CN102456839A - Organic electroluminescent device and manufacturing method thereof - Google Patents

Organic electroluminescent device and manufacturing method thereof Download PDF

Info

Publication number
CN102456839A
CN102456839A CN2010105186846A CN201010518684A CN102456839A CN 102456839 A CN102456839 A CN 102456839A CN 2010105186846 A CN2010105186846 A CN 2010105186846A CN 201010518684 A CN201010518684 A CN 201010518684A CN 102456839 A CN102456839 A CN 102456839A
Authority
CN
China
Prior art keywords
organic electroluminescent
layer
cathode
light
electroluminescent device
Prior art date
Application number
CN2010105186846A
Other languages
Chinese (zh)
Inventor
周明杰
王平
陈吉星
黄辉
Original Assignee
海洋王照明科技股份有限公司
深圳市海洋王照明技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海洋王照明科技股份有限公司, 深圳市海洋王照明技术有限公司 filed Critical 海洋王照明科技股份有限公司
Priority to CN2010105186846A priority Critical patent/CN102456839A/en
Publication of CN102456839A publication Critical patent/CN102456839A/en

Links

Abstract

The invention discloses an organic electroluminescent device and a manufacturing method thereof. The organic electroluminescent device comprises a transparent conductive substrate, a cathode, an organic electroluminescent structure and an anode, wherein the cathode is connected to the transparent conductive substrate; the organic electroluminescent structure is connected to the surface, opposite to the transparent conductive substrate, of the cathode; and the anode is connected to the surface, opposite to the cathode, of the organic electroluminescent structure. In the organic electroluminescent device, the cathode is plated on the transparent conductive substrate, and is positioned between the transparent conductive substrate and the organic electroluminescent structure, so that the cathode is prevented from contacting air and being oxidized, the service life of the organic electroluminescent device is prolonged and the luminescence stability of the organic electroluminescent device is improved. The luminescence brightness and strength of the organic electroluminescent device are improved. Simultaneously, the manufacturing method for the organic electroluminescent device is simple and suitable for industrial production, production efficiency is improved, and production cost is decreased.

Description

一种有机电致发光器件及其制备方法 An organic electroluminescent light emitting device and method of preparation

技术领域 FIELD

[0001] 本发明属于电光源技术领域,具体的说是涉及一种有机电致发光器件及其制备方法。 [0001] The present invention belongs to the technical field of electric source, specifically, to a light emitting device and a method for preparing an organic electroluminescence.

背景技术 Background technique

[0002] 电光源行业一直是世界各国竞相研究的热点,在世界经济中占据着非常重要的地位。 [0002] electric light source industry has been a hot spot in the world competing national research, occupies a very important position in the world economy. 目前广泛使用的光源为气体放电光源,这种光源的原理是将灯的内部经抽真空后充入含汞的混合气体,利用气体放电发光或气体放电产生的紫外光激发荧光粉发光。 Currently widely used source is a gas discharge light source, the light source is to this principle inside the lamp after filling the evacuated gas mixture containing mercury, using a gas discharge light or ultraviolet light generated by gas discharge excite phosphors to emit light. 然而,气体放电光源的脉冲光闪容易导致人视觉疲劳,而且汞污染环境,随着社会和科技的进步,研究开发节能又环保的绿色光源来替代传统光源,成为各国竞相研究的重要课题。 However, the gas discharge light source pulse Guang Shan easily lead to human visual fatigue, and mercury pollution of the environment, with the progress of society and technology, research and development of energy-saving and environmentally friendly green light to replace the conventional light sources, it has become an important research subject of competing countries.

[0003] 有机电致发光器件是电光源中的一种。 [0003] The organic electroluminescent device is an electrical light source. 1987年,美国festman Kodak公司的CW Tang和VanSlyke报道了有机电致发光研究中的突破性进展。 In 1987, the United States festman Kodak's CW Tang and VanSlyke reported a breakthrough in mechanical and electrical luminescence studies there. 利用超薄薄膜技术制备出了高亮度,高效率的双层小分子有机电致发光器件。 Using a thin film technique for preparing a high brightness, high efficiency double small molecule organic electroluminescent device. 在该双层结构的器件中,IOV下亮度达到1000Cd/m2,其发光效率为1.511m/W、寿命大于100小时。 In the two-layer structure device, the brightness of the IOV 1000Cd / m2, luminous efficiency of 1.511m / W, life of more than 100 hours. 1990年,英国剑桥大学Burronghes等人首次提出用高分子共轭聚合物聚苯撑乙烯(PPV)制成聚合物电致发光(EL)器件,随后,美国加洲大学Heeger教授领导的实验组于1991年进一步确证了聚合物电致发光特性,并进行了改进。 1990, University of Cambridge, who first proposed Burronghes conjugated polymer with a high molecular polyphenylene vinylene (PPV) is made of a polymer electroluminescent (EL) device, and then, the experimental group led by Professor Heeger at the University of California 1991 corroborates polymer electroluminescent light emission characteristics, and improved. 从此有机发光器件的研究开辟了一个全新的领域-聚合物电致发光器件(PLED)。 From this study organic light emitting device has opened up a new area - polymer electroluminescent device (PLED). 自此,有机发光二极管在短短的十几年内得到了迅速的发展。 Since organic light emitting diode obtained in just ten years, rapid development.

[0004] 在传统的发光器件中,作为阴极的金属都是直接镀在发光层之上的,而通过这种方法制备的阴极由于长期暴露在空气中而极易被氧化,极大的制约了器件的使用寿命,而本发明则是通过在ITO上镀一层金属作为器件的阴极,而在发光层上镀一层金等金属作为器件的阳极,整个器件结构的阳极和阴极与传统的器件结构是相反的,由于这种结构的阴极金属并没有与大气接触,使得它被氧化的几率降低,大大的提高了器件的寿命。 [0004] In a conventional light emitting device, a cathode metal is deposited directly on the light emitting layer, and a cathode prepared by this method since long exposure to air and easily oxidized, greatly restricts the lifetime of the device, but the present invention is obtained by plating a metal on the ITO as a cathode devices, and plated with gold or other metal as an anode layer on the light emitting device, the anode and cathode of the entire device structure of the conventional device structure is reversed, since the cathode metal and such a structure is not in contact with the atmosphere, it is oxidized so that the probability is reduced, greatly improve the lifetime of the device.

发明内容 SUMMARY

[0005] 本发明的目的在于克服现有技术的上述不足,提供一种发光亮度高、发光性能稳定、寿命长的有机电致发光器件; [0005] The object of the present invention is to overcome the above disadvantages of the prior art, to provide a light emitting high brightness, stable light emitting performance, a long life organic electroluminescent device;

[0006] 以及,上述有机电致发光器件的制备方法。 [0006] and the method of making an organic electroluminescent device.

[0007] 为了实现上述发明目的,本发明的技术方案如下: [0007] In order to achieve the above object, the technical solution of the present invention is as follows:

[0008] 一种有机电致发光器件,包括: [0008] An organic electroluminescent device, comprising:

[0009] 一透光导电基底; [0009] a transparent conductive substrate;

[0010] 一阴极,其结合在所述透光导电基底上; [0010] a cathode, which binds on the translucent conductive substrate;

[0011] 一有机电致发光结构,其结合在所述阴极与透光导电基底相对的表面上;以及 [0011] an organic electroluminescent structure, which binds to the surface of the cathode and the light-transmissive substrate opposing conductive; and

[0012] 一阳极,其结合在所述有机电致发光结构与阴极相对的表面上。 [0012] an anode, which is incorporated in the organic electroluminescent upper surface opposite to the cathode structure.

[0013] 以及,一种有机电致发光器件制备方法,包括如下步骤: [0013] and A method of making an organic electroluminescent light emitting device, comprising the steps of:

[0014] 提供透光导电基底;[0015] 在所述透光导电基底一面上镀阴极; [0014] providing a conductive light-transmissive substrate; [0015] In the light-transmissive conductive cathode coating on one side of the substrate;

[0016] 在所述阴极与透光导电基底相对的表面镀有机电致发光结构; [0016] The cathode and the plating surface of the substrate opposite the light-transmissive conductive organic electroluminescent structure;

[0017] 在所述有机电致发光结构与透光导电基底相对的表面镀阳极,得到所述的有机电致发光器件。 [0017] In the organic electroluminescent light emitting structure and the surface of the substrate opposite the light-transmissive conductive coating anode, the resulting organic electroluminescent device.

[0018] 本发明的有机电致发光器件采用在透光导电基底上镀一层阴极,使阴极处于透光导电基底与有机电致发光结构之间,避免了与空气的接触,阻止了阴极的氧化,提高了该有机电致发光器件的寿命和发光稳定性;有机电致发光结构使阳极的空穴注入得到了明显的加强,且其与阳极之间能形成良好的欧姆接触,进一步提高器件的空穴注入能力,提高了该有机电致发光器件的发光亮度和强度;同时,该有机电致发光器件制备方法工序简单,提高了生产效率,降低了生产成本,适于工业化生产。 [0018] The present invention has an organic electroluminescent device using the substrate on the transparent conductive layer plating the cathode, the cathode is light-transmissive conductive substrate and an organic electroluminescent light emitting structure there between, avoiding contact with air, preventing the cathode oxide, which has improved life and stability of the light emitting organic electroluminescent device; organic electroluminescence hole injection anode structure has been significantly strengthened, and can form a good ohmic contact with the anode, and improving the device hole injecting ability, increase the organic electroluminescent brightness and intensity of the light emitting device; the same time, the organic electroluminescent device is simple preparation process, increase production efficiency, reduce production costs, suitable for industrial production.

附图说明 BRIEF DESCRIPTION

[0019] 图1是本发明实施例的有机电致发光器件一种结构示意图; [0019] FIG. 1 is a schematic diagram of embodiments of the invention have a structure in an organic electroluminescent device;

[0020] 图2是本发明实施例的有机电致发光器件另一种结构示意图; [0020] FIG. 2 is an embodiment of the present invention has another embodiment of a schematic structure of an organic electroluminescent device which;

[0021] 图3是本发明实施例的有机电致发光器件制备方法的流程示意图; [0021] FIG. 3 is an embodiment of the present invention have prepared a schematic flow of an organic electroluminescent light emitting device;

[0022] 图4是本发明实施例1制备的有机电致发光器件(其结构为:IT0/A1/PBD/A1Q3/ NPB/Mo03/Au)与传统的正置结构(其结构为:IT0/MO03/NPB/AlQ3/PBD/Ca/Al)的有机电致发光器件的亮度与电压关系对比实验图。 [0022] FIG. 4 is the present invention prepared in Example 1 of the organic electroluminescent device (having the structure: IT0 / A1 / PBD / A1Q3 / NPB / Mo03 / Au) with a conventional upright configuration (having the structure: IT0 / MO03 / NPB / AlQ3 / PBD / Ca / Al) has a brightness versus voltage induced Comparative experiment organic light emitting device of FIG.

具体实施方式 Detailed ways

[0023] 为了使本发明要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。 [0023] In order that the present invention is to solve the technical problem, technical solutions and beneficial effects more clearly understood, the following examples, the present invention will be further described in detail. 应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。 It should be understood that the specific embodiments described herein are only intended to illustrate the present invention and are not intended to limit the present invention.

[0024] 本发明实施例有机电致发光器件(OLED)的发光原理是基于在外加电场的作用下,电子从阴极注入到有机物的最低未占有分子轨道(LUMO),而空穴从阳极注入到有机物的最高占有轨道(HOMO)。 [0024] Example embodiments of the present invention, a light-emitting principle of the organic electroluminescent device (OLED) is based on the applied electric field, electrons injected from the cathode into the lowest unoccupied molecular orbital of organic matter (the LUMO), while the hole injection from the anode into organics highest occupied molecular orbital (HOMO). 电子和空穴在发光层相遇、复合、形成激子,激子在电场作用下迁移,将能量传递给发光材料,并激发电子从基态跃迁到激发态,激发态能量通过辐射失活, 产生光子,释放光能。 Electrons and holes in the light emitting layer meet, composite, form an exciton, the exciton migration in the electric field, to transfer energy to the light emitting material, and excite electrons from the ground state to the excited state, excited state energy by radiation inactivation, generate photons release energy.

[0025] 本发明实施例依据上述原理提供一种发光亮度高、发光性能稳定、寿命长的有机电致发光器件。 Example [0025] The present invention provides a light emitting high brightness, stable light emitting performance, a long life organic electroluminescent device according to the above principle. 如图1、2所示,其包括一透光导电基底1 ;一阴极2,其结合在该透光导电基底1上;一有机电致发光结构3,其结合在该阴极2与透光导电基底1相对的表面上;以及一阳极4,其结合在有机电致发光结构3与阴极2相对的表面上。 Shown, which comprises a transparent conductive substrate 1 in FIG. 2; a cathode 2, which binds on the transparent conductive substrate 1; an organic electroluminescence structure 3, which is incorporated in the cathode 2 and the transparent conductive on opposite surfaces of the substrate 1; and an anode 4, which is bound on the surface opposing the organic electroluminescent structure 3 and the cathode 2. 这样,该有机电致发光器件采用在透光导电基底1上镀一层阴极2,使阴极2处于导电基底1与有机电致发光结构3 之间,避免了与空气的接触,阻止了阴极2的氧化,提高了该有机电致发光器件的寿命和发光稳定性;有机电致发光结构3使阳极4的空穴注入得到了明显的加强,且其与阳极4之间能形成良好的欧姆接触,进一步提高该有机电致发光器件的空穴注入能力,提高了该有机电致发光器件的发光亮度和强度。 Thus, the organic electroluminescent device is employed on the transparent conductive substrate 1 plated with the cathode 2, the cathode 2 is in a conductive substrate 1 and between the organic electroluminescence light emitting structure 3, avoiding contact with air, preventing the cathode 2 oxide, which has improved the lifetime and stability of the light emitting organic electroluminescent device; organic electroluminescence anode 3 hole injection structure 4 has been significantly enhanced between the anode 4 and which can form a good ohmic contact further enhance the hole injection capability of the organic electroluminescent device, which improves the brightness and intensity of the light-emitting organic electroluminescent device.

[0026] 具体地,上述透光导电基底1包括透光衬底11和结合于透光衬底11表面的导电层12,该导电层12的厚度优选为100〜200nm,其材质优选为铟锡氧化物、掺氟氧化锡、镁-铟氧化物或掺铝的氧化锌,透光衬底11的材质可以为透光玻璃。 [0026] Specifically, the transparent conductive substrate 1 comprising light-transmitting substrate 11 and a light-transmissive substrate 11 bonded to the surface of the conductive layer 12, the thickness of the conductive layer 12 is preferably 100~200nm, the material is preferably indium tin oxide, fluorine-doped tin oxide, a magnesium - or indium oxide, aluminum-doped zinc oxide, the light-transmitting substrate material 11 may be a light-transmissive glass. 该结构的透光导电基底1能有效增强该有机电致发光器件的机械强度,有效隔绝空气,阻止与其结合的阴极2被氧化,且具有良好的导电性能。 Light transmissive conductive substrate of the structure 1 can effectively enhance the mechanical strength of the organic electroluminescent device, effectively isolated from the air, to prevent its binding to the cathode 2 is oxidized, and has good conductivity. 该透光导电基底1在此还作为出光面用,因此,透光导电基底1应该为透明或半透明状,优选透明状,以更好的使有机电致发光结构3发出的光射出。 The transparent conductive substrate 1 as shown herein is also a surface, therefore, a light-transmissive conductive substrate be transparent or translucent, preferably transparent, in order to better enable the light emitted from the organic electroluminescence emitted from the light emitting structure 3.

[0027] 具体地,上述阴极2的厚度优选为10〜50nm,其材质优选为铝、银、镁、钡或钙;阳极4的厚度优选为50〜200nm,其材质优选为金、银、钼或铝。 [0027] Specifically, the thickness of the cathode 2 is preferably 10~50nm, the material is preferably aluminum, silver, magnesium, barium or calcium; thickness of the anode 4 is preferably 50~200nm, which is preferably made of gold, silver, molybdenum or aluminum. 该厚度的阴极2和阳极4能有效的降低电极的电阻,降低电极的放热与增强电极的散热性能,相应的降低生产成本。 The thickness of the cathode 2 and the anode 4 can effectively reduce the resistance of the electrode, reduced heat dissipation properties of the electrode and the reinforcing electrode, a corresponding decrease in production costs. 更重要的是,阴极2能有效保证光的穿透,也称为通明电极;阳极4能有效阻止光的穿透,并将光反射至阴极2,从而增强本实施例有机电致发光器件的发光强度和亮度,因此,该阳极4也称为反射电极。 More importantly, the cathode 2 can effectively guarantee the transmission of light, also called transparency electrode; anode 4 can effectively prevent penetration of light, and reflects the light to the cathode 2, thereby enhancing the present embodiment has the organic electroluminescent device emission intensity and luminance, and therefore, the anode is also referred to as a reflecting electrode 4.

[0028] 具体地,上述有机电致发光结构3优选包含依次结合的电子传输层31、发光层32、 空穴传输层33、空穴注入层34。 [0028] Specifically, the above-described organic EL structure 3 preferably comprises a combination of the electron transport layer 31 sequentially, the light emitting layer 32, a hole transport layer 33, the hole injection layer 34. 其中,电子传输层31与阴极1与透光导电基底1相对的表面结合,空穴注入层34与阳极4结合,如图1所示。 Wherein the electron transport layer 31 and the cathode 1 in combination with an opposite surface of the transparent conductive substrate, a hole injection layer 34 and the anode 4 in conjunction, as shown in FIG.

[0029] 进一步的,电子传输层31的厚度优选为20〜80nm,其材质优选为2_(4_联苯基)-5-(4-叔丁基)苯基-1,3,4-噁二唑(PBD)、8_ 羟基喹啉铝(Alq3)、2,5-二(1_ 萘基)-1,3,4_ 二唑(BND)、1,2,4-三唑衍生物(如TAZ等)、N_芳基苯并咪唑(TPBI)、喹喔啉衍生物(TPQ)或η型掺杂无机半导体中的至少一种;发光层32的厚度优选为20〜80nm, 其材质优选为四-叔丁基二萘嵌苯(TBP)、4- ( 二腈甲基)-2- 丁基-6- (1,1,7,7-四甲基久洛呢啶-9-乙烯基)-4H-吡喃(DCJTB)、9,10- 二- β -亚萘基蒽(AND)、二甲基-8-羟基喹啉)-(4-联苯酚)铝(BAIjQ)、4- ( 二腈甲烯基)-2-异丙基-6- (1,1,7,7-四甲基久洛呢啶-9-乙烯基)-4H-吡喃(DCJTI)、二甲基喹吖啶酮(DMQA)或8-羟基喹啉铝(Alq3)中的至少一种;空穴传输层33厚度优选为20〜80nm,其材质优选为空穴传输层采用的是N, N,- 二(3-甲基苯基)-N,N,- 二 Thickness [0029] Further, the electron transport layer 31 is preferably 20~80nm, which is preferably made 2_ (4_ biphenylyl) -5- (4-t-butyl) phenyl -1,3,4 oxadiazole (PBD), 8_ hydroxyquinoline aluminum (Alq3), 2,5- bis (1_ naphthalenyl) -1,3,4_ oxadiazole (BND), 1,2,4- triazole derivatives (e.g., TAZ etc.), N_ Arylbenzimidazoles (TPBI), quinoxaline derivatives (TPQ) or η-type dopant in the at least one inorganic semiconductor; thickness of the luminescent layer 32 is preferably 20~80nm, the material is preferably four - tert-butyl-perylene (TBP), 4- (dinitrile) -2-butyl-6- (1,1,7,7-tetramethyl-9-vinyl it Gyula ) -4H- pyran (DCJTB), 9,10- two - beta] - naphthalene anthracene (AND), dimethyl-8-quinolinolato) - (4-phenol) aluminum (BAIjQ), 4- (methylene dinitrile yl) -2-isopropyl-6- (1,1,7,7-tetramethyl-9 Gyula it vinyl) -4H- pyran (DCJTI), dimethyl at least one quinacridone (DMQA), or 8-hydroxyquinoline aluminum (Alq3) in; a hole transporting layer 33 preferably has a thickness 20~80nm, the material is preferably used in a hole transport layer is N, N, - bis (3-methylphenyl) -N, N, - two 苯基-4,4,-联苯二胺(TPD)、N,N,- (1_ 萘基)-N,N,- 二苯基-4,4,-联苯二胺(TPD)、1,3,5-三苯基苯(TDAPB)、酞菁铜CuPc或P型掺杂无机半导体中的至少一种;空穴注入层34的厚度优选为20〜80nm,其材质优选为过渡金属氧化物, 更优选为MoO3、WO3、VOx 或WOx。 Phenyl-4,4, - benzidine (TPD), N, N, - (1_ naphthalenyl) -N, N, - 4,4-diphenyl - benzidine (TPD), 1 , 3,5-triphenyl benzene (TDAPB), copper phthalocyanine CuPc or at least one P-type doped inorganic semiconductors; thickness of the hole injection layer 34 is preferably 20~80nm, the material is preferably a transition metal oxide composition, more preferably MoO3, WO3, VOx or WOx.

[0030] 在上述有机电致发光结构3中,空穴和电子彼此相遇并复合,发光材料直接或通过能量传递被激发,激发的发光材料通过发光返回基态。 [0030] In the organic EL structure 3, the holes and the electrons meet each other and recombine, luminescent material, or by direct energy transfer excited, the excited luminescent material returns to the ground state by emitting light. 在有机电致发光结构3中加入了载流子注入层来改善载流子的注入效率,不但保证了有机功能层与导电基底间的良好附着性,而且还使得来自阳极和阴极的载流子更容易的注入到有机功能薄膜中。 In the organic EL structure 3 was added to the carrier injection layer to improve the injection efficiency of carriers, not only to ensure good adhesion between the organic functional layer and the conductive substrate, but also so that carriers from the anode and cathode more easily injected into the organic functional film. 其中,由于所用的空穴注入层34优选为过渡金属氧化物,这种材料与有机空穴传输层33能级比较匹配,使得阳极4的空穴注入得到了明显的加强,另外,空穴注入层34与阳极4之间能形成欧姆接触,加强了导电性能,进一步提高有机电致发光器件的空穴注入能力,提高了其发光亮度和强度,有效的调节电子和空穴的注入和传输速率,平衡载流子,控制复合区域,获得了理想的发光亮度和发光效率。 Among these, preferably used for the hole injection layer 34 is a transition metal oxide, such a material with energy levels of the organic hole transport layer 33 match the comparison, so that the hole injecting anode 4 has been significantly enhanced Further, the hole injection 4 between the anode layer 34 and the ohmic contact can be formed to enhance the conductivity, the ability to further enhance the hole injection organic electroluminescent device, improve its brightness and intensity, adjusting the effective injection of electrons and holes, and the transmission rate the balance carriers composite control area, obtained over the emission luminance and luminous efficiency.

[0031] 进一步的,空穴注入层34的功函数值优选大于阳极4的功函数值。 [0031] Further, the hole injection layer 34 is preferably larger than the work function value of the anode 4 of the work function. 这样进一步增强了阳极4的功函数值,使得有机电致发光器件电场进一步增强,从而进一步提高有机电致发光器件的发光亮度和强度。 This further enhances the value of the work function of the anode 4, an organic electroluminescent device so that the electric field is further enhanced, thereby further improving brightness and intensity of a light-emitting organic electroluminescent device. 另外,有机空穴传输层33的功函数应尽最大可能的接近空穴注入层34的功函数值,优选等于或大于空穴注入层34的功函数值。 Further, the work function of the organic hole transporting layer 33 close to the maximum extent possible, the work function value of the hole injection layer 34, preferably equal to or greater than the work function of the hole injection layer 34. [0032] 当然,上述的有机电致发光结构3还可以只包含发光层32,该发光层32 —面与阴极2表面结合,相对的另一面与阳极4结合;或者包含依次结合的电子传输层31、发光层32、空穴传输层33、空穴注入层34,该电子传输层31与阴极2表面结合,空穴注入层34与阳极4结合;或者包含依次结合的发光层32、空穴传输层33,该发光层32与阴极2表面结合,空穴注入层34与阳极4结合;或者包含依次结合的发光层32、空穴传输层33、空穴注入层34,该发光层32与阴极2表面结合,空穴注入层34与阳极4结合;或者包含依次结合的电子传输层31、发光层32、空穴注入层34,该电子传输层31与阴极2表面结合,空穴注入层34与阳极4结合;或者包含依次结合的电子注入层30、电子传输层31、发光层32、空穴传输层33、空穴注入层34,该电子注入层30与阴极2表面结合,空穴注入层34与阳极4结合 [0032] Of course, the above-described organic electroluminescence structure 3 may also comprise only the light-emitting layers 32, 32 of the light-emitting layer - surface and the cathode second surface binding, the opposite surface of the anode 4 binding; or comprises an electron transport layer are sequentially bonded 31, the light emitting layer 32, a hole transport layer 33, the hole injection layer 34, the electron transport layer 31 in conjunction with the surface of the cathode 2, the hole injection layer 34 in combination with the anode 4; or a light-emitting layer 32 comprises bonded sequentially, a hole the transport layer 33, the light emitting layer 32 and the binding surface of the cathode 2, the anode 34 and the hole injection layer 4 in combination; or 32 comprising a light emitting layer, a hole transport layer 33 are sequentially bonded, the hole injection layer 34, the light emitting layer 32 and binding surface of the cathode 2, the anode 34 and the hole injection layer 4 in combination; or comprises an electron transport layer 31 are sequentially bonded, light emitting layer 32, the hole injection layer 34, the electron transport layer 31 in conjunction with the surface of the cathode 2, a hole injection layer 4 combined with the anode 34; or comprises an electron injection layer are sequentially combined 30, the electron transport layer 31, light emitting layer 32, a hole transport layer 33, the hole injection layer 34, the second surface of the electron injection layer 30 and the cathode binding, hole injection layer 34 in combination with an anode 4 , 如图2所示。 , as shown in picture 2. 这些层结构的有机电致发光结构3也能实现本实施例的有机电致发光器件。 Layer structure of these organic electroluminescent structure 3 can be achieved according to the present embodiment has an organic electroluminescent device.

[0033] 本发明实施例还提供了上述有机电致发光器件的制备方法,该方法工艺流程图如图3所以示,同时参见图1或2,该方法包括如下步骤: [0033] Embodiments of the present invention further provides a method for preparing the above-described organic electroluminescent light emitting device, the process flow chart shown in FIG. 3 so that, see also FIG. 1 or 2, the method comprising the steps of:

[0034] SL提供透光导电基底1 ; [0034] SL provide a light-transmissive conductive substrate;

[0035] S2.在该透光导电基底1 一面上镀阴极2 ; . [0035] S2 in the transparent conductive substrate 1 on one side of the cathode plate 2;

[0036] S3.在该阴极2与透光导电基底1相对的表面镀有机电致发光结构3 ; [0036] S3 in the cathode 2 and the opposite surface of the transparent conductive substrate 1 is plated with the organic electroluminescent structure 3;

[0037] S4.在有机电致发光结构3与阴极2相对的表面镀阳极4,得到所述的有机电致发光器件。 [0037] S4. In the organic EL structure 3 opposite to the surface of the cathode 2 and anode plate 4, to obtain the organic electroluminescence device.

[0038] 具体地,上述有机电致发光器件制备方法的Sl步骤中,透光导电基底1的结构、材质及规格如上所述,为了篇幅,在此不再赘述。 [0038] Specifically, there are the above-described step Sl organic electroluminescent device production method, the light-transmitting conductive base structure, materials and specifications. 1 described above, to space, which will not be repeated herein. 该透光导电基底1还包括对其前置处理,该前置处理方式包括清洗、氧等离子处理等。 The transparent conductive substrate 1 further comprises a pre-processing thereof, which comprises a pre-cleaning treatment, an oxygen plasma treatment. 其中,清洗方式优选为依次用洗洁精、去离子水、 丙酮、乙醇、异丙醇各超声15min,以彻底清除透光导电基底1表面的异物,使透光导电基底1表面最大程度的清洁;透光导电基底1经清洗处理后,再进行氧等离子处理,该氧等离子处理氧等离子处理的时间优选为5-15min,功率优选为10-50W,其主要作用是减小导电玻璃表面的粗糙度和接触角,以利于改善导电玻璃表面的湿润性和吸附性,而且通过表面处理后能够进一步去除其表面的有机污染物。 Wherein the cleaning system is preferably washed with detergent, deionized water, acetone, ethanol, isopropanol each ultrasonic 15min, to completely remove foreign surface of the light-transmissive electroconductive substrate 1, a light-transmitting conductive substrate surface cleaning maximum ; light-transmissive conductive substrate 1 is washed and after treatment, and then subjected to oxygen plasma treatment, the oxygen plasma treatment, oxygen plasma treatment time is preferably 5-15min, preferably 10-50W power, its main role is to reduce the conductive glass surface roughened and degree contact angle, wettability and facilitate better adsorption conductive glass surface, and surface treatment by the removal of organic contaminants can be further surface thereof. 该透光导电基底1的制备方法是在衬底11表面上镀一层导电层12,镀导电层12的方式包括蒸镀、溅射或喷镀等方式。 The method of preparing the transparent conductive substrate 1 is plated with an electrically conductive layer 12 on the surface of the substrate 11, the conductive plating layer 12 embodiment includes a vapor deposition, sputtering or plating method. 其中,衬底11优选进行前述的前置处理,如清洗处理和氧等离子处理。 Wherein, the substrate 11 is preferably pre-treatment such as washing treatment and oxygen plasma treatment.

[0039] 上述有机电致发光器件制备方法的S2步骤中,镀阴极2的方式优选为蒸镀、溅射或喷镀。 [0039] The steps S2 have prepared an organic electroluminescent device, a cathodically plating 2 is preferably a vapor deposition, sputtering or thermal spraying. 阴极2的材质以及镀的厚度以在上文中阐述,在此不再赘述。 Material and thickness of the plating to the cathode 2 set forth above, are not repeated here.

[0040] 上述有机电致发光器件制备方法的S3步骤中,镀有机电致发光结构3的方式优选为蒸镀、溅射、喷镀或化学沉积方式。 [0040] The step S3 have prepared an organic electroluminescent device, the organic electroluminescent embodiment plated structure 3 is preferably vapor deposition, sputtering, chemical deposition or sputtering method. 当该有机电致发光结构3优选包含依次结合的电子传输层31、发光层32、空穴传输层33、空穴注入层34时,采用蒸镀、溅射、喷镀或化学沉积方式在阴极上依次镀上电子传输层31、发光层32、空穴传输层33、空穴注入层34,其中,蒸镀、溅射、喷镀或化学沉积方式任意一种均可以形成上述电子传输层31、发光层32、空穴传输层33和空穴注入层34。 When the organic EL structure 3 preferably comprises an electron transporting layer 31 are sequentially bonded, light emitting layer 32, a hole transport layer 33, 34, by vapor deposition, sputtering, chemical deposition or sputtering manner the hole injection layer at the cathode sequentially coated on the electron transport layer 31, light emitting layer 32, a hole transport layer 33, the hole injection layer 34, wherein the vapor deposition, sputtering, sputtering or chemical deposition method can be any one of the electron transport layer 31 formed , light emitting layer 32, a hole transport layer 33 and the hole injection layer 34. 有机电致发光结构3的结构等情况以在上文中阐述,在此不再赘述。 The organic electroluminescent light emitting structure like the structure 3 to be set forth in the above, are not repeated here.

[0041] 上述有机电致发光器件制备方法的S4步骤中,镀阳极4的方式如同镀阴极2的方式,阳极4的厚度材质如上所述。 [0041] The step S4 has the organic electroluminescent device prepared in Embodiment 4 Hydragyrumplate plating manner as the cathode 2, the thickness of the anode material 4 described above.

[0042] 该有机电致发光器件制备只需要在透光导电基底1上依次镀上各层结构就可获得最终产品,方法工序简单,提高了生产效率,降低了生产成本,适于工业化生产。 [0042] The organic electroluminescent light emitting device there was prepared only on the structure of layers are sequentially coated on the transparent conductive substrate 1 can obtain the final product, simple method steps, improve production efficiency, reduce production costs, suitable for industrial production. page

[0043] 现结合具体实例,对本发明进行进一步详细说明。 [0043] Now with reference to specific examples, the present invention will be further described in detail.

[0044] 实施例1 [0044] Example 1

[0045] 本实施例的有机电致发光器件结构如图1所示,该有机电致发光器件包括依次结合的透光导电基底1、阴极2、电子传输层31、发光层32、空穴传输层33、空穴注入层34、阳极4。 [0045] The present embodiment has the organic electroluminescent device structure shown in FIG. 1, the organic electroluminescent device as shown has a light-transmitting conductive substrate comprises a binding sequence of 1, a cathode 2, an electron transport layer 31, light emitting layer 32, a hole transport layer 33, the hole injection layer 34, an anode 4. 其中,透光导电基底1的导电层12为150nm厚(下同)的ΙΤ0,阴极2为IOnm的Al, 电子传输层31为50nm的PBD,发光层32为70nm的AlQ3,空穴传输层33为40nm的NPB,空穴注入层34为IOnm的MoO3,阳极4为60nm的Au。 Wherein the light-transmitting conductive substrate is a conductive layer 12 of 150nm thickness (hereinafter the same) ΙΤ0, the cathode 2 IOnm Al, the electron transport layer 31 is a PBD 50nm, a light emitting layer 32 is AlQ3 70nm, the hole transport layer 33 as the 40nm NPB, the hole injection layer 34 IOnm of MoO3, the anode 4 was Au 60nm.

[0046] 其制备方法如下: [0046] was prepared as follows:

[0047] (1)将镀有铟锡氧化物玻璃进行光刻处理,剪裁成所需要的发光面积,然后依次用洗洁精、去离子水、丙酮、乙醇、异丙醇各超声15min,清洗干净后对其进行氧等离子处理,氧等离子处理时间为15min,功率为10W,以减小导电玻璃表面的粗糙度和接触角,改善其表面的湿润性和吸附性,去除导电玻璃表面的有机污染物,制得透光导电基底1 ; [0047] (1) indium tin-oxide plated glass photo-lithography process, cut to the desired light emitting area, and then washed with detergent, deionized water, acetone, ethanol, isopropanol each ultrasonic 15min, washed Clean time after its treatment with oxygen plasma, oxygen plasma treatment was 15min, power of 10W, to reduce the roughness and the contact angle of the conductive glass surface, to improve its wettability and surface adsorption, removal of organic contamination of the surface of conductive glass It was to prepare a light-transmitting conductive substrate;

[0048] (2)将制得的透光导电基底1放进真空镀膜室里面进行真空沉积一层金属Al ; [0048] (2) The resulting light-transmissive conductive substrate 1 placed inside the vacuum deposition chamber of Al was vacuum deposited metal layer;

[0049] (3)在金属Al外表面采用蒸镀依次镀上PBD层31、AlGj3层32、NPB层33、MoO3层34,构成有机电致发光结构3; [0049] (3) sequentially by a vapor deposition surface coated PBD layer 31, AlGj3 outer metal layer 32 is Al, NPB layer 33, MoO3 layer 34 constituting the organic EL structure 3;

[0050] (4)在MoO3层34外表面蒸镀一层金属Au层,得到所述的有机电致发光器件。 [0050] (4) a layer of metal deposited on the outer surface of the Au layer 34 MoO3 layer, the resulting organic electroluminescent device.

[0051] 本实施例制备的有机电致发光器件(其结构为:IT0/A1/PBD/A1Q3/NPB/Mo03/AU) 与传统的正置结构(其结构为:IT0/MO03/NPB/AlQ3/PBD/Ca/Al)的有机电致发光器件的亮度与电压关系见图4所示。 [0051] The present examples prepared organic electroluminescent device (having the structure: IT0 / A1 / PBD / A1Q3 / NPB / Mo03 / AU) with a conventional upright configuration (having the structure: IT0 / MO03 / NPB / AlQ3 / PBD / Ca / Al) of luminance versus voltage of the organic electroluminescent device shown in Figure 4.

[0052] 从图4可以看到,本实施例制备倒置结构的有机电致发光器件的开启电压与发光亮度都得到了明显提高,在IOV时,倒置结构的亮度为18173cd/m2,而正置结构的亮度只为14502cd/m2,说明本实施例倒置底发射结构的有机电致发光器件可以很好的提高器件的亮度,稳定器件性能,由于阴极2被ITO层1与有机电致发光结构3很好的保护起来,使得阴极2金属没有与空气接触,避免了氧化,从而可以更有效的注入电子,提高性能,同时,这种结构由于阴极2金属不易与大气中的氧气发生反应,因此,对提高有机电致发光器件的寿命起到了很大的作用。 [0052] As seen in Figure 4, the present embodiment was prepared in Example inverted structure has a turn-on voltage and emission luminance of the organic electroluminescent device have been significantly improved, when the IOV, the luminance is inverted structure 18173cd / m2, and the upright brightness structure only 14502cd / m2, the present embodiment has described an inverted bottom emission structure in luminance, stable device performance organic electroluminescent device may improve the device is very good, since the cathode 2 is an ITO layer and the organic electroluminescent structure 3 well protected, so that the cathode metal is not in contact with the air, to avoid oxidation, which can more effectively injecting electrons, to improve performance, while this structure easily with atmospheric oxygen to react since the cathode metal, and therefore, improving organic electroluminescent device lifetime played a significant role.

[0053] 实施例2 [0053] Example 2

[0054] 本实施例的有机电致发光器件结构如同实施例1和图1所示。 [0054] The present embodiment has the organic electroluminescent device structure as in Example 1 and the embodiment shown in FIG. 其制备方法如下: It was prepared as follows:

[0055] (1)将镀有厚度为IOOnm的铟锡氧化物导电层12的铟锡氧化物玻璃进行光刻处理,剪裁成所需要的发光面积,然后依次用洗洁精、去离子水、丙酮、乙醇、异丙醇各超声15min,清洗干净后对其进行氧等离子处理,氧等离子处理时间为5min,功率为50W,以减小导电玻璃表面的粗糙度和接触角,改善其表面的湿润性和吸附性,去除导电玻璃表面的有机污染物,制得透光导电基底1 ; [0055] (1) The plated thickness of indium tin oxide glass, indium tin oxide conductive layer 12 IOOnm photolithography process, cut to the desired light emitting area, and then washed with detergent, deionized water, acetone, ethanol, isopropanol each ultrasonic 15min, cleaning subjected to oxygen plasma treatment, oxygen plasma clean after the time of 5min, a power of 50W, to reduce the roughness and the contact angle of the conductive glass surface, wet surface to improve its and adsorption to remove organic contaminants conductive glass surface, a conductive light-transmissive substrate 1 made;

[0056] (2)将制得的透光导电基底1放进真空镀膜室里面进行真空沉积一层厚度为30nm 的金属Al,构成阴极2; [0056] (2) The resulting light-transmissive conductive substrate 1 placed inside the vacuum deposition chamber subjected to vacuum deposition to a thickness of 30nm of the metals Al, constituting the cathode 2;

[0057] (3)在金属Al即阴极2外表面采用蒸镀依次镀上厚度为20nm的TAZ层31、20nm 的TBP层32、20nm的TPD层33、5nm的MoO3层34,构成有机电致发光结构3 ; [0057] (3) i.e. 2 an outer surface of the cathode employed sequentially deposited on Al coated layer with a thickness of 20nm 31,20nm of the TAZ layer 32,20nm TBP 33,5nm TPD layer of MoO3 layer 34 constituting the organic electroluminescent 3 the light emitting structure;

[0058] (4)在MoO3层34外表面蒸镀一层厚度为50nm的金属Au层,构成阳极4,得到所述的有机电致发光器件。 [0058] (4) deposited on the outer surface of the MoO3 layer 34 to a thickness of 50nm Au layer of the metal constituting the anode 4, to obtain the organic electroluminescence device. [0059] 测试本实施例制备的有机电致发光器件性能如实施例1制备的有机电致发光器件性能。 Preparation Example [0059] Testing of the present embodiment has an organic electroluminescent device prepared in Example 1 as the performance of the organic electroluminescent device performance.

[0060] 实施例3 [0060] Example 3

[0061] 本实施例的有机电致发光器件结构如同实施例1和图1所示。 [0061] The present embodiment has the organic electroluminescent device structure as in Example 1 and the embodiment shown in FIG. 其制备方法如下: It was prepared as follows:

[0062] (1)将镀有厚度为90nm的铟锡氧化物导电层12的铟锡氧化物玻璃进行光刻处理, 剪裁成所需要的发光面积,然后依次用洗洁精、去离子水、丙酮、乙醇、异丙醇各超声15min, 清洗干净后对其进行氧等离子处理,氧等离子处理时间为5min,功率为50W,以减小导电玻璃表面的粗糙度和接触角,改善其表面的湿润性和吸附性,去除导电玻璃表面的有机污染物,制得透光导电基底1; [0062] (1) The plated thickness of indium tin oxide, indium tin oxide glass 90nm conductive layer 12 is photolithographically processed, cut to the desired light emitting area, and then washed with detergent, deionized water, acetone, ethanol, isopropanol each ultrasonic 15min, cleaning subjected to oxygen plasma treatment, oxygen plasma clean after the time of 5min, a power of 50W, to reduce the roughness and the contact angle of the conductive glass surface, wet surface to improve its and adsorption to remove organic contaminants conductive glass surface, a conductive light-transmissive substrate 1 made;

[0063] (2)将制得的透光导电基底1放进真空镀膜室里面进行真空沉积一层厚度为IOnm 的金属Ca,构成阴极2; [0063] (2) The resulting light-transmissive conductive substrate 1 placed inside the vacuum deposition chamber subjected to vacuum deposition to a thickness of IOnm metal Ca, a cathode 2;

[0064] (3)在金属Ca即阴极2外表面采用蒸镀依次镀上厚度为20nm的TPQ层31、20nm 的DCJTB层32、20nm的TDAPB层33、50nm的MoO3层34,构成有机电致发光结构3 ; [0064] (3) constituting the cathode of the metal Ca 2 i.e. the outer surface of the vapor deposition thickness of 20nm are sequentially plated layer of TPQ 31,20nm the DCJTB layer 32,20nm 33,50nm TDAPB layer of MoO3 layer 34, an organic electroluminescent 3 the light emitting structure;

[0065] (4)在MoO3层34外表面蒸镀一层厚度为150nm的金属Al层,构成阳极4,得到所述的有机电致发光器件。 [0065] (4) deposited on the outer surface of the MoO3 layer 34 to a thickness of 150nm Al layer of a metal, constituting the anode 4, to obtain the organic electroluminescence device.

[0066] 测试本实施例制备的有机电致发光器件性能如实施例1制备的有机电致发光器件性能。 Preparation Example [0066] Testing of the present embodiment has an organic electroluminescent device prepared in Example 1 as the performance of the organic electroluminescent device performance.

[0067] 实施例4 [0067] Example 4

[0068] 本实施例的有机电致发光器件结构如同实施例1和图1所示。 [0068] The present embodiment has the organic electroluminescent device structure as in Example 1 and the embodiment shown in FIG. 其制备方法如下: It was prepared as follows:

[0069] (1)将镀有厚度为200nm的掺氟的氧化锡导电层12的掺氟氧化锡玻璃进行光刻处理,剪裁成所需要的发光面积,先用洗洁精,再用异丙醇浸泡一晚上以充分除去表面残留的油迹,接着依次用去离子水、丙酮、乙醇、异丙醇各超声15min,清洗干净后对其进行氧等离子处理,氧等离子处理时间为lOmin,功率为30W,以减小导电玻璃表面的粗糙度和接触角, 改善其表面的湿润性和吸附性,去除导电玻璃表面的有机污染物,制得透光导电基底1 ; [0069] (1) The plated thickness of the conductive fluorine doped tin oxide layer is 200nm fluorine-doped tin oxide glass 12 is subjected to photolithography, the light emitting area cut into a desired, first with detergent, followed by isopropyl alcohol soaked overnight to fully eliminate traces of oil remaining on the surface, and then with deionized water, acetone, ethanol, isopropanol each ultrasonic 15min, subjected to oxygen plasma cleaning process after a clean, oxygen plasma treatment time of lOmin, power 30W, to reduce the roughness and the contact angle of the conductive glass surface, to improve its wettability and surface adsorption, to remove organic contaminants of the surface of conductive glass, a conductive light-transmissive substrate 1 made;

[0070] (2)将制得的透光导电基底1放进真空镀膜室里面进行真空沉积一层厚度为20nm 的金属Ca,构成阴极2; [0070] (2) The resulting light-transmissive conductive substrate 1 placed inside the vacuum deposition chamber subjected to vacuum deposition to a thickness of 20nm metal Ca, a cathode 2;

[0071] (3)在金属Ca即阴极2外表面采用蒸镀依次镀上厚度为SOnm的TPQ层31、80nm 的DCJTB层32、80nm的TDAPB层33、20nm的MoOx层34,构成有机电致发光结构3 ; [0071] (3) i.e. 2 Ca metal on the outer surface of the cathode depositions are sequentially plated layer having a thickness of TPQ 31,80nm SOnm of the DCJTB layer 32,80nm TDAPB of the MoOx layer 33,20nm layer 34 constituting the organic electroluminescent 3 the light emitting structure;

[0072] (4)在MoOx层34外表面蒸镀一层厚度为IOOnm的金属Al层,构成阳极4,得到所述的有机电致发光器件。 [0072] (4) deposited on the outer surface of the layer thickness of layer 34 is IOOnm MoOx Al metal layer, constituting the anode 4, to obtain the organic electroluminescence device.

[0073] 测试本实施例制备的有机电致发光器件性能如实施例1制备的有机电致发光器件性能。 Preparation Example [0073] Testing of the present embodiment has an organic electroluminescent device prepared in Example 1 as the performance of the organic electroluminescent device performance.

[0074] 实施例5 [0074] Example 5

[0075] 本实施例的有机电致发光器件结构如同实施例1和图1所示。 [0075] The present embodiment has the organic electroluminescent device structure as in Example 1 and the embodiment shown in FIG. 其制备方法如下: It was prepared as follows:

[0076] (1)将镀有厚度为190nm的掺氟氧化锡导电层12的掺氟氧化锡玻璃进行光刻处理,剪裁成所需要的发光面积,先用洗洁精,再用异丙醇浸泡一晚上以充分除去表面残留的油迹,接着依次用去离子水、丙酮、乙醇、异丙醇各超声15min,清洗干净后对其进行氧等离子处理,氧等离子处理时间为lOmin,功率为30W,以减小导电玻璃表面的粗糙度和接触角, 改善其表面的湿润性和吸附性,去除导电玻璃表面的有机污染物,制得透光导电基底1 ;[0077] (2)将制得的透光导电基底1放进真空镀膜室里面进行真空沉积一层厚度为25nm 的金属Ba,构成阴极2; [0076] (1) will be plated with a thickness of 190nm of fluorine doped tin oxide layer is fluorine-doped tin oxide conductive glass 12 is subjected to photolithography, the light emitting area cut into a desired, first with detergent, with isopropanol soak overnight to fully eliminate traces of oil remaining on the surface, and then with deionized water, acetone, ethanol, isopropanol each ultrasonic 15min, subjected to a cleaning process after an oxygen plasma clean, oxygen plasma treatment time of lOmin, power is 30W to reduce the roughness and the contact angle of the conductive glass surface, to improve its wettability and surface adsorption, to remove organic contaminants of the surface of conductive glass, a conductive light-transmissive substrate 1 made; [0077] (2) the resulting the light transmissive conductive substrate 1 placed inside the vacuum deposition chamber subjected to vacuum deposition to a thickness of the metal Ba 25nm, and a cathode 2;

[0078] (3)在金属Ba即阴极2外表面采用喷镀方式依次镀上厚度为SOnm的TPQ层31、 80nm的DCJTB层32、70nm的TDAPB层33、IOnm的MoOx层34,构成有机电致发光结构3 ; [0078] (3) i.e. 2 Ba metal outer surface of the cathode sputtering manner using sequentially plated layer having a thickness of SOnm of TPQ 31, 80nm layer of DCJTB 32,70nm TDAPB layer 33, IOnm the MoOx layer 34 constituting the organic EL structure 3;

[0079] (4)在MoOx层34外表面蒸镀一层厚度为SOnm的金属Ag层,构成阳极4,得到所述的有机电致发光器件。 [0079] (4) deposited on the outer surface of the layer thickness of the metal layer 34 MoOx SOnm Ag layer constituting an anode 4, to obtain the organic electroluminescence device.

[0080] 测试本实施例制备的有机电致发光器件性能如实施例1制备的有机电致发光器件性能。 Preparation Example [0080] Testing of the present embodiment has an organic electroluminescent device prepared in Example 1 as the performance of the organic electroluminescent device performance.

[0081] 实施例6 [0081] Example 6

[0082] 本实施例的有机电致发光器件结构如同实施例1和图1所示。 [0082] The present embodiment has the organic electroluminescent device structure as in Example 1 and the embodiment shown in FIG. 其制备方法如下: It was prepared as follows:

[0083] (1)将镀有厚度为160nm的镁-铟氧化锡导电层12的镁-铟氧化锡玻璃进行光刻处理,剪裁成所需要的发光面积,然后依次用洗洁精、去离子水、丙酮、乙醇、异丙醇各超声15min,清洗干净后对其进行氧等离子处理,氧等离子处理时间为13min,功率为40W,以减小导电玻璃表面的粗糙度和接触角,改善其表面的湿润性和吸附性,去除导电玻璃表面的有机污染物,制得透光导电基底1 ; [0083] (1) will be plated with a thickness of 160nm of magnesium - indium tin oxide conductive layer of magnesium 12 - indium tin oxide glass photolithography process, cut to the desired light emitting area, and then washed with detergent, deionized water, acetone, ethanol, isopropanol each ultrasonic 15min, after clean subjected to oxygen plasma treatment, oxygen plasma treatment time was 13min, a power of 40W, to reduce the roughness and the contact angle of the conductive glass surface, to improve surface wettability and adsorption to remove organic contaminants conductive glass surface, a conductive light-transmissive substrate 1 made;

[0084] (2)将制得的透光导电基底1放进真空镀膜室里面进行真空沉积一层厚度为40nm 的金属Ag,构成阴极2; [0084] (2) The resulting light-transmissive conductive substrate 1 placed inside the vacuum deposition chamber subjected to vacuum deposition to a thickness of 40nm metal Ag, a cathode 2;

[0085] (3)在金属Ag即阴极2外表面采用喷镀方式依次镀上厚度为60nm的η型掺杂无机半导体层31、50nm的BAI^Q层32、60nm的CuPc层33、2nm的VOx层34,构成有机电致发光结构3 ; [0085] (3) i.e. the metal Ag cathode sputtering manner using the outer surface 2 are sequentially plated with a thickness of 31,50nm BAI η-type doped inorganic semiconductor layer of 60nm ^ Q 32,60nm layer of CuPc layer of 33,2nm VOx layer 34 constituting the organic EL structure 3;

[0086] (4)在VOx层34外表面蒸镀一层厚度为150nm的金属Au层,构成阳极4,得到所述的有机电致发光器件。 [0086] (4) deposited on the outer surface of the VOx layer 34 to a thickness of 150nm Au layer of the metal constituting the anode 4, to obtain the organic electroluminescence device.

[0087] 测试本实施例制备的有机电致发光器件性能如实施例1制备的有机电致发光器件性能。 Preparation Example [0087] Testing of the present embodiment has an organic electroluminescent device prepared in Example 1 as the performance of the organic electroluminescent device performance.

[0088] 实施例7 [0088] Example 7

[0089] 本实施例的有机电致发光器件结构如同实施例1和图1所示。 [0089] The present embodiment has the organic electroluminescent device structure as in Example 1 and the embodiment shown in FIG. 其制备方法如下: It was prepared as follows:

[0090] (1)将镀有厚度为160nm的镁-铟氧化锡导电层12的镁-铟氧化锡玻璃进行光刻处理,剪裁成所需要的发光面积,制得透光导电基底1 ; [0090] (1) will be plated with a thickness of 160nm Mg - magnesium-indium tin oxide conductive layer 12 - indium tin oxide glass photolithography process, cut to the desired light emitting area, the light-transmissive conductive substrate 1 was prepared;

[0091] (2)将制得的透光导电基底1放进真空镀膜室里面进行真空沉积一层厚度为50nm 的金属Mg,构成阴极2; [0091] (2) The resulting light-transmissive conductive substrate 1 placed inside the vacuum deposition chamber subjected to vacuum deposition to a thickness of the metallic Mg 50nm, a cathode 2;

[0092] (3)在金属Mg即阴极2外表面采用喷镀方式依次镀上厚度为60nm的η型掺杂无机半导体层31、50nm的BAI^Q层32、60nm的CuPc层33、80nm的MoO3层34,构成有机电致发光结构3 ; [0092] (3) i.e. the metal Mg cathode sputtering manner using the outer surface 2 are sequentially plated thickness of 31,50nm BAI η-type doped inorganic semiconductor layer of 60nm ^ Q 32,60nm layer of CuPc layer of 33,80nm MoO3 layer 34 constituting the organic EL structure 3;

[0093] (4)在MoO3层34外表面蒸镀一层厚度为SOnm的金属Pt层,构成阳极4,得到所述的有机电致发光器件。 [0093] (4) deposited on the outer surface of the layer thickness of the metal layer 34 MoO3 SOnm Pt layer constituting the anode 4, to obtain the organic electroluminescence device.

[0094] 测试本实施例制备的有机电致发光器件性能如实施例1制备的有机电致发光器件性能。 Preparation Example [0094] Testing of the present embodiment has an organic electroluminescent device prepared in Example 1 as the performance of the organic electroluminescent device performance.

[0095] 实施例8 [0095] Example 8

[0096] 本实施例的有机电致发光器件结构如图2所示,该有机电致发光器件包括依次结合的透光导电基底1、阴极2、电子注入层30、电子传输层31、发光层32、空穴传输层33、空穴注入层34、阳极4。 [0096] The present embodiment has the organic electroluminescent device structure shown in Figure 2, the organic electroluminescent device comprises a light-transmitting conductive sequentially bonded substrate 1, a cathode 2, an electron injection layer 30, the electron transport layer 31, light-emitting layer 32, a hole transport layer 33, the hole injection layer 34, an anode 4. 其中,透光导电基底1的导电层12为150nm的镁-铟氧化锡,阴极2 为25nm的Al,电子传输层31为50nm的PBD,发光层32为70nm的AlQ3,空穴传输层33为40nm的NPB,空穴注入层34为5nm的MoO3,阳极4为IOOnm的Pt。 Wherein the light-transmitting conductive substrate is a conductive layer 12 of 150nm of magnesium - indium tin oxide, the cathode 2 is 25nm of Al, the electron transport layer 31 is a PBD 50nm, a light emitting layer 32 is AlQ3 70nm, the hole transport layer 33 is of 40nm of NPB, the hole injection layer 34 MoO3 5nm, the anode 4 is IOOnm of Pt.

[0097] 其制备方法如下: [0097] was prepared as follows:

[0098] (1)将镁-铟氧化锡玻璃进行光刻处理,剪裁成所需要的发光面积,然后依次用洗洁精、去离子水、丙酮、乙醇、异丙醇各超声15min,清洗干净后对其进行氧等离子处理,氧等离子处理时间为13min,功率为40W,以减小导电玻璃表面的粗糙度和接触角,改善其表面的湿润性和吸附性,去除导电玻璃表面的有机污染物,制得透光导电基底1 ; [0098] (1) A magnesium - indium tin oxide glass photolithography process, cut to the desired light emitting area, and then washed with detergent, deionized water, acetone, ethanol, isopropanol each ultrasonic 15min, clean after subjected to oxygen plasma treatment, oxygen plasma treatment time was 13min, a power of 40W, to reduce the roughness and the contact angle of the conductive glass surface, to improve its wettability and surface adsorption, to remove organic contaminants conductive glass surface to prepare a light-transmitting conductive substrate;

[0099] (2)将制得的透光导电基底1放进真空镀膜室里面进行真空沉积一层的金属Al, 构成阴极2 ; [0099] (2) The resulting light-transmissive conductive substrate 1 placed in the vacuum coating chamber inside a metal vacuum deposited layer of Al, constituting the cathode 2;

[0100] (3)在金属Al即阴极2外表面采用喷镀方式依次镀上η型掺杂无机半导体层31、 BALQ层32、CuPc层33、MoO3层34,构成有机电致发光结构3 ; [0100] (3) 2 Al i.e., the outer surface of the metal cathode sputtering manner using sequentially plated η-type doped inorganic semiconductor layer 31, BALQ layer 32, CuPc layer 33, MoO3 layer 34 constituting the organic EL structure 3;

[0101] (4)在MoO3层34外表面蒸镀一层金属Pt层,构成阳极4,得到所述的有机电致发光器件。 [0101] (4) deposited on the outer surface of a metal MoO3 layer 34 Pt layer constituting the anode 4, to obtain the organic electroluminescence device.

[0102] 测试本实施例制备的有机电致发光器件性能如实施例1制备的有机电致发光器件性能。 Preparation Example [0102] Testing of the present embodiment has an organic electroluminescent device prepared in Example 1 as the performance of the organic electroluminescent device performance.

[0103] 以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。 [0103] The foregoing is only preferred embodiments of the present invention but are not intended to limit the present invention, any modifications within the spirit and principle of the present invention, equivalent substitutions and improvements should be included in the present within the scope of the invention.

Claims (10)

1.一种有机电致发光器件,包括: 一透光导电基底;一阴极,其结合在所述透光导电基底上;一有机电致发光结构,其结合在所述阴极与透光导电基底相对的表面上;以及一阳极,其结合在所述有机电致发光结构与阴极相对的表面上。 1. An organic electroluminescent device, comprising: a transparent electrically conductive substrate; a cathode, which binds on the translucent conductive substrate; an organic electroluminescent structure, which binds the cathode and the transparent conductive substrate an opposite upper surface; and an anode, which is incorporated in the organic electroluminescent upper surface opposite to the cathode structure.
2.根据权利要求1所述的有机电致发光器件,其特征在于:所述透光导电基底包括透光衬底和结合于所述透光衬底表面的导电层,所述导电层的材质为铟锡氧化物、掺氟氧化锡、镁-铟氧化物或掺铝的氧化锌。 2. The organic electroluminescent device according to claim 1, wherein: said light-transmissive conductive substrate comprises a conductive layer and a light-transmissive substrate bonded to the surface of the light-transmitting substrate, the material of the conductive layer, indium tin oxide, fluorine-doped tin oxide, magnesium - indium oxide or aluminum-doped zinc oxide.
3.根据权利要求2所述的有机电致发光器件,其特征在于:所述导电层的厚度为100 〜200nm。 3. The organic electroluminescent device according to claim 2, wherein: the thickness of the conductive layer 100 ~200nm.
4.根据权利要求1所述的有机电致发光器件,其特征在于:所述阴极的厚度为10〜 50nm,所述阴极的材质为铝、银、镁、钡或钙;所述阳极的厚度为50〜200nm,所述阳极的材质为金、银、钼或铝。 4. There is according to claim 1, organic electroluminescent device, wherein: the thickness of the cathode is 10~ 50nm, the cathode is made of aluminum, silver, magnesium, barium or calcium; thickness of the anode is 50~200nm, the anode is made of gold, silver, molybdenum or aluminum.
5.根据权利要求1所述的有机电致发光器件,其特征在于:所述有机电致发光结构包含依次结合的电子传输层、发光层、空穴传输层、空穴注入层,所述电子传输层结合在所述阴极与透光导电基底相对的表面,所述空穴注入层与所述阳极结合。 5. There claim 1, organic electroluminescent device, wherein: said organic electroluminescent structure comprises an electron transport layer are bonded, the light emitting layer, a hole transport layer, a hole injection layer, the electron transport layer bonded to a surface of said cathode substrate opposite the light-transmissive conductive, the hole injection layer in conjunction with the anode.
6.根据权利要求5所述的有机电致发光器件,其特征在于:所述电子传输层的厚度为20〜SOnm ;所述发光层的厚度为20〜SOnm ;所述空穴传输层的厚度为20〜SOnm ;所述空穴注入层的厚度为20〜80nm。 6. The organic electroluminescent device, characterized according to claim 5, wherein: the thickness of the electron transport layer is 20~SOnm; the thickness of the hole transport layer; thickness of the light emitting layer is 20~SOnm is 20~SOnm; thickness of the hole injection layer 20~80nm.
7.根据权利要求5或6所述的有机电致发光器件,其特征在于:所述电子传输层的材质为2-(4-联苯基)-5-(4-叔丁基)苯基-1,3,4-噁二唑、8-羟基喹啉铝、2,5- 二(1-萘基)-1,3,4- 二唑、1,2,4-三唑衍生物、N-芳基苯并咪唑、喹喔啉衍生物或η型掺杂无机半导体中的至少一种;所述发光层的材质为四-叔丁基二萘嵌苯、4-( 二腈甲基)-2- 丁基-6-(1,1,7,7-四甲基久洛呢啶-9-乙烯基)-4H-吡喃、9,10- 二-β -亚萘基蒽、二O-甲基-8-羟基喹啉)-(4-联苯酚)铝、4- ( 二腈甲烯基)-2-异丙基-6- (1,1,7,7-四甲基久洛呢啶_9_乙烯基)-4Η-吡喃、二甲基喹吖啶酮或8-羟基喹啉铝中的至少一种;所述空穴传输层的材质为Ν,Ν' - 二(3-甲基苯基)-N,N' - 二苯基-4,4' -联苯二胺、 N, N' -(1-萘基)4力,-二苯基_4,4,-联苯二胺、1,3,5-三苯基苯、酞菁铜或P型掺杂无机半导体中的至 The organic electroluminescent device of claim 5 or 6, characterized in that wherein: the material of the electron transport layer is 2- (4-biphenylyl) -5- (4-t-butyl) phenyl 1,3,4-oxadiazole, aluminum 8-hydroxyquinoline, 2,5-bis (1-naphthyl) -1,3,4-oxadiazole, 1,2,4-triazole derivatives, N- Arylbenzimidazoles, quinoxaline derivatives or η-type doping of at least one inorganic semiconductor; material of the light-emitting layer four - t-butyl perylene, 4- (meth dinitrile ) -2-butyl-6- (1,1,7,7-tetramethyl-9 Gyula it vinyl) -4H- pyran, 9,10--β - anthracene naphthylene group, two O- methyl-8-quinolinolato) - (4-phenol) aluminum, 4- (methylene dinitrile yl) -2-isopropyl-6- (1,1,7,7-tetramethylbutyl yl Gyula _9_ vinyl pyridine) -4Η- pyran, at least one of dimethyl quinacridone or 8-hydroxyquinoline aluminum; the hole transport layer is made of Ν, Ν ' - bis (3-methylphenyl) -N, N '- diphenyl-4,4' - biphenyl diamine, N, N '- (1- naphthyl) 4 forces - diphenyl _4 4, - biphenyl diamine, 1,3,5-triphenylbenzene, copper phthalocyanine or P-type doped inorganic semiconductors to 一种;所述空穴注入层的材质为过渡金属氧化物。 One kind; material of the hole injection layer is a transition metal oxide.
8.根据权利要求5或6所述的有机电致发光器件,其特征在于:所述空穴注入层的功函数值大于所述阳极的功函数值。 8. The organic electroluminescent device of claim 5 or 6, characterized in that wherein: the work function of the hole injection layer is greater than the work function of the anode.
9. 一种有机电致发光器件制备方法,包括如下步骤: 提供透光导电基底;在所述透光导电基底一面上镀阴极;在所述阴极与透光导电基底相对的表面镀有机电致发光结构; 在所述有机电致发光结构与阴极相对的表面镀阳极,得到所述的有机电致发光器件。 A method of preparing a light-emitting organic electroluminescent device, comprising the steps of: providing a light transmissive conductive substrate; a cathode on one side of the light-transmitting conductive plating substrate; the surface of the cathode and the light-transmissive conductive plated substrate opposing the organic electroluminescent the light emitting structure; in the organic electroluminescent light emitting structure opposite surfaces of the anode and the cathode plating, the resulting organic electroluminescent device.
10.根据权利要求9所述的有机电致发光器件,其特征在于:所述透光导电基底一面上镀阴极的方式为蒸镀、溅射或喷镀;所述阴极与透光导电基底相对的表面镀有机电致发光结构的方式为蒸镀、溅射或喷镀;所述有机电致发光结构与透光导电基底相对的表面镀阳极的方式为蒸镀、溅射或喷镀;所述有机电致发光结构包括采用蒸镀、溅射、喷镀或化学沉积方式依次结合的电子传输层、发光层、空穴传输层、空穴注入层,所述电子传输层与所述阴极与透光导电基底相对的表面结合,所述空穴注入层与所述阳极结合。 10. The organic electroluminescent device according to claim 9, wherein: said light-transmissive conductive coating on one surface of the cathode substrate way for vapor deposition, sputtering or plating; light-transmissive cathode and the conductive substrate opposite the surface coated with the organic electroluminescent structure embodiment as vapor deposition, sputtering or plating; embodiment has the organic electroluminescent light emitting structure and the surface of the conductive substrate opposite the light-transmissive anode of the plating deposition, sputtering or plating; the said organic electroluminescent structure comprising an electron transport layer using evaporation, sputtering, chemical deposition or sputtering sequentially combined manner, a light emitting layer, a hole transport layer, a hole injection layer, the electron transport layer and the cathode and opposite surface of the transparent conductive substrate binding, binding the hole injection layer and the anode.
CN2010105186846A 2010-10-21 2010-10-21 Organic electroluminescent device and manufacturing method thereof CN102456839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010105186846A CN102456839A (en) 2010-10-21 2010-10-21 Organic electroluminescent device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010105186846A CN102456839A (en) 2010-10-21 2010-10-21 Organic electroluminescent device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
CN102456839A true CN102456839A (en) 2012-05-16

Family

ID=46039734

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010105186846A CN102456839A (en) 2010-10-21 2010-10-21 Organic electroluminescent device and manufacturing method thereof

Country Status (1)

Country Link
CN (1) CN102456839A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103367653A (en) * 2013-07-10 2013-10-23 上海和辉光电有限公司 Inversion type organic light emitting diode display device and manufacturing method thereof
CN104662671A (en) * 2012-09-28 2015-05-27 海洋王照明科技股份有限公司 Polymer solar cell and preparation method thereof
CN105355797A (en) * 2015-10-27 2016-02-24 工业和信息化部电子第五研究所 Inverted organic electroluminescent device and preparation method thereof
CN105789258A (en) * 2016-03-24 2016-07-20 深圳市华星光电技术有限公司 OLED (Organic Light-Emitting Diode) display panel and 3D stereo display device
CN109713150A (en) * 2018-12-27 2019-05-03 上海大学 A kind of inversion organic electroluminescence device and preparation method thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3203227B2 (en) * 1998-02-27 2001-08-27 三洋電機株式会社 Method for manufacturing a display device
CN1685768A (en) * 2003-06-13 2005-10-19 富士电机控股株式会社 Organic EL display
US20060034065A1 (en) * 2004-08-10 2006-02-16 Innovalight, Inc. Light strips for lighting and backlighting applications
CN1780017A (en) * 2004-11-10 2006-05-31 三星Sdi株式会社 Double-sided light emitting organic electroluminescence display device and fabrication method thereof
CN101006159A (en) * 2004-08-19 2007-07-25 Lg化学株式会社 Organic light-emitting device comprising buffer layer and method for fabricating the same
CN101369635A (en) * 2008-09-28 2009-02-18 清华大学;北京维信诺科技有限公司;昆山维信诺显示技术有限公司 Inversion type OLED display device and preparation method thereof
CN101471427A (en) * 2007-12-27 2009-07-01 周星工程股份有限公司;Ads有限公司 Organic light emitting diode and method for manufacturing the same
CN101687889A (en) * 2007-07-05 2010-03-31 默克专利有限公司 Luminescent metal complexes for organic electronic devices
US20100090195A1 (en) * 2008-10-14 2010-04-15 Farzad Parsapour Quantum dot optoelectronic devices with enhanced performance
CN101777630A (en) * 2010-01-22 2010-07-14 陕西科技大学 White light organic electroluminescent device and preparation method thereof
CN101834277A (en) * 2009-02-23 2010-09-15 三星电子株式会社 Quantum dot light emitting device having quantum dot multilayer and preparation method thereof
CN101855741A (en) * 2008-12-25 2010-10-06 富士电机控股株式会社 Organic EL element having cathode buffer layer

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3203227B2 (en) * 1998-02-27 2001-08-27 三洋電機株式会社 Method for manufacturing a display device
CN1685768A (en) * 2003-06-13 2005-10-19 富士电机控股株式会社 Organic EL display
US20060034065A1 (en) * 2004-08-10 2006-02-16 Innovalight, Inc. Light strips for lighting and backlighting applications
CN101006159A (en) * 2004-08-19 2007-07-25 Lg化学株式会社 Organic light-emitting device comprising buffer layer and method for fabricating the same
CN1780017A (en) * 2004-11-10 2006-05-31 三星Sdi株式会社 Double-sided light emitting organic electroluminescence display device and fabrication method thereof
CN101687889A (en) * 2007-07-05 2010-03-31 默克专利有限公司 Luminescent metal complexes for organic electronic devices
CN101471427A (en) * 2007-12-27 2009-07-01 周星工程股份有限公司;Ads有限公司 Organic light emitting diode and method for manufacturing the same
CN101369635A (en) * 2008-09-28 2009-02-18 清华大学;北京维信诺科技有限公司;昆山维信诺显示技术有限公司 Inversion type OLED display device and preparation method thereof
US20100090195A1 (en) * 2008-10-14 2010-04-15 Farzad Parsapour Quantum dot optoelectronic devices with enhanced performance
CN101855741A (en) * 2008-12-25 2010-10-06 富士电机控股株式会社 Organic EL element having cathode buffer layer
CN101834277A (en) * 2009-02-23 2010-09-15 三星电子株式会社 Quantum dot light emitting device having quantum dot multilayer and preparation method thereof
CN101777630A (en) * 2010-01-22 2010-07-14 陕西科技大学 White light organic electroluminescent device and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104662671A (en) * 2012-09-28 2015-05-27 海洋王照明科技股份有限公司 Polymer solar cell and preparation method thereof
CN104662671B (en) * 2012-09-28 2017-03-08 海洋王照明科技股份有限公司 A polymer solar cell and method of preparation
CN103367653A (en) * 2013-07-10 2013-10-23 上海和辉光电有限公司 Inversion type organic light emitting diode display device and manufacturing method thereof
CN103367653B (en) * 2013-07-10 2016-02-03 上海和辉光电有限公司 Inverted organic light emitting diode display device and a method for preparing
CN105355797A (en) * 2015-10-27 2016-02-24 工业和信息化部电子第五研究所 Inverted organic electroluminescent device and preparation method thereof
CN105789258A (en) * 2016-03-24 2016-07-20 深圳市华星光电技术有限公司 OLED (Organic Light-Emitting Diode) display panel and 3D stereo display device
CN105789258B (en) * 2016-03-24 2019-06-11 深圳市华星光电技术有限公司 A kind of OLED display panel and 3D 3 d display device
CN109713150A (en) * 2018-12-27 2019-05-03 上海大学 A kind of inversion organic electroluminescence device and preparation method thereof

Similar Documents

Publication Publication Date Title
Chan et al. Improved performance of the single-layer and double-layer organic light emitting diodes by nickel oxide coated indium tin oxide anode
Tokmoldin et al. A Hybrid Inorganic–Organic Semiconductor Light‐Emitting Diode Using ZrO2 as an Electron‐Injection Layer
CN100508238C (en) Organic electronic device
CN1535485B (en) Light emitting component with organic layers
JP4673279B2 (en) The organic light emitting display device and a manufacturing method thereof
WO2010013673A1 (en) Organic electroluminescence element and production method of same
US6351067B2 (en) Organic electroluminescent device with improved hole injecting structure
EP1488468A2 (en) Transparent, thermally stable light-emitting component comprising organic layers
Dobbertin et al. Inverted hybrid organic light-emitting device with polyethylene dioxythiophene-polystyrene sulfonate as an anode buffer layer
Chang et al. High-efficiency organic electroluminescent device with multiple emitting units
JP2007529868A (en) The organic light emitting device improved stability
CN1421115A (en) High efficiency transparent organic light emitting devices
Qiu et al. Comparative study of metal or oxide capped indium–tin oxide anodes for organic light-emitting diodes
JP3838518B2 (en) Light-emitting structure
CN101305071A (en) Organic electroluminescent device and method for preparing the same
JP2008124268A (en) Organic electroluminescence element
JP2007005784A (en) Organic el device
KR20060091648A (en) Organic electroluminescence device comprising mltilayer cathod
CN100531500C (en) Electrode structure for electronic and opto-electronic devices
JP4292246B2 (en) The organic electroluminescent device and a manufacturing method thereof
CN1682572A (en) Organic electroluminescent element and display device
Lai et al. Applications of Ytterbium in organic light-emitting devices as high performance and transparent electrodes
CN100524889C (en) The organic light emitting device and method for fabricating the
JP4915544B2 (en) Organic electroluminescence device
US8241467B2 (en) Making a cathode structure for OLEDs

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C12 Rejection of a patent application after its publication