提供给主动式滤波器的参考电压,进而避免减震并有效锁相回路进入锁定状态所需的时间。相较于先前技术,根据本发明的锁相回路具有锁定速度快且突波能量低的优点。As mentioned above, the phase-locked loop proposed by the present invention replaces the analog charging path composed of charge pump and capacitor in the prior art with a digital charging path. The digital charging path according to the present invention can be designed to provide a specific charging amount directly according to the positive and negative phase difference, thereby stably pulling up the reference voltage provided to the active filter, thereby avoiding shock absorption and effectively locking the phase-locked loop The time required for the state. Compared with the prior art, the phase-locked loop according to the invention has the advantages of fast locking speed and low surge energy.
藉由以上较佳具体实施例的详述,希望能更加清楚描述本发明的特征与精神,而并非以上述所揭示的较佳具体实施例来对本发明的范畴加以限制。相反地,其目的是希望能涵盖各种改变及具相等性的安排于本发明所欲申请的专利范围的范畴内。Through the above detailed description of the preferred embodiments, it is hoped that the features and spirit of the present invention can be described more clearly, rather than limiting the scope of the present invention by the preferred embodiments disclosed above. On the contrary, the intention is to cover various changes and equivalent arrangements within the scope of the claimed patent scope of the present invention.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010554190.3A CN102468848B (en) | 2010-11-11 | 2010-11-11 | Phase-locked loop with correcting function and correcting method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010554190.3A CN102468848B (en) | 2010-11-11 | 2010-11-11 | Phase-locked loop with correcting function and correcting method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102468848A true CN102468848A (en) | 2012-05-23 |
CN102468848B CN102468848B (en) | 2014-07-02 |
Family
ID=46072094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010554190.3A Expired - Fee Related CN102468848B (en) | 2010-11-11 | 2010-11-11 | Phase-locked loop with correcting function and correcting method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102468848B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104135278A (en) * | 2014-05-27 | 2014-11-05 | 英属开曼群岛威睿电通股份有限公司 | Gain measurement system and method of voltage-controlled oscillator |
CN105024695A (en) * | 2015-07-29 | 2015-11-04 | 深圳市科利通电子有限公司 | Frequency synthesizer and initial phase synchronization method thereof |
CN106921390A (en) * | 2015-12-24 | 2017-07-04 | 财团法人工业技术研究院 | Frequency synthesizer and frequency synthesizing method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7176763B2 (en) * | 2004-04-26 | 2007-02-13 | Samsung Electronics Co., Ltd. | Phase-locked loop integrated circuits having fast phase locking characteristics |
CN101582695A (en) * | 2009-06-19 | 2009-11-18 | 广州润芯信息技术有限公司 | Phase lock loop frequency synthesizer with quick lock function |
CN101588176A (en) * | 2009-06-18 | 2009-11-25 | 广州润芯信息技术有限公司 | Phase-locked loop frequency synthesizer with loop gain calibration function |
CN101640534A (en) * | 2009-08-14 | 2010-02-03 | 东南大学 | Full digital phase-locked loop applying rapid frequency capture method |
-
2010
- 2010-11-11 CN CN201010554190.3A patent/CN102468848B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7176763B2 (en) * | 2004-04-26 | 2007-02-13 | Samsung Electronics Co., Ltd. | Phase-locked loop integrated circuits having fast phase locking characteristics |
CN101588176A (en) * | 2009-06-18 | 2009-11-25 | 广州润芯信息技术有限公司 | Phase-locked loop frequency synthesizer with loop gain calibration function |
CN101582695A (en) * | 2009-06-19 | 2009-11-18 | 广州润芯信息技术有限公司 | Phase lock loop frequency synthesizer with quick lock function |
CN101640534A (en) * | 2009-08-14 | 2010-02-03 | 东南大学 | Full digital phase-locked loop applying rapid frequency capture method |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104135278A (en) * | 2014-05-27 | 2014-11-05 | 英属开曼群岛威睿电通股份有限公司 | Gain measurement system and method of voltage-controlled oscillator |
US9784770B2 (en) | 2014-05-27 | 2017-10-10 | Intel Corporation | Devices and methods of measuring gain of a voltage-controlled oscillator |
CN104135278B (en) * | 2014-05-27 | 2017-12-15 | 英特尔公司 | Voltage-controlled oscillator gain measurement system and method |
CN105024695A (en) * | 2015-07-29 | 2015-11-04 | 深圳市科利通电子有限公司 | Frequency synthesizer and initial phase synchronization method thereof |
CN105024695B (en) * | 2015-07-29 | 2018-07-31 | 深圳市科利通电子有限公司 | A kind of initial phase synchronous method of frequency synthesizer and the frequency synthesizer |
CN106921390A (en) * | 2015-12-24 | 2017-07-04 | 财团法人工业技术研究院 | Frequency synthesizer and frequency synthesizing method |
CN106921390B (en) * | 2015-12-24 | 2020-03-03 | 财团法人工业技术研究院 | Frequency synthesizer and frequency synthesizing method |
Also Published As
Publication number | Publication date |
---|---|
CN102468848B (en) | 2014-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI419472B (en) | Phase-locked loop | |
TWI419471B (en) | Phase-locked loop with calibration function and calibration method thereof | |
US10581444B2 (en) | Apparatus and method for automatic bandwidth calibration for phase locked loop | |
US7800452B2 (en) | Phase locked loop circuit | |
US8188778B2 (en) | Calibration for phase-locked loop | |
US8427243B2 (en) | Signal generating circuit and signal generating method | |
US9007109B2 (en) | Automatic loop-bandwidth calibration for a digital phased-locked loop | |
US11043953B2 (en) | Method and apparatus for calibration of voltage controlled oscillator | |
US10862427B1 (en) | Advanced multi-gain calibration for direct modulation synthesizer | |
US9350296B1 (en) | Systems and methods for calibrating a dual port phase locked loop | |
JPS60203007A (en) | Frequency modulator circuit | |
Staszewski et al. | RF built-in self test of a wireless transmitter | |
US11418204B2 (en) | Phase lock loop (PLL) with operating parameter calibration circuit and method | |
CN108667455B (en) | Lock loop circuit with reference signal provided by untrimmed oscillator | |
CN110324038A (en) | Slope generation is quickly established using phaselocked loop | |
CN102468848A (en) | Phase-locked loop with correcting function and correcting method thereof | |
CN102468844B (en) | Phase-locked loop | |
JP4500362B2 (en) | Phase-locked loop circuit | |
CN110690899B (en) | Gain calibration method and module of high-pass path in two-point modulation phase-locked loop | |
Pichler et al. | Frequency-sweep linearization for FMCW sensors with high measurement rate | |
Unterassinger et al. | Two on-chip bandwidth calibration methods for phase-locked loops used in wireless transceiver applications | |
Sappok et al. | Step Response Detection Technique for Self-Calibrating Predistortion GFSK Σ Δ Modulation Loops | |
JP2001237696A (en) | Circuit and method for evaluating pll circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140702 Termination date: 20191111 |